

MATH-UA 123 Calculus 3: Review

Deane Yang

Courant Institute of Mathematical Sciences
New York University

December 8, 2020

START RECORDING

Final Exam Coverage

- ▶ Chapter 10
 - ▶ 10.1: Coordinates
 - ▶ 10.2: Vectors
 - ▶ 10.3: Dot product, orthogonal projection
 - ▶ 10.4: Cross product
 - ▶ 10.5: Equations of lines and planes
 - ▶ 10.6: Cylinders and quadric surfaces
 - ▶ 10.7: Parameterized curves
 - ▶ 10.8: Arclength
 - ▶ 10.9: Position, velocity, speed, acceleration
- ▶ Chapter 11
 - ▶ 11.1: Functions of several variables
 - ▶ 11.3: Partial derivatives
 - ▶ 11.4: Tangent planes, linear approximations, differentials
 - ▶ 11.5: Chain rule
 - ▶ 11.6: Directional derivatives, gradient
 - ▶ 11.7: Maximum and minimum values
 - ▶ 11.8: Lagrange multipliers

Final Exam Coverage

- ▶ Chapter 12
 - ▶ 12.1-12.2: Double integrals
 - ▶ 12.3: Polar coordinates
 - ▶ 12.5: Triple integrals
 - ▶ 12.6: Cylindrical coordinates
 - ▶ 12.7: Spherical coordinates
- ▶ Chapter 13
 - ▶ 13.1: Vector fields
 - ▶ 13.2: Line integrals
 - ▶ 13.3: Fundamental theorem of line integrals
 - ▶ 13.4: Green's Theorem
 - ▶ 13.5: Curl and divergence
 - ▶ 13.6: Parametric surfaces
 - ▶ 13.7: Flux integrals
 - ▶ 13.9: Divergence Theorem

Chapter 10

- ▶ Cross product and curl: Compute quickly with minimal effort
- ▶ Equations of lines and planes
 - ▶ Using equations or parameterization
 - ▶ From normal vector to equation of plane and vice versa
 - ▶ From parameterization of plane to normal vector and vice versa
- ▶ Cylinders and quadric surfaces
 - ▶ Equation to parameterization and vice versa
 - ▶ Shape to equation and vice versa
- ▶ Parameterized curves
 - ▶ Description to parameterization and vice versa
 - ▶ Velocity, speed, acceleration
 - ▶ Length of curve = integral of speed

Chapter 11

- ▶ Linear approximation
 - ▶ Equation of tangent plane
 - ▶ Use differentials to do linear approximation
- ▶ Chain rule
 - ▶ Using differentials or compute directly
- ▶ Gradient and directional derivatives
 - ▶ Gradient = direction of fastest increase
 - ▶ Directional derivative = dot product of direction and gradient
 - ▶ Gradient = conservative = path-independent vector field
 - ▶ Curl of gradient = 0
 - ▶ Curl test on simply connected domain
- ▶ Shape of graph near a critical point
 - ▶ Using contours
 - ▶ Using second derivative test
- ▶ Constrained optimization using Lagrange multipliers

Chapter 12

- ▶ Double and triple integrals
 - ▶ Finding endpoints of integration
 - ▶ Switching order of integration
 - ▶ Using polar, cylindrical, or spherical coordinates
- ▶ Line integral
 - ▶ Using parameterization of curve
 - ▶ Using Fundamental Theorem of Line Integrals, when vector field is conservative
 - ▶ Using Green's Theorem
- ▶ Flux integral
 - ▶ Easy way when $\vec{F} \cdot \vec{n}$ is constant on surface
 - ▶ As a double integral when the surface is flat and parallel to a coordinate plane
 - ▶ Using parameterization of surface
 - ▶ Using Divergence Theorem

- ▶ The most important skill is not knowing how to solve a problem but knowing how to figure out how to solve a problem
- ▶ Review everything:
 - ▶ Examples from lectures, textbooks, anywhere else
 - ▶ Quizzes
 - ▶ Written homework problems
 - ▶ WebAssign problems
- ▶ Try to redo problems from scratch
 - ▶ Pretend you've never seen a problem before
 - ▶ Don't try to remember what the solution was
 - ▶ Try to see what possible paths there are to a solution
 - ▶ Work out the details of each possible path
- ▶ Peek at solutions only when you're totally lost and peek only just enough so that you can see what you need to do
- ▶ If the lecture notes and textbooks are confusing, consult other sources such as Khan Academy to see if their explanations are easier to understand

Understanding Concepts Versus Memorizing Procedures

- ▶ The real goal: Do well on the final
- ▶ Understanding concepts is only a means to the end
- ▶ Memorization of what things are is important
- ▶ Memorization of procedures like computing a line or flux integral is important
- ▶ Conceptual understanding is important because it guides you in figuring out what things or procedures you need to use for solving a problem

Fundamental Theorems of Calculus

- ▶ (Fundamental Theorem of Calculus)

$$\int_{t=a}^{t=b} f'(t) dt = f(b) - f(a)$$

- ▶ (Fundamental Theorem of Line Integrals) Given an oriented curve C from \vec{r}_{start} to \vec{r}_{end} ,

$$\int_C \vec{\nabla} f \cdot d\vec{r} = f(\vec{r}_{\text{end}}) - f(\vec{r}_{\text{start}})$$

- ▶ (Green's Theorem) Given a domain D in 2-space with positively oriented boundary ∂D :

$$\int_D \vec{\nabla} \times \vec{F} dA = \int_{\partial D} \vec{F} \cdot d\vec{r}$$

- ▶ (Divergence Theorem) Given a domain R with positively oriented boundary ∂R in 3-space,

$$\int_R \vec{\nabla} \cdot \vec{F} dV = \int_{\partial R} \vec{F} \cdot d\vec{S}$$

Choices

Integral	Integrand	Domain	Method
Line	Vector field	Oriented curve	Directly
Line	Gradient field	Oriented curve	Fundamental Theorem of Line Integrals
Double	Function	2D Region	Directly or Green's Theorem
Flux	Vector field	Oriented surface in 3-space	Directly or Stokes' Theorem
Flux	Vector field	Closed surface in 3-space	Directly or Divergence Theorem
Triple	Divergence	3D region	Directly or Divergence Theorem

Computing Integrals

Integral	Integrand	Domain	Method
$\int_C \vec{F} \cdot d\vec{r}$	\vec{F} = vector field	C = oriented curve with endpoints	Directly
$\int_C \vec{F} \cdot d\vec{r}$	\vec{F} = conservative field	C = oriented curve	Fundamental Theorem of Line Integrals
$\int_C \vec{F} \cdot d\vec{r}$	\vec{F} = vector field	C = closed oriented curve	Directly or Green's Theorem
$\int_D f \, dA$	f = scalar function	D = 2D Region	Directly (or Green's Theorem)
$\int_S \vec{F} \cdot d\vec{S}$	\vec{F} = vector field	S = oriented surface with boundary in 3-space	Directly (or Stokes' Theorem)
$\int_S \vec{F} \cdot d\vec{S}$	\vec{F} = vector field	S = oriented closed surface in 3-space	Directly or Divergence Theorem
$\int_R f \, dV$	f = scalar function	R = 3D region	Directly (or Divergence Theorem)

Examples

Let $\vec{F} = \vec{i}x^3 + \vec{j}y^3 + \vec{k}z^3$

Compute the following:

- ▶ $\int_S \vec{F} \cdot d\vec{S}$, where S is the disk of radius 3 in the plane $y = 5$, oriented toward the origin
- ▶ $\int_W \vec{F} dV$, where W is the solid sphere of radius 2 centered at the origin
- ▶ $\int_S \vec{F} \cdot d\vec{S}$, where S is the sphere of radius 2 centered at the origin
- ▶ $\int_S \vec{\nabla} \times \vec{F} \cdot d\vec{S}$, where S is the disk of radius 3 in the plane $y = 5$, oriented toward the origin
- ▶ $\int_C \vec{\nabla} \vec{F} \cdot d\vec{r}$, where C is the line from the origin to $(2, 3, 4)$
- ▶ $\int_W \vec{\nabla} \cdot \vec{F} dV$, where W is the ball of radius 2 centered at the origin
- ▶ $\int_C \vec{F} \cdot d\vec{r}$, where C is the line segment from the origin to $(2, 3, 4)$

More Examples

- ▶ Let \vec{F} be a vector field on 3-space
- ▶ Let S_1 be the upper half of the sphere of radius 1 centered at the origin, oriented upward
- ▶ Let S_2 be the disk of radius 1 in the xy -plane centered at the origin and oriented upward
- ▶ Let C be the unit circle in the xy -plane, oriented clockwise when viewed from above
- ▶ Let W be the half ball that lies between S_2 and S_1
- ▶ Which of the following integrals are equal?

$$\int_C \vec{F} \cdot d\vec{r}$$

$$\int_{S_1} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S}$$

$$\int_C (\vec{\nabla} \times \vec{F}) \cdot d\vec{r}$$

$$\int_{S_2} \vec{F} \cdot d\vec{S}$$

$$\int_C \vec{F} \cdot d\vec{S}$$

$$\int_{S_2} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S}$$

$$\int_{S_1} \vec{F} \cdot d\vec{r}$$

$$\int_W \vec{\nabla} \cdot \vec{F} dV$$