MATH-UA 148 Honors Linear Algebra
Hermitian Vector Spaces
Unitary Sets and Bases
Adjoint Map and Matrix
Unitary Maps and Matrices
Schur Representation
Self-Adjoint Maps and Matrices

Deane Yang

Courant Institute of Mathematical Sciences New York University

Decmber 5, 2022

START RECORDING LIVE TRANSCRIPT

Hermitian Inner Product on Complex Vector Space

If V is a complex vector space then a **Hermitian inner** product on V is a function of two vectors v_1, v_2 , written

$$\langle v_1, v_2 \rangle \in \mathbb{C}$$

that satisfies the following properties

$$\langle a^{1}v_{1} + a^{2}v_{2}, w \rangle = a^{1}\langle v_{1}, w \rangle + a^{2}\langle v_{2}, w \rangle$$
$$\langle v, b^{1}w_{1} + b^{2}w_{2} \rangle = \overline{b}^{1}\langle v, w_{1} \rangle + \overline{b}^{2}\langle v, w_{2} \rangle$$
$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$
$$\langle v, v \rangle > 0 \text{ if } v \neq 0$$

► A complex vector space with a Hermitian inner product is called a *Hermitian vector space*

Hermitian Inner Product With Respect To Basis

- Let V be a complex vector space and let (b_1, \ldots, b_n) be a basis of V
- ► Any inner product on *V* is uniquely determined by the matrix *A*, where

$$A_{ij} = \langle b_i, b_j \rangle$$

- ► The matrix *A* satisfies the following properties
 - Hermitian:

$$A_{ij}=\langle b_i,b_j\rangle=\overline{\langle b_j,b_i\rangle}=\bar{A}_{ji}$$

(In particular, since $A_{ii} = \bar{A}_{ii}$, it follows that $A_{ii} \in \mathbb{R}$)

Positive definite: For any nonzero $v = a^k b_k = Ba \in V$,

$$0 < \langle v, v \rangle = \langle a^j b_j, a^k b_k \rangle = a^j \bar{a}^k \langle b_j, b_k \rangle = a^T A \bar{a}$$

▶ Conversely, given the basis $(b_1, ..., b_n)$ of V, any positive definite Hermitian matrix A defines an inner product where

$$\langle b_i, b_j \rangle = A_{ij}$$

Standard Hermitian Inner Product on \mathbb{C}^n

- ▶ Let $(e_1, ..., e_n)$ be the standard basis of \mathbb{C}^n
- Define the standard hermitian inner product of $v = v^i e_i$, $w = w^i e_i$ to be

$$\langle v, w \rangle = v \cdot \bar{w} = v^1 \bar{w}^1 + \dots + v^n \bar{w}^n$$

Orthogonality and Orthogonal Projection

▶ Two vectors $v, w \in V$ are **orthogonal** if

$$\langle v, w \rangle = 0.$$

▶ If v is a unit vector and w is any vector, then

$$\langle w - \langle w, v \rangle v, v \rangle = \langle w, v \rangle - \langle \langle w, v \rangle v, v \rangle$$
$$= \langle w, v \rangle - \langle w, v \rangle ||v||^2$$
$$= 0$$

But order matters

$$\langle w - \langle v, w \rangle v, v \rangle = \langle w, v \rangle - \langle \langle v, w \rangle v, v \rangle$$
$$= \langle w, v \rangle - \langle v, w \rangle ||v||^2$$
$$= \langle w, v \rangle - \overline{\langle v, w \rangle}$$

Unitary Set

▶ A set $(e_1, ..., e_k)$ is called **unitary** if

$$\langle e_i, e_j \rangle = \delta_{ij}, 1 \leq i, j \leq k$$

- A unitary set is linearly independent
 - If $a^1e_1 + \cdots + a^ke_k = 0$, then for each $1 \le j \le k$,

$$a^j = \langle a^1 e_1 + \cdots + a^k e_k, e_j \rangle = 0$$

If dim V = n, then a unitary set with n elements is a **unitary** basis

Gram-Schmidt

- **Lemma.** Any (possibly empty) unitary set can be extended to a unitary basis
- ▶ Suppose $S = \{e_1, \dots, e_k\}$ is a unitary set, where $k < \dim V$
- ▶ The span of S is not all of V and therefore there is a nonzero vector $v \in V$ such that $v \notin S$
- ▶ Let $\hat{v} = v \langle v, e_1 \rangle e_1 \cdots \langle v, e_k \rangle e_k$
- $\hat{v} \neq 0$, because $v \notin$ the span of S
- \triangleright \hat{v} is orthogonal to S, because for each $1 \le i \le k$,

$$\langle \hat{v}, e_j \rangle = \langle v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_k \rangle e_k, e_j \rangle = \langle v, e_j \rangle - \langle v, e_j \rangle = 0$$

▶ If

$$e_{k+1} = rac{\hat{v}}{\|\hat{v}\|},$$

then $||e_{k+1}|| = 1$ and $\langle e_{k+1}, e_i \rangle = 0$ for each $1 \leq j \leq k$

▶ Therefore, $\{e_1,\ldots,e_{k+1}\}$ is a unitary set

Adjoint of a Linear Map

- ► Let *X* and *Y* be Hermitian vector spaces (i.e., complex vector spaces with Hermitian inner products)
- ▶ Let $L: X \rightarrow Y$ be a linear map
- ▶ The **adjoint** of *L* is the operator $L^*: Y \to X$ such that for any $x \in X$ and $y \in Y$,

$$\langle L(x), y \rangle = \langle x, L^*(y) \rangle$$

and therefore

$$\langle y, L(x) \rangle = \overline{\langle L(x), y \rangle} = \overline{\langle x, L^*(y) \rangle} = \overline{\langle L^*(x), y \rangle}$$

▶ Observe that if $L^{**} = (L^*)^* : X \to Y$, then for every $x \in X$ and $y \in Y$,

$$\langle y, L^{**}(x) \rangle = \langle L^*(y), x \rangle = \langle y, L(x) \rangle$$

and therefore $L^{**} = L$

Adjoint Map With Respect to Basis

- Let (e_1, \ldots, e_m) be a unitary basis of X and (f_1, \ldots, f_n) be a unitary basis of Y
- ▶ Let M and M^* be the matrices such that for every $1 \le k \le m$,

$$L(e_k) = M_k^1 f_1 + \cdots + M_k^n f_n$$

and for every $1 \le a \le n$,

$$L^*(f_a) = (M^*)_a^1 e_1 + \cdots + (M^*)_a^m e_m$$

▶ It follows that

$$(M^*)_a^k = \langle L^*(f_a), e_k \rangle = \overline{\langle f_a, L(e_k) \rangle} = \overline{M}_k^a$$

- ▶ In other words, $M^* = \overline{M}^T$
- ▶ Given a complex matrix $M \in \mathcal{M}_{n \times m}$, we define the **adjoint** matrix of M to be

$$M^* = \overline{M}^T$$

Examples of Adjoint Matrices

$$\begin{bmatrix} 1 & -i & 1+i \\ 1 & i & 1-i \end{bmatrix}^* = \begin{bmatrix} 1 & 1 \\ i & -i \\ 1-i & 1+i \end{bmatrix}$$

$$\begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}^* = \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$$

► Self-adjoint matrix

$$\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}^* = \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$$

Unitary Maps

▶ If V is a Hermitian vector space, a linear map $L: V \to V$ is **unitary**, if for any $v, w \in V$, if any of the following equivalent statements hold:

$$\langle L(v), L(w) \rangle = \langle v, w \rangle$$
 $\langle L^*L(v), w \rangle = \langle v, w \rangle$
 $L^* \circ L = I$
 L is invertible and $L^{-1} = L^*$

▶ It also follows that $L \circ L^* = I$

Unitary Matrices

- ▶ Let $L: V \rightarrow V$ be a unitary map
- ▶ If $(u_1, ..., u_n)$ is a unitary basis of V and $L(u_k) = M_k^j u_j$, then

$$\delta_{jk} = \langle u_j, u_k \rangle$$

$$= \langle L(u_j), L(u_k) \rangle$$

$$= \langle u_j, (L^* \circ L)(u_k) \rangle$$

$$= \langle u_j, (M^* M)_k^i u_i \rangle$$

$$= (M^* M)_k^j$$

$$M^*M=I$$

▶ A matrix M is **unitary** if $M^*M = MM^* = I$

Properties of unitary maps and matrices

- ▶ If L_1, L_2 are unitary maps, then so is $L_1 \circ L_2$
 - ▶ If M_1 , M_2 are unitary matrices, then so is M_1M_2
- ▶ If L is unitary, then L is invertible and $L^{-1} = L^*$ is unitary
 - ▶ If M is unitary, then M is invertible and $M^{-1} = M^*$ is unitary
- The identity map is unitary
 - The identity matrix is unitary

Unitary Group

- ▶ Define the unitary group U(V) of a Hermitian vector space V to be the set of all unitary transformations
- Denote

$$U(n) = U(\mathbb{C}^n)$$

using the standard Hermitian inner product on \mathbb{C}^n

- Both satisfy the properties of an abstract group G
 - Any ordered pair $(g_1, g_2) \in G \times G$ uniquely determine a third, denoted $g_1g_2 \in G$
 - $(Associativity) (g_1g_2)g_3 = g_1(g_2g_3)$
 - ▶ (Identity element) There exists an element $e \in G$ such that ge = eg = g for any $g \in G$
 - ▶ (Inverse of an element) For each $g \in G$, there exists an element $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = e$
- ightharpoonup U(n) is an example of a matrix group
- ▶ Both U(V) and U(n) are examples of Lie groups

Schur Representation of a Real Linear Map

- Let V be a finite dimensional real inner product space
- ▶ **Theorem:** Given any linear map $L: V \to V$ with only real eigenvalues, there exists an **orthonormal** basis (u_1, \ldots, u_n) of V such that for each $1 \le k \le n$, $L(u_k)$ is a linear combination of u_1, \ldots, u_k ,

$$L(u_k) = M_k^k u_k + \cdots + M_k^n u_n$$

▶ Corollary: Given any real matrix M with only real eigenvalues, there is an orthogonal matrix O such that the matrix O^tMO is triangular

Schur Representation of a Complex Linear Map

- Let V be a finite dimensional Hermitian vector space
- ▶ **Theorem:** Given any linear map $L: V \to V$, there exists a **unitary** basis (u_1, \ldots, u_n) of V such that for each $1 \le k \le n$, $L(u_k)$ is a linear combination of u_1, \ldots, u_k ,

$$L(u_k) = M_k^k u_k + \cdots + M_k^n u_n$$

▶ **Corollary:** Given any complex matrix M, there is a unitary matrix O such that the matrix O^tMO is triangular

Proof (Part 1)

- Proof by induction
- ▶ Theorem holds when dim V = 1
- ▶ Suppose theorem holds when dim V = n 1
- ▶ Consider a linear map $L: V \to V$, where dim V = n with eigenvalues $\lambda_1, \ldots, \lambda_n$
- Let u_n be a unit eigenvector for the eigenvalue λ_n , i.e.,

$$\|u_n\|=1$$
 and $L(u_n)=\lambda_n u_n$

Let

$$u_n^{\perp} = \{ v \in V : \langle v, u_n \rangle = 0 \}$$

ightharpoonup Recall that the orthogonal projection map onto u_n^{\perp} is given by

$$\pi^{\perp}: V \to u_n^{\perp}$$
$$v \to v - \langle v, u_n \rangle u_n$$

Proof (Part 2)

- ▶ If (v_1, \ldots, v_{n-1}) is a basis of u_n^{\perp} , then $(v_1, \ldots, v_{n-1}, u_n)$ is a basis of V
- Let M be the matrix such that

$$L(v_k) = M_k^1 v_1 + \dots + M_k^{n-1} v_{n-1} + M_k^n u_n$$

$$L(u_n) = M_n^1 v_1 + \dots + M_n^{n-1} v_{n-1} + M_n^n u_n$$

► Since $L(u_n) = \lambda_n u_n$,

$$M_n^1 = \cdots = M_n^{n-1} = 0$$
 and $M_n^n = \lambda_n$

Let $L^{\perp}: u_n^{\perp} \to u_n^{\perp}$ be the linear map given by

$$L^{\perp}(v_k) = M_k^1 v_1 + \dots + M_k^{n-1} v_{n-1}, \ 1 \le k \le n-1$$

▶ Since dim $u_n^{\perp} = n - 1$, there is a basis (u_1, \ldots, u_{n-1}) such that

$$L^{\perp}(u_k) = M_k^k u_k + \dots + M_k^{n-1} u_{n-1}, \ 1 \le k \le n-1$$

Proof (Part 3)

Since

$$L^{\perp}(u_k) = M_k^k u_k + \dots + M_k u^{n-1} u_{n-1}, \ 1 \le k \le n-1,$$

it follows that

$$L(u_k) = M_k^k u_k + \dots + M_k u^{n-1} u_{n-1} + M_k^n u_n, \ 1 \le k \le n-1$$

► Also,

$$L(u_n) = \lambda_n u_n$$

► Therefore,

$$L(u_k) = M_k^k u_k + \cdots + M_k u^{n-1} u_{n-1} + M_k^n u_n, \ 1 \le k \le n,$$

where $M_n^n = \lambda_n$

Self-Adjoint Maps and Symmetric Matrices

▶ Given a Hermitian vector space V, a linear map $L: V \rightarrow V$ is **self-adjoint** if

$$L^* = L$$

▶ A complex matrix *M* is **Hermitian** if

$$M^* = M$$

Eigenvalues of a Self-Adjoint Map are Real

- Let $L: V \to V$ be a hermitian linear map with basis (e_1, \dots, e_n)
- ▶ If v is an eigenvector of L with eigenvalue λ , then

$$\lambda \|v\|^2 = \langle L(v), v \rangle$$

$$= \langle v, L(v) \rangle$$

$$= \overline{\langle L(v), v \rangle}$$

$$= \overline{\lambda} \|v\|^2$$

$$= \overline{\lambda} \|v\|^2$$

Eigenspaces of a Self-Adjoint Map are Orthogonal

- Suppose λ, μ are two different eigenvalues of a self-adjoint operator $L: V \to V$ with eigenvectors v, w respectively
- ▶ It follows that

$$0 = \langle L(v), w \rangle - \langle v, L(w) \rangle$$

$$= \langle \lambda v, w \rangle - \langle v, \mu w \rangle$$

$$= (\lambda - \mu) \langle v, w \rangle \text{ since } \mu \in \mathbb{R}$$

- ▶ Since $\lambda \mu \neq 0$, it follows that $\langle v, w \rangle = 0$
- ▶ **Theorem.** Given a self-adjoint map $L: V \rightarrow V$, there exists a unitary basis of eigenvectors
- ▶ Corollary. Given a Hermitian matrix M, there exists a unitary matrix $U \in U(n)$ and real diagonal matrix D such that

$$M = U^*DU$$
,

