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Linear Subspaces

▶ A subset L ⊂ V is a linear subspace, if is is closed under the
vector addition and scalar multiplication defined on V

▶ A linear subspace is itself a vector space
▶ Example:

L = {〈x1, . . . , xm〉 ∈ R̂m : a1x1 + · · ·+ amxm = 0}

is a linear subspace
▶ Example:

L = {〈x1, . . . , xm〉 ∈ R̂m : a1x1 + · · ·+ amxm = 1}

is NOT a linear subspace
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Linearly Independent Set of Vectors

▶ A finite set of vectors, {v1, . . . , vk} ⊂ V, is linearly
dependent, if there exist scalars a1, . . . , ak, not all zero, such
that

a1v1 + · · · akvk = 0 =⇒ a1 = · · · = ak = 0

▶ A finite set of vectors, {v1, . . . , vk} ⊂ V, is linearly
independent, if they are not linearly dependent

▶ A finite set of vectors, {v1, . . . , vk} ⊂ V, is linearly
independent, if, for any scalars a1, . . . , am,

a1v1 + · · · akvk = 0 =⇒ a1 = · · · = ak = 0

▶ Examples
▶ {〈1, 0, 0〉, 〈1, 1, 0〉, 〈0, 0, 1〉} ⊂ R̂3 is linearly independent
▶ {〈1, 0, 0〉, 〈1, 0,−1〉, 〈0, 0, 1〉 ⊂ R̂3 is linearly dependent
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Span of a Set of Vectors

▶ Given a subset S ⊂ V, define the span of S to be the set of all
possible finite linear combinations of vectors in S,

[S] = {a1v1+· · · akvk : ∀ k ≥ 0, a1, . . . , ak ∈ R, v1, . . . , vk ∈ S}

▶ If S = {v1, . . . , vm} is linearly independent, then, for any
v ∈ [S], there exists a unique 〈a1, . . . , ak〉 ∈ R̂k such that

v = a1v1 + · · · akvk

▶ [S] is a linear subspace of V
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Basis and Dimension
▶ A vector space V is finite dimensional if there exists a finite

set S ⊂ V such that
[S] = V

▶ A basis of V is an ordered list of vectors, E = (e1, . . . , em),
such that
▶ S = {e1, . . . , em} ⊂ V is linearly independent
▶ [S] = V
▶ Equivalently, given any v ∈ V, there is a unique

〈a1, . . . , am〉 ∈ R̂m such that

v = a1e1 + · · ·+ amem =
[
e1 · · · em

] a1

...
am


▶ Any finite dimensional vector space has at least one basis
▶ If (e1, . . . , em) and (f1, . . . , fn) are both bases of V, then

m = n and the dimension of V is m
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Basis of Abstract Vector Space
▶ A basis of a vector space V will be written as a row vector of

vectors:
E = (e1, . . . , em) =

[
e1 · · · em

]
▶ For each v ∈ V, there is a unique column vector of scalars

a = 〈a1, . . . , am〉 =

a1

...
am


such that

v = e1a1 + · · ·+ emam

=
[
e1 · · · em

] a1

...
am

 = Ea
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Linear Isomorphism of a Vector Space with R̂m

▶ Given a basis E = (e1, . . . , em) of a vector space V, there is an
linear isomorphism

IE : R̂m → V
a = 〈a1, . . . , am〉 7→ Ea = a1e1 + · · ·+ amem
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Example: Basis of R̂m

▶ Suppose E = (e1, . . . , em) is a basis of R̂m

▶ Each vector in E is of the form

ek = 〈e1
k, . . . , em

k 〉 =

e1
k...

em
k


▶ Therefore, the basis can be written as a matrix:

E =
[

e1 . . . em
]  e1

1 · · · e1
m

... ...
e1

m · · · em
m
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Vector in R̂m with Respect to Basis
▶ Given a basis E of R̂m, as denoted above and a vector

v = 〈v1, . . . , vm〉 ∈ R̂m,

there exists a unique vector of coefficients

a = 〈a1, . . . , am〉

such that

v = e1a1 + · · ·+ emam =
[
e1 · · · em

] a1

...
am


=

e1
1 · · · e1

m
... ...

e1
m · · · em

m


a1

...
am

 = Ea
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Standard Basis of R̂m

▶ The standard basis of R̂m is

E = (e1, . . . em)

=
[
e1 · · · em

]
where

e1 = 〈1, 0, . . . , 0〉
e2 = 〈0, 1, . . . , 0〉

...
em = 〈0, 0, . . . , 1〉

▶ Therefore, E can be written as a matrix

E =
[
e1 · · · em

]
=


1 0 · · · 0
0 1 · · · 0
... . . . ...
0 0 · · · 0

 = I (identity matrix)
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Change of Basis
▶ Let

E = (e1, . . . , em) and F = (f1, . . . , fm)
be bases of V

▶ Since each fk can be written as

fk = e1A1
k + · · ·+ emAm

k ,

there is a matrix A such that

F = EA

▶ Similary, there is a matrix B such that

E = FB

▶ Since
F = EA = FBA,

it follows that BA = I and therefore B = A−1
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Change of coordinates

▶ Given a vector v ∈ V, there exists a unique a = I−1
E (v) ∈ R̂m

such that
v = Ea

▶ Similarly, there exists a unique b = I−1
F (v) ∈ R̂m such that

v = Fb

▶ If F = EA, then E = FA−1 and therefore

Fb = v = Ea = FA−1a

▶ It follows that
b = A−1a
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Example of Change of Basis
▶ The standard basis of R̂3 is

E =
[
e1 e2 e3

]
=

 1 0 0
0 1 0
0 0 1


▶ Consider another basis

f1 = 〈1, 0, 0〉 = e1

f2 = 〈−2, 1, 0〉 = −2e1 + e2

f3 = 〈0, 1, 1〉 = e2 + e3

▶ This can also be written as

F =
[
f1 f2 f3

]
=

 1 −2 0
0 1 1
0 0 1


= E

1 −2 0
0 1 1
0 0 1
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Inverse basis
▶ Inverting

f1 = 〈1, 0, 0〉 = e1

f2 = 〈−2, 1, 0〉 = −2e1 + e2

f3 = 〈0, 1, 1〉 = e2 + e3

we get

e1 = f1
e2 = f2 + 2e1 = 2f1 + f2
e3 = f3 − e2 = 2f1 + f2 + f3

or

E =
[
e1 e2 e3

]
=

[
f1 f2 f3

] 1 2 2
0 1 1
0 0 1

 = F

1 2 2
0 1 1
0 0 1
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Change of coordinates

▶ Consider the vector v = 〈2, 3,−1〉 = 2e1 + 3e2 − e3
▶ To write it with respect to the basis F,

v =
[
e1 e2 e3

]  2
3
−1

 = E

 2
3
−1


= F

1 2 2
0 1 1
0 0 1

 2
3
−1

 = F

 6
2
−1


=

[
f1 f2 f3

]  6
2
−1

 = 6f1 + 2f2 − f3
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Geometric View of Vectors

▶ Vector addition

•
0

v1

v2

v1 + v2

▶ Scalar multiplication

•
0

4v = v4

v

−v = (−1)v = v(−1)
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Geometric View of Points and Vectors

•p

•p + v

v

•p1

•p2

p2 − p1

▶ A point p can be displaced by a vector v
▶ Given two points p1 and p2, there is a vector v such that p2 is

the point p1 displaced by v

p2 = p1 + v and v = p2 − p1
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Geometric View of Points and Vectors

▶ Vector addition

•p

•

p + v1

v1

p + v2

v2

p + v1 + v2

v1 + v2

▶ Scalar multiplication

•
0

4v = v4

v

−v = (−1)v = v(−1)
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Affine Space

•p

•p + v

v

•p1

•p2

p2 − p1

▶ The set of all possible displacement vectors is a vector space
V, which we will call the tangent space of A

▶ An affine space A with tangent space V is a set with the
following operations:
▶ Point-vector addition

A× V → A
(p, v) 7→ p + v

▶ Point-point subtraction

A× A → V
(p1, p2) 7→ p2 − p1

which satisfy the following properties
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Properties of Point-Vector Addition and Point-Point
subtraction

•p

•p + v

v

•p1

•p2

p2 − p1

▶ Point-vector addition
▶ If p ∈ A and v ∈ V, then p + v ∈ A
▶ p + (v1 + v2) = (p + v1) + v2
▶ p + 0 = p

▶ Point-point subtraction
▶ If p1, p2 ∈ A, then p2 − p1 ∈ V
▶ (p + v)− p = v
▶ p1 + (p2 − p1) = p2
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Affine Combination of Points

▶ Recall that a linear combination of vectors v1, . . . , vk ∈ V is of
the form

a1v1 + · · ·+ vkvm, where 〈a1, . . . , ak〉 ∈ R̂k

▶ An affine combination of points p0, . . . , pk ∈ A is a point of
the form

p = p0+a1(p1−p0)+· · ·+ak(pk−p0), where 〈a0, . . . , ak〉 ∈ R̂k
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Affine Span
▶ Recall that the linear span of a subset S ⊂ V is

[S] = {a1v1 + · · ·+ akvk : v1, . . . , vk ∈ S, k > 0}

▶ The affine span of a subset P ⊂ A is the set of all possible
affine combinations of finite subsets of P

[P] = {p0+a1(p1−p0)+· · ·+ak(pk−p0) : p0, . . . , pk ∈ P, k ≥ 0}

▶ Given P ⊂ A and p0 ∈ P, define

P − p0 = {p − p0 : p ∈ P} ⊂ V,

▶ Given S ⊂ V and p0 ∈ A, define

p0 + S = {p0 + v : v ∈ V}

▶ If p0 ∈ P,
[P] = p0 + [P − p0]
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Affine Independence

▶ Recall that a set of vectors {v1, . . . , vk} ⊂ V is linearly
independent if the following holds:

a1v1 + · · · akvk = 0 =⇒ a1 = · · · = ak = 0

•
0

v1

v2

▶ A set of points {p0, . . . , pk} ⊂ A is affinely independent if the
set of vectors {p1 − p0, . . . , pk − p0} is linearly independent

•

•

•

p0

p1

p2

p1 − p0

p2 − p0
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Affine Basis
▶ Recall that an ordered set of vectors E = (e1, . . . , em) is a

basis of V if the set {e1, . . . , em} is linearly independent and
the span of E is all of V

•
0

e1

e2

▶ An ordered set of points P = (p0, . . . , pm) is an affine basis of
A if the ordered set of vectors E = (p1 − p0, . . . , pm − p0) is a
basis of V

•

•

•

p0

p1

p2

p1 − p0

p2 − p0

▶ If the number of points in an affine basis is m + 1, then the
dimension of the affine space is m
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Geometry of Vector Space

0
•

v1 ℓ1v2

ℓ2

▶ A space of arrows or vectors
▶ The set of all scalar multiples of a nonzero vector is an

oriented 1-dimensional linear subspace, i.e., an oriented line
through the origin

ℓ = {tv : t ∈ R}

▶ A vector can be rescaled by a real number (called a scalar)
▶ Two vectors can be added using a parallelogram
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Geometry of Affine Space

v
•pstart

•
pendw

•qstart

•
qend

−3
2v

•rend

•rstart

▶ A space of points
▶ From a point pstart to a different point pend is a vector

v = pend − pstart

▶ There is a unique oriented line passing through pstart and pend

ℓ = {pstart + t(pend − pstart) : t ∈ R}

▶ If rend − rstart is a scalar multiple of pend − pstart, then the line
through rstart and rend is parallel to the line through pstart and
pend
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Geometry of 3-Dimensional Abstract Vector and Affine
Spaces

▶ Abstract vector space
▶ Arrows, lines and planes through the origin
▶ Can measure relative lengths of parallel vectors
▶ No consistent way to compare the length of two vectors

pointing in different directions
▶ No way to measure the angle between two vectors

▶ Abstract affine space
▶ Points, lines, planes
▶ Can measure distance between two points relative to the

distance between two other points only if all lie on a line
▶ No consistent way to compare the distance between two pairs

of points that lie on two non-parallel lines
▶ No way to the measure the angle between two intersecting lines

▶ Measurement of lengths, distances, angles require something
more


