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Two Ways to Describe a Curve in 2-Space

As a contour:

x2+y2:1 x+y=1 yfx2:0
71§XS17}/20 OSXzyS]- OSX,}’Sl

As a parameterized curve:

7(t) = (cos(t), sin(t)) Ax) = (x,1 = x) Alx) = (x,x%)
0<t<m 0<x<1 0<x<1



Two Ways to Describe a Surface

z

> As a contour:
x? 4+ y2 +22=1
z>0
> As a parameteric surface:
F(¢,0) = (sin ¢ cos 8, sin ¢ sin O, cos ¢)
ogqsgg, 0<6<2r



Two Ways to Describe a Surface

> A contour of a function f(x,y, z) on 3-space

» Suppose f(x, y, z) is a function on a domain D in 3-space
P The contour f = c is the set

S={xy,2) €D : f(x,y,2) = ¢}
> If, for every (x,y,z) € S, Vf(x,y,z) # 0, then S is a surface

» A parameteric surface

P Parametric domain D in 2-space
P> A set S in 3-space
> A map

F:D—S
(s:1) = s, £) = ix(s, £) + ¥ (s, £) + kz(s, 1),
P If, for each (s, t) € D, (s, t) X Fi(s,t) # 0, then S is a surface



Example: Plane

z

<

» Contour:
ax+ by + cz =d,

where at least one of a, b, ¢ is nonzero
» Parameteric surface: If ¢ # 0, then the plane can be parameterized by

d— — bt
(s, t) = <s, PP .

> , —0o < s, t< oo
c
» Check parameterization:

~

s

= =
rs X ry =



Example: Cylinder Side

> Contour: x2+y2=R2and0<z<h

» Parametric surface:
(s, t) = FRcoss—l—fRsins—i— kt, 0<s<2rand0<t<h,
> Where

% = R(—isins + jcoss)



Example: Sphere

» Contour: x2 + y2 + z2 = R?, where R > 0
» Parametric surface:

F(,0) = i(Rsin ¢ cos 0)+j{Rsin ¢sin 0)+k(Rcos¢), 0 < w < 7 and 0 < 6 < 2,

where

= R(Fcosqﬁcos@ + jcos¢sing — ksin ?)

St

= R(—isin¢sinf + jsin ¢ cos 0)

Fp X iy = R2(i{sin ¢)? cos 6 + j(sin ¢)? sin 6 + k sin ¢ cos ¢)

= (Rsin ¢)(i{Rsin ¢ cos 0) + j(Rsin ¢ sin 6) + k(R cos ¢))
— (Rsin)7(6,0)

#6ifandonlyif¢:00r7r



Example: Cone

y

> Contour: m?(x?+ y?) — 22 =0, where z > 0 and m > 0
» Parameteric surface:

(8, r) = i{tcos8) + j(tsin0) + k(mt), 0 < 0 < 2m, —oo < t < oo,

where
Py = —i(tsin0) + j(tcos0)
I i'cos® +fsin6 + Kkm
Fy X 7 = i(mtcos®) + j(mtsin6) — kt

= t(i{mcosh) + j(msin0) — k)
£0ift#0



Tangent plane at a Point on a Parametric Surface

Tangent plane at P

z=f(x,)

-

» Suppose F(u, v) = ix

(u,v) +Jjy(u,v) + kz(u, v) is a parameterization of a surface
> At a point F(a, b) on the surface, the vectors 7,(a, b) and F,(a, b) are tangent to
the surface

> If 7,(a, b) x 7 (a, b) # 0, then the two tangent vectors lie in a plane with normal
vector F,(a, b) x r,(a, b)



Example: Circular Paraboloid

» Consider the paraboloid z = x2 4 y?, which has a parameterization
Flx,y) = ix + jy + k(x*> + y?), —0c0 < x,y < 00
> At the the point 7(0,0) = i0 + jO + kO, the vectors
7(0,0) = i, 7(0,0) =,
are tangent to the surface and a normal to the surface is
7%(0,0) x 7(0,0) = k
> At 7(v/3,1) = (v/3,1,4), the vectors
R(V3,1) = T+ K2V3), 5(v3,1) =]+ K@),
are tangent to the surface and a normal to the surface is
B X Fp=—2V3-j24+K
> In general, at a point 7(x,y) = (x,y,x2 + y?), the vectors
Fo = i+ k2x and (x,y) =i+ k2y
are tangent to the surface and a normal to the surface is

B x 7 = (T + k2x) x (7 + k2y) = —2x — 2y + K,



Example: Circular Paraboloid

> Another parameterization of z = x2 + y2, using cylindrical coordinates, is
Fr,0) = ircos@ + jrsin0+kr?, r>0and 0< 0 <27
> At each point F(r, 0) on the surface, the vectors
i = icosf +f'sin9 + k2r and 7y = —irsin@ +jrcos€
are tangent to the surface and a normal is
X R= —i2r? cos 6 —f2r2 sinf 4+ kr
= r(—i2rcosf — j2rsin6 + k)
= r(—i2x — j2y + k)
#0ifand only if r =0

> A unit normal at 7(r,0) is

Xy —i2x—f2y+l?
|Fr X ] V1442

> At 7(0,0) = i0 +j0+ kO and 7=k

> At 7(2,T) = iV/3+j+ k4 and

n=

n=



Flux of Constant Vector Field Through Flat Surface

£

> Flux is the net force of a force field F acting on a surface S

> If S is a flat surface and F is constant and normal to S, then the net force is
® = |F|A,

where A is the area of S

> If S is a flat surface and F is constant but not necessarily normal to S, then the
net force is

® = |F|Acos® = (F - @)A,
where 7 is the unit normal to S and 6 is the angle between F and &
> IMPORTANT: The sign of the flux depends on which unit normal is used

The choice of which normal to use is called an orientation of S

v

» The orientation shown can be called the upward orientation



Flux of Constant Vector Field Across Parallelogram Using the Cross Product

AAAAAAA AR
A/ AL 4/ ASa) A2 4] A

v 7 /«7~/~7~/«7~/ /

%

> If V X w has the correct orientation, then let

- =
N VX w

n= ———
|V x w|’

» The area of S is
= |V x w|

> If V X w is the desired orientation, the net flux is

> If V X w is the wrong orientation, then w X V is the orientation and the net flux is

DP=F.- (WxV)=—F - (Vx W)



Idea of a Flux Integral

» Suppose surface S is not flat and F is not constant
» Use calculus
P Chop the surface S into small pieces,

S=5U---USy
P Estimate the flux on each small piece S;:
®; = F - i A,

where A; is the area of S;
P Add up the fluxes of the small pieces to get an estimate of the flux across S

D ~Py -+ Dy
~ SN FmA

P Chop S into smaller and smaller pieces and take a limit to get an integral that we write

as:
®=/I—f~ﬁdA=/I:‘"d§,
S S

where we write dS = 7 dA and sometimes write dS = dA

» This is called a flux integral



Calculating a Flux Integral

> REMEMBER: If the vector field F is constant and S is flat (lies in a plane), then
the flux integral is easy to calculation:

/Sﬁ-dsT:(F“.ﬁ)A,

where 7 is the properly oriented unit normal of S and A is the area of S
> ANOTHER EASY CASE: If

P s a properly oriented unit normal vector field along S
> F.iis CONSTANT on S (even though S might be curved and F might be

nonconstant)
/F dS/ -A) dA = (F - MA,

then
where A is the area of S

> NO INTEGRATION NEEDED IN THESE TWO CASES



Example: Flux of Radial Vector Field Through Sphere

» Suppose S is the sphere of radius R centered at the origin with the outward
orientation and =
F(x,y,z) =ix+jy+kz=7r
where p is a scalar constant

> S is given by x2 + y2 + z2 = R? or, equivalently,

A=R
» The position vector 7= ix +fj/ + kz is normal to S at every point on S and
points outward

» The outward unit normal at each point 7 on S is therefore

F
A(R) = —
|71
» Therefore, at each point on S,
P 2 2
F.ﬁ:;*.L:ﬂ:’i:R
R R R

> The outward flux of F through S is therefore

/Sﬁ.ds_':/s(ﬁ.ﬁ')dA:(ﬁ.ﬁ)/sdA:R(47rR2):47rR3



Calculating a Flux Integral

» Suppose we want to compute a flux integral / F.dS
S

» Start with a parameterization of S: F{(s, t), where (s, t) € D
> At each point (s, t) on the surface, the vectors Fi(s, t) ds and 7; dt span a small
parallelogram tangent to S with area
dA = |(F5(s, t) ds) x (Fi(s, t) dt)| = |Fs(s, t) X Fi(s, t)| ds dt
and unit normal

.  (B(s.t)ds) x (A(s, ) dt)  7(s.t) x A(s, )
T ) = (s 1y ds) x (s ) dD)] — [7(s. 2) x 7i(s. ©

» It follows that

L

-AdA

. ( (Fs(s, t) ds) x (R(s,t)d
|(F(s, t) ds) x (Fi(s, t)d

= |Fs(s, t) X Fi(s, t)|ds dt

=F. (% x /)dsdt

)
)|

dS =

t
t

)@@ﬂ@x@@ﬂ@|



Calculating a Flux Integral

Suppose we want to compute a flux integral / F.dS
S

» Start with a parameterization of S: F{(s, t), where (s, t) € D

> We found that

il

dS=F.-idA
=F - (Fs X Ft)dsdt

L

Assming that 7z X F; is the correct orientation, the flux integral can therefore be
calculated as follows:

/ﬁ.d§:/ F . (% x ) ds dt
S D

The integral on the right is a double integral over the 2-dimensional domain D

It can be calculated using the techniques we learned earlier

v

If 7 X ¢ is the wrong orientation, multiply by —1



Example of Flux Integral

» Suppose S is the graph of z =1 — x + 2y over the unit disk x2 —i—y2 < 1, oriented
upward, and we want to calculate
/ 2k - d5
S

> Since S lies in the plane x — 2y + z = 1, a normal vector is i— 2f+ K and the
corresponding unit normal is

P> First, check if this is an easy case:

F—2f+k
NG

> Since the coefficient of k is positive, it points upward and has the correct
orientation

=

> F.i= (ZE) . % = % is not constant

Not an easy case



Calculate Example Using Parameterization
> Parameterize S: F(x,y) = x4y + E(l — x+2y), where x> +y? <1
> 7 =i—k, F, =j+ 2k, and therefore

FexF= (=K x(+2K)=i—2/+Kk,

which has correct orientation
» The flux integral of F=2zk through S is therefore

/zE-dgz/zE-(K(xrj,)dxdy
S D
:/(lfxfy)l?-(i—;2jﬁ+lz)dxdy
D
:/l—x—ydxdy
D

where D = {x? + y? < 1}
> Switch to polar coordinates

N . r=1 pr6=27
/zk~d5:/ / (1 —rcosO — rsin@)rdbdr
S r=0 J6=0

r=1
= / rdr
r=0
1

2



Flux Integral Through Upper Hemisphere

> Let S be the upper half of a sphere with radius R centered at the origin, oriented
downwardh

» Compute /(sz +fzy) -dS
S

» The oriented unit normal is

P &—{—fy—l—l?z __Fx—l—f‘y—&—lzz
/X2+y2+22 R
— - - 2 2
> F.i=(izx+jzy)- A= —L;Y) is not constant

» Two possible parameterizations

> As a graph: F(x,y) = ix +jy + k\/RZ — x2 — y2, where x2 + y2 < R?
» Using spherical coordinates:

¢,0) = R(fsin¢c059+fsin ¢ sin 9+Ecos¢), where 0 < ¢ < g and 0 < 0 <27



Use Spherical Coordinates to Calculate Example

P> Let S be the upper half of a sphere with radius R centered at the origin, oriented
downward

»> Compute /(sz +Jjzy)-dS

> Parameterizsation using spherical coordinates:
Fl¢,0) = R(Fsind)cos@Jrfsin ¢ sin €+Ecos¢>), where 0 < ¢ < g and 0 < 0 <27
and therefore

F = izx + jzy = R%sin ¢ cos ¢(icos B + jsin )

Fy = R(i'cos ¢ cos +j_)cos¢sin971?5in¢)
rp = R(—Fsin ¢sinf + jsin ¢ cosB)

7y X 7y = R2(i(sin ¢)(sin ¢ cos 8) + j{sin ¢)(sin ¢ sin 0)
+ k((cos ¢ cos 0)(sin ¢ cos 6) + (cos ¢ sin 8)(sin ¢sin 0))
= R?((sin )?(i cos 0 + jsin 6) + k(cos psin ¢))
F. (Fp x 1) = R*(sin ¢)3 cos ¢

» 7y x iy has the WRONG orientation



Calculation of Example

» Putting this all together,

¢=T ro=2m
= _/ / R*(sin ¢)3 cos ¢ df d¢p
¢=0 0=0
— _2xR* M o=%
4 40
TR*



