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Flux Integral

I Consider:
I Oriented surface S
I Vector field ~F along S

I The flux integral of ~F through S can be written as∫
S

~F · d ~S

I There are two ways to calculate a flux integral
I If ~n is the positively oriented unit normal to S, and ~F · ~n is constant on S,

then flux integral is given by∫
S

~F · d ~S = (~F · ~n)(Area(S)).

I If ~r : D → S, where D is a domain in R2, such that ~rs × ~rt(s, t) is a
positively oriented normal, then the flux integral is given by∫

S

~F · d ~S =

∫
D

~F (~r(s, t)) · (~rs × ~rt(s, t) ds dt



Example

I Consider ∫
S

(~izx + ~jzy) · d ~S ,

where S is the upper hemisphere of radius R centered at the origin
oriented outward

I The positively oriented unit normal of S at ~r ∈ S is

~n =
~r

|~r | =
~ix + ~jy + ~kz

R

I Here, ~F = ~ix + ~jy and therefore

~F · ~n = (~izx + ~jzy) ·

(
~ix + ~jy + ~kz

R

)
=

z(x2 + y 2)

R
,

which is not constant on S

I Therefore, we must parameterize S



Example: Parameterization of Sphere
I Use spherical coordinates to parameterize S
I Given

0 ≤ φ ≤ π

2
and 0 ≤ θ ≤ 2π,

~r(φ, θ) = R(~i sinφ cos θ + ~j sinφ sin θ + ~k cosφ)

~rφ = R(~i cosφ cos θ + ~j cosφ sin θ − ~k sinφ)

~rθ = R(−~i sinφ sin θ + ~j sinφ cos θ)

~rφ × ~rθ = R(~i cosφ cos θ + ~j cosφ sin θ − ~k sinφ)× R(−~i sinφ sin θ + ~j sinφ cos θ

= R2(~i(sinφ)2 cos θ + ~j(sinφ)2 sin θ + ~k(cosφ sinφ)((cos θ)2 + (sin θ)2))

= R2(sinφ)(~i sinφ cos θ + ~j sinφ sin θ + ~k cosφ)

= R2(sinφ)
~r

|~R|
= R(sinφ)(~ix + ~jy + ~kz)

I Since R2(sinφ) > 0 when 0 < φ < π, ~rφ × ~rθ is pointing outward and
therefore has the correct orientation

I The vector field is

~F = ~izx + ~jzy = R2 cosφ sinφ(~i cos θ + ~j sin θ)



Computation of Flux Integal Using Parameterization

Using the formulas we have,∫
S

~F · d ~S =

∫ φ= π
2

φ=0

∫ θ=2π

θ=0

~F · (~rφ × ~rθ) dθ dφ

=

∫ φ= π
2

φ=0

∫ θ=2π

θ=0

(R cosφ)(~ix + ~jy) · R(sinφ)(~ix + ~jy + ~kz) dφ dθ

=

∫ φ= π
2

φ=0

∫ θ=2π

θ=0

R2(cosφ sinφ)(x2 + y 2) dφ dθ

=

∫ φ= π
2

φ=0

∫ θ=2π

θ=0

R4(cosφ)(sinφ)3 dφ dθ

= 2πR4

∫ u=1

u=0

u3 du

=
1

2
πR3



Fundamental Theorems of Calculus
I (Fundamental Theorem of Calculus)∫ t=b

t=a

f ′(t) dt = f (b)− f (a)

I (Fundamental Theorem of Line Integrals) Given an oriented curve C from
~rstart to ~rend, ∫

C

~∇f · d~r = f (~rend)− f (~rstart)

I (Green’s Theorem) Given a domain D in 2-space with positively oriented
boundary ∂D: ∫

D

~∇× ~F dA =

∫
∂D

~F · d~r

I (Stokes’ Theorem) Given an oriented surface S in 3-space with positively
oriented boundary ∂S : ∫

S

(~∇× ~F ) · d ~S =

∫
∂S

~F · d~r

I (Divergence Theorem) Given a domain R with positively oriented
boundary ∂R in 3-space,∫

R

~∇ · ~F dV =

∫
∂R

~F · d ~S



General Form of Each Fundamental Theorem of Calculus

I Always a tradeoff between integrating a derivative or integrating over the
boundary

∫
Domain

Some kind of derivative of a function or vector field

=

∫
Boundary of domain

Function or vector field itself

I Integral is always over an oriented domain or its oriented boundary
I General facts about integrals

I The integral over a domain must always be an integral of a function
I The integral over an oriented curve in 2D or 3D space must be an integral

of a vector field
I The integral over an oriented surface in 3-space must be an integral of a

vector field



Towards Stokes’s Theorem: Ampère’s Law

~B

~J
S

I An electrical current ~J passing through a wire induces a magnetic field ~B
around the wire

I Ampère’s law: ∫
C

~B · d~r =

∫
S

~J · d ~S



Line Integral Around Boundary of Surface Parameterized By Rectangle
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C2 C3

~F~F
~F

~F

I Suppose ~r(s, t), 0 ≤ s, t ≤ 1, is a parameterization of a small surface S

I The boundary of S is C = C1 ∪ C2 ∪ C3 ∪ C4, where the respective
parameterizations are

Along C1 : ~r(s) = ~r(s, 0), d~r = ~rs(s, 0) ds, 0 ≤ s ≤ 1

Along C2 : ~r(t) = ~r(1, t), d~r = ~rt(1, t) dt, 0 ≤ t ≤ 1

Along C3 : ~r(s) = ~r(s, 1), d~r = ~rs(s, 1) ds, 1 ≥ s ≥ 0

Along C4 : ~r(t) = ~r(0, t), d~r = ~rt(0, t) dt, 1 ≥ t ≥ 0

I The line integral of ~F around C is∫
C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r +

∫
C3

~F · d~r +

∫
C4

~F · d~r



Line Integral Calculation
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The line integral of ~F around C is∫
C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r +

∫
C3

~F · d~r +

∫
C4

~F · d~r

=

∫ s=1

s=0

~F (~r(s, 0)) · ~rs(s, 0) dt +

∫ s=0

s=1

~F (~r(s, 1)) · ~rs(s, 1) ds

+

∫ t=1

t=0

~F (~r(1, t)) · ~rt(1, t) dt +

∫ t=0

t=1

~F (~r(0, t)) · ~rt(0, t) dt

=

∫ t=1

t=0

~F (~r(1, t)) · ~rt(1, t)− ~F (~r(0, t)) · ~rt(0, t) dt

−
∫ s=1

s=0

~F (~r(s, 1)) · ~rs(s, 1)− ~F (~r(s, 0)) · ~rs(s, 0) ds



By the Chain Rule and the Fundamental Theorem of Calculus

∫ t=1

t=0

~F (~r(1, t)) · ~rt(1, t)− ~F (~r(0, t)) · ~rt(0, t) dt

=

∫ t=1

t=0

∫ s=1

s=0

∂s(~F (~r(s, t)) · ~rt(s, t)) ds dt

=

∫ t=1

t=0

∫ s=1

s=0

(~Fxxs + ~Fyys + ~Fzzs) · ~rt + ~F · ~rts ds dt

and ∫ s=1

s=0

~F (~r(s, 1)) · ~rs(s, 1)− ~F (~r(s, 0)) · ~rs(s, 0) ds

=

∫ s=1

s=0

∫ t=1

t=0

∂t(~F (~r(s, t)) · ~rs(s, t)) ds dt

=

∫ s=1

s=0

∫ t=1

t=0

(~Fxxt + ~Fyyt + ~Fzzt) · ~rs + ~F · ~rst ds dt



Subtracting

∫
C

~F · d~r

=

∫ s=1

s=0

∫ t=1

t=0

~Fx · (xs~rt − xt~rs) + ~Fy (ys~rt − yt~rs) + ~Fz(zs~rt − zt~rs) ds dt

=

∫ s=1

s=0

∫ t=1

t=0

~Fx · (~j(xsyt − xtys) + ~k(xszt − xtzs))

+ ~Fy · (~i(ysxt − ytxs) + ~k(yszt − ytzs)) + ~Fz · (~i(zsxt − ztxs) + ~k(zsyt − ztys)) ds dt

=

∫ s=1

s=0

∫ t=1

t=0

((F2)x − (F1)y )(xsyt − xtys) + ((F3)y − (F2)z)(yszt − ytzs)

+ ((F1)z − (F3)x)(zsxt − ztxs) ds dt

=

∫ s=1

s=0

∫ t=1

t=0

(~i((F3)y − (F2)z) + ~j((F1)z − (F3)x) + ~k((F2)x − (F1)y ))

· (~i(yszt − ytzs) + ~j(zsxt − ztxs) + ~k(xsyt − xtys)) ds dt

=

∫ s=1

s=0

∫ t=1

t=0

(~∇× ~F ) · (~rs × ~rt) dt ds =

∫
S

(~∇× ~F ) · d ~S



Stokes’ Theorem For Surface Parameterized By Rectangle

I Suppose S is a surface in a 3D region R with a parameterization ~r(s, t),
(s, t) ∈ [0, 1]× [0, 1]

I Given a vector field ~F on D,∫
C

~F · d~r =

∫
S

(~∇× ~F ) · d ~S ,

where the orientation on S is given by ~rs × ~rt and C is the boundary of S
with the orientation corresponding to going counterclockwise around the
boundary of the rectangle [0, 1]× [0, 1]



Orientation of Surface With Boundary in 3-Space
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I Suppose S is an oriented surface in 3-space with boundary C
I An orientation of the curve C is positive with respect to the orientation of

S , if it satisfies the righthand rule.
I If you walk along the curve with your head pointing in the direction of the

oriented normal to S , then the surface is on your left
I If you point the fingers of your right hand in the direction of the orientation

of the curve and curl them towards the surface, then your thumb points in
the direction of the oriented normal to the surface

I If you point the thumb of your right hand in the direction of the normal to
S , your fingers should point in the direction of the orientation of C



Stokes’ Theorem for a Bounded Surface
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I Suppose S is an oriented surface with positively oriented boundary C
I If we chop up S = S1 ∪ · · · ∪ SN , where

I Each Sk can be parameterized by a rectangle
I The intersection of any two Sj and Sk is either empty or a side of each

rectangle,

then ∫
C

~F · d~r =

∫
C1

~F · d~r + · · ·+
∫
CN

~F · d~r

=

∫
S1

(~∇× ~F ) · d ~S + · · ·+
∫
SN

(~∇× ~F ) · d ~S

=

∫
S

(~∇× ~F ) · d ~S



Stokes’ Theorem for a Bounded Surface

Theorem
Suppose S is an oriented surface inside a 3D region R, whose boundary is C
with the positive orientation. If ~F is a vector field on R, then∫

S

(~∇× ~F ) · d ~S =

∫
C

~F · d~r

In particular, if S is a closed oriented surface (i.e., it has no boundary), then∫
S

(~∇× ~F ) · d ~S = 0

Corollary

If S1 and S2 are any two oriented surfaces that have the same positively
oriented boundary (i.e., ∂S1 = ∂S2), then for any vector field ~F ,∫

S1

(~∇× ~F ) · d ~S =

∫
S2

(~∇× ~F ) · d ~S .



Example of Line Integral Around Circle

I Want to compute ∫
C

~F · d~r ,

where C is the circle of radius 3 in the plane z = 2 and centered around
the z-axis, and

~F = ~iy + ~j2x + ~kz2

I Could do this directly:

~r(θ) = 〈3 cos θ, 3 sin θ, 2〉
d~r = ~r ′(θ) dθ

= 〈−3 sin θ, 3 cos θ, 0〉 dθ
~F = 〈3 sin θ, 6 cos θ, 9(22)〉∫

C

~F · d~r =

∫ θ=2π

θ=0

−9(sin θ)2 + 18(cos θ)2 dθ

I Need half-angle identities to calculate integral



Use Stokes’ Theorem to Compute Line Integral
I Want to compute ∫

C

~F · d~r ,

where C is the circle of radius 3 in the plane z = 2, centered around the
z-axis, oriented counterclockwise, and

~F = ~iy + ~j2x + ~kz2

I Try using Stokes’ Theorem:∫
C

~F · d~r =

∫
S

(~∇× ~F ) · d ~S

I Calculate curl of ~F :

~∇× ~F = ~i((F3)y−(F2)z)+~j((F1)z−(F3)x)+~k((F2)x−(F1)y ) = ~k(2−1) = ~k

I Can choose any oriented surface S whose positively oriented boundary is C
I Simplest choice is disk in the plane z = 3

S = {x2 + y 2 ≤ 9 and z = 2}
I By Stokes’ Theorem,∫

C

~F · d~r =

∫
S

(~∇× ~F ) · d ~S =

∫
S

(~F · ~n) dA

=

∫
S

~k · ~k dA =

∫
S

dA = 9π



Application of Stokes’ Theorem

I Suppose C2 = {x2 + 9y 2 = 9 and z = 5} and we want to compute∫
C2

(
−~iy + ~jx

x2 + y 2

)
· d~r

I Computing this directly will be a mess

I But recall that the vector field ~F =
−~iy + ~jx

x2 + y 2
satisfies ~∇× ~F = 0

I Also, if C1 is the unit circle in the xy -plane centered at the origin and
oriented counterclockwise, then the line integral of ~F around C1 is easy to
calculate

I So let S be a surface whose boundary is C1 ∪ C2

I Orient S using an outward normal
I Orient C1 and C2 in the counterclockwise direction
I The positive orientation for ∂S is C1 ∪ (−C2)


