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Two Ways to Describe a Curve in 2-Space

As a contour:

x2 + y2 = 1

−1 ≤ x ≤ 1, y ≥ 0

x + y = 1

0 ≤ x , y ≤ 1

y − x2 = 0

0 ≤ x , y ≤ 1

As a parameterized curve:

~r(t) = 〈cos(t), sin(t)〉
0 ≤ t ≤ π

~r(x) = 〈x , 1− x〉
0 ≤ x ≤ 1

~r(x) = 〈x , x2〉
0 ≤ x ≤ 1



Two Ways to Describe a Surface

z

xx

yy

I As a contour:

x2 + y2 + z2 = 1

z ≥ 0

I As a parameteric surface:

~r(φ, θ) = 〈sinφ cos θ, sinφ sin θ, cosφ〉

0 ≤ φ ≤
π

2
, 0 ≤ θ ≤ 2π



Two Ways to Describe a Surface

I A contour of a function f (x , y , z) on 3-space
I Suppose f (x, y , z) is a function on a domain D in 3-space
I The contour f = c is the set

S = {(x, y , z) ∈ D : f (x, y , z) = c}

I If, for every (x, y , z) ∈ S, ~∇f (x, y , z) 6= 0, then S is a surface

I A parameteric surface
I Parametric domain D in 2-space
I A set S in 3-space
I A map

~r : D → S

(s, t) 7→ ~r(s, t) = ~ix(s, t) + ~jy(s, t) + ~kz(s, t),

I If, for each (s, t) ∈ D, ~rs (s, t)× ~rt(s, t) 6= 0, then S is a surface



Example: Plane

x

y

z

I Contour:
ax + by + cz = d ,

where at least one of a, b, c is nonzero
I Parameteric surface: If c 6= 0, then the plane can be parameterized by

~r(s, t) =

〈
s, t,

d − as − bt

c

〉
, −∞ < s, t <∞

I Check parameterization:

~rs =

〈
1, 0,

−a
c

〉
~rt =

〈
0, 1,−

b

c

〉
~rs × ~rt =

〈
a

c
,
b

c
, 1

〉



Example: Cylinder Side

x
y

z

I Contour: x2 + y2 = R2 and 0 ≤ z ≤ h

I Parametric surface:

~r(s, t) = ~iR cos s + ~jR sin s + ~kt, 0 ≤ s ≤ 2π and 0 ≤ t ≤ h,

I Where

~rs = R(−~i sin s + ~j cos s)

~rt = ~k

~rs × ~rt = R(−~i sin s + ~j cos s)× ~k

= R(~i cos s + ~j sin s)



Example: Sphere

I Contour: x2 + y2 + z2 = R2, where R > 0

I Parametric surface:

~r(φ, θ) = ~i(R sinφ cos θ)+~j(R sinφ sin θ)+~k(R cosφ), 0 ≤ π ≤ π and 0 ≤ θ ≤ 2π,

where

~rφ = R(~i cosφ cos θ + ~j cosφ sin θ − ~k sinφ)

~rθ = R(−~i sinφ sin θ + ~j sinφ cos θ)

~rφ × ~rθ = R2(~i(sinφ)2 cos θ + ~j(sinφ)2 sin θ + ~k sinφ cosφ)

= (R sinφ)(~i(R sinφ cos θ) + ~j(R sinφ sin θ) + ~k(R cosφ))

= (R sinφ)~r(φ, θ)

6= ~0 if and only if φ = 0 or π



Example: Cone

x

y

z

I Contour: m2(x2 + y2)− z2 = 0, where z ≥ 0 and m > 0
I Parameteric surface:

~r(θ, r) = ~i(t cos θ) + ~j(t sin θ) + ~k(mt), 0 ≤ θ ≤ 2π, −∞ < t <∞,

where

~rθ = −i(t sin θ) + ~j(t cos θ)

~rt = ~i cos θ + ~j sin θ + ~km

~rθ × ~rt = ~i(mt cos θ) + ~j(mt sin θ)− ~kt

= t(~i(m cos θ) + ~j(m sin θ)− ~k)

6= ~0 if t 6= 0



Tangent plane at a Point on a Parametric Surface

I Suppose ~r(u, v) = ~ix(u, v) +~jy(u, v) + ~kz(u, v) is a parameterization of a surface

I At a point ~r(a, b) on the surface, the vectors ~ru(a, b) and ~rv (a, b) are tangent to
the surface

I If ~ru(a, b)× ~rv (a, b) 6= ~0, then the two tangent vectors lie in a plane with normal
vector ~ru(a, b)× ~rv (a, b)



Example: Circular Paraboloid
I Consider the paraboloid z = x2 + y2, which has a parameterization

~r(x , y) = ~ix + ~jy + ~k(x2 + y2), −∞ < x , y <∞

I At the the point ~r(0, 0) = ~i0 + ~j0 + ~k0, the vectors

~rx (0, 0) = ~i , ~ry (0, 0) = ~j ,

are tangent to the surface and a normal to the surface is

~rx (0, 0)× ~ry (0, 0) = ~k

I At ~r(
√

3, 1) = (
√

3, 1, 4), the vectors

~rx (
√

3, 1) = ~i + ~k(2
√

3), ~ry (
√

3, 1) = ~j + ~k(2),

are tangent to the surface and a normal to the surface is

~rx × ~ry = −~i2
√

3− ~j2 + ~k

I In general, at a point ~r(x , y) = 〈x , y , x2 + y2〉, the vectors

~rx = ~i + ~k2x and ~ry (x , y) = ~j + ~k2y

are tangent to the surface and a normal to the surface is

~rx × ~ry = (~i + ~k2x)× (~j + ~k2y) = −~i2x − ~j2y + ~k,



Example: Circular Paraboloid
I Another parameterization of z = x2 + y2, using cylindrical coordinates, is

~r(r , θ) = ~i r cos θ + ~jr sin θ + ~kr2, r ≥ 0 and 0 ≤ θ ≤ 2π

I At each point ~r(r , θ) on the surface, the vectors

~rr = ~i cos θ + ~j sin θ + ~k2r and ~rθ = −~i r sin θ + ~jr cos θ

are tangent to the surface and a normal is

~rr × ~rθ = −~i2r2 cos θ − ~j2r2 sin θ + ~kr

= r(−~i2r cos θ − ~j2r sin θ + ~k)

= r(−i2x − ~j2y + ~k)

6= ~0 if and only if r = 0

I A unit normal at ~r(r , θ) is

~n =
~rr × ~rθ
|~rr × ~rθ|

=
−i2x − ~j2y + ~k
√

1 + 4r2

I At ~r(0, 0) = ~i0 + ~j0 + ~k0 and ~n = ~k

I At ~r(2, π
6

) = ~i
√

3 + ~j + ~k4 and

~n =
−~i2
√

3− ~j2− ~k
√

17



Flux of Constant Vector Field Through Flat Surface

~F

~n

S

~n

~F

I Flux is the net force of a force field ~F acting on a surface S

I If S is a flat surface and ~F is constant and normal to S , then the net force is

Φ = |~F |A,

where A is the area of S

I If S is a flat surface and ~F is constant but not necessarily normal to S, then the
net force is

Φ = |F |A cos θ = (~F · ~n)A,

where ~n is the unit normal to S and θ is the angle between ~F and ~n

I IMPORTANT: The sign of the flux depends on which unit normal is used

I The choice of which normal to use is called an orientation of S

I The orientation shown can be called the upward orientation



Flux of Constant Vector Field Across Parallelogram Using the Cross Product

~n

~F

S

~v

~w

I If ~v × ~w has the correct orientation, then let

~n =
~v × ~w

|~v × ~w |
,

I The area of S is

A = |~v × ~w |
I If ~v × ~w is the desired orientation, the net flux is

Φ = (~F · ~n)A

= ~F ·
(
~v × ~w

|~v × ~w |

)
|~v × ~w |

= ~F · (~v × ~w)

I If ~v × ~w is the wrong orientation, then ~w × ~v is the orientation and the net flux is

Φ = ~F · (~w × ~v) = −~F · (~v × ~w)



Idea of a Flux Integral

~ni

~Fi

Si

I Suppose surface S is not flat and ~F is not constant
I Use calculus

I Chop the surface S into small pieces,

S = S1 ∪ · · · ∪ SN

I Estimate the flux on each small piece Si :

Φi = ~Fi · ~ni Ai ,

where Ai is the area of Si
I Add up the fluxes of the small pieces to get an estimate of the flux across S

Φ ' Φ1 + · · · + ΦN

' ΣN
i=1

~Fi · ~ni Ai

I Chop S into smaller and smaller pieces and take a limit to get an integral that we write
as:

Φ =

∫
S

~F · ~n dA =

∫
S

~F · d~S,

where we write d~S = ~n dA and sometimes write dS = dA

I This is called a flux integral



Calculating a Flux Integral

I REMEMBER: If the vector field ~F is constant and S is flat (lies in a plane), then
the flux integral is easy to calculation:∫

S

~F · d ~S = (~F · ~n)A,

where ~n is the properly oriented unit normal of S and A is the area of S
I ANOTHER EASY CASE: If

I ~n is a properly oriented unit normal vector field along S
I ~F · ~n is CONSTANT on S (even though S might be curved and ~F might be

nonconstant)

then ∫
S

~F · d ~S =

∫
S

(~F · ~n) dA = (~F · ~n)A,

where A is the area of S

I NO INTEGRATION NEEDED IN THESE TWO CASES



Example: Flux of Radial Vector Field Through Sphere

I Suppose S is the sphere of radius R centered at the origin with the outward
orientation and

~F (x , y , z) = ~ix + ~jy + ~kz = ~r

where p is a scalar constant

I S is given by x2 + y2 + z2 = R2 or, equivalently, |~r | = R

I The position vector ~r = ~ix + ~jy + ~kz is normal to S at every point on S and
points outward

I The outward unit normal at each point ~r on S is therefore

~n(~r) =
~r

|~r |

I Therefore, at each point on S ,

~F · ~n = ~r ·
~r

R
=
|~r |2

R
=

R2

R
= R

I The outward flux of ~F through S is therefore∫
S

~F · d ~S =

∫
S

(~F · ~n) dA = (~F · ~n)

∫
S
dA = R(4πR2) = 4πR3



Calculating a Flux Integral

•~r(s, t)

~n(~r(s, t))

~F (~r(s, t))

~rs(s, t) ds

~rt(s, t) dt

I Suppose we want to compute a flux integral

∫
S

~F · d ~S

I Start with a parameterization of S : ~r(s, t), where (s, t) ∈ D

I At each point ~r(s, t) on the surface, the vectors ~rs(s, t) ds and ~rt dt span a small
parallelogram tangent to S with area

dA = |(~rs(s, t) ds)× (~rt(s, t) dt)| = |~rs(s, t)× ~rt(s, t)| ds dt

and unit normal

~n(~r(s, t)) =
(~rs(s, t) ds)× (~rt(s, t) dt)

|(~rs(s, t) ds)× (~rt(s, t) dt)|
=

~rs(s, t)× ~rt(s, t)

|~rs(s, t)× ~rt(s, t)|

I It follows that

d ~S = ~F · ~n dA

= ~F ·
(

(~rs(s, t) ds)× (~rt(s, t) dt)

|(~rs(s, t) ds)× (~rt(s, t) dt)|

)
|(~rs(s, t) ds)× (~rt(s, t) dt)|

= |~rs(s, t)× ~rt(s, t)| ds dt

= ~F · (~rs × ~rt) ds dt



Calculating a Flux Integral

I Suppose we want to compute a flux integral

∫
S

~F · d ~S

I Start with a parameterization of S : ~r(s, t), where (s, t) ∈ D

I We found that

d ~S = ~F · ~n dA

= ~F · (~rs × ~rt) ds dt

I Assming that ~rs × ~rt is the correct orientation, the flux integral can therefore be
calculated as follows: ∫

S

~F · d ~S =

∫
D

~F · (~rs × ~rt) ds dt

I The integral on the right is a double integral over the 2-dimensional domain D

I It can be calculated using the techniques we learned earlier

I If ~rs × ~rt is the wrong orientation, multiply by −1



Example of Flux Integral

I Suppose S is the graph of z = 1− x + 2y over the unit disk x2 + y2 ≤ 1, oriented
upward, and we want to calculate ∫

S
z~k · d ~S

I First, check if this is an easy case:

I Since S lies in the plane x − 2y + z = 1, a normal vector is ~i − 2~j + ~k and the
corresponding unit normal is

~n =
~i − 2~j + ~k
√

6

I Since the coefficient of ~k is positive, it points upward and has the correct
orientation

I ~F · ~n = (z~k) · ~i−2~j+~k√
6

= z√
6

is not constant

I Not an easy case



Calculate Example Using Parameterization
I Parameterize S : ~r(x , y) = ~ix + ~jy + ~k(1− x + 2y), where x2 + y2 ≤ 1

I ~rx = ~i − ~k, ~ry = ~j + 2~k, and therefore

~rx × ~ry = (~i − ~k)× (~j + 2~k) = ~i − 2~j + ~k,

which has correct orientation

I The flux integral of ~F = z~k through S is therefore∫
S
z~k · d ~S =

∫
D
z~k · (~rx × ~ry ) dx dy

=

∫
D

(1− x − y)~k · (~i − 2~j + ~k) dx dy

=

∫
D

1− x − y dx dy

where D = {x2 + y2 ≤ 1}
I Switch to polar coordinates∫

S
z~k · d ~S =

∫ r=1

r=0

∫ θ=2π

θ=0
(1− r cos θ − r sin θ)r dθ dr

=

∫ r=1

r=0
r dr

=
1

2



Flux Integral Through Upper Hemisphere

I Let S be the upper half of a sphere with radius R centered at the origin, oriented
downwardh

I Compute

∫
S

(~izx + ~jzy) · d ~S

I The oriented unit normal is

~n = −
~ix + ~jy + ~kz√
x2 + y2 + z2

= −
~ix + ~jy + ~kz

R

I ~F · ~n = (~izx + ~jzy) · ~n = − z(x2+y2)
R

is not constant

I Two possible parameterizations

I As a graph: ~r(x , y) = ~ix + ~jy + ~k
√

R2 − x2 − y2, where x2 + y2 ≤ R2

I Using spherical coordinates:

~r(φ, θ) = R(~i sinφ cos θ+~j sinφ sin θ+~k cosφ), where 0 ≤ φ ≤
π

2
and 0 ≤ θ ≤ 2π



Use Spherical Coordinates to Calculate Example

I Let S be the upper half of a sphere with radius R centered at the origin, oriented
downward

I Compute

∫
S

(~izx + ~jzy) · d ~S

I Parameterization using spherical coordinates:

~r(φ, θ) = R(~i sinφ cos θ+~j sinφ sin θ+~k cosφ), where 0 ≤ φ ≤
π

2
and 0 ≤ θ ≤ 2π

and therefore

~F = ~izx + ~jzy = R2 sinφ cosφ(~i cos θ + ~j sin θ)

~rφ = R(~i cosφ cos θ + ~j cosφ sin θ − ~k sinφ)

~rθ = R(−~i sinφ sin θ + ~j sinφ cos θ)

~rφ × ~rθ = R2(~i(sinφ)(sinφ cos θ) + ~j(sinφ)(sinφ sin θ)

+ ~k((cosφ cos θ)(sinφ cos θ) + (cosφ sin θ)(sinφ sin θ))

= R2((sinφ)2(~i cos θ + ~j sin θ) + ~k(cosφ sinφ))

~F · (~rφ × ~rθ) = R4(sinφ)3 cosφ

I ~rφ × ~rθ has the WRONG orientation



Calculation of Example

I Putting this all together,∫
S

~F · d ~S = −
∫ φ= π

2

φ=0

∫ θ=2π

θ=0

~F · (~rφ × ~rθ) dθ dφ

= −
∫ φ= π

2

φ=0

∫ θ=2π

θ=0
R4(sinφ)3 cosφ dθ dφ

= −2πR4 (sinφ)4

4

∣∣∣∣φ= π
2

φ=0

= −
πR4

2


