MATH-UA 123 Calculus 3: Green's Theorem

Deane Yang

Courant Institute of Mathematical Sciences New York University

November 15, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

START RECORDING

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Fundamental Theorem of Line Integrals

- ▶ Let C be an oriented closed curve
- Let $\vec{F} = \vec{\nabla}f$ be a conservative vector field

Then

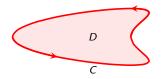
$$\int_C \vec{F} \cdot d\vec{r} = 0$$

Equivalently,

$$\int_C f_x \, dx + f_y \, dy = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Fundamental Theorem of Line Integrals (Special Case)



- Let $D \subset \mathbb{R}^2$ be a simply connected domain
- Let $C = \partial D$ be boundary of D

• If \vec{F} is a vector field on D such that

$$\vec{\nabla} \times \vec{F} = 0,$$

then

$$\int_C \vec{F} \cdot d\vec{r} = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof:

• If D is simply connected and $\vec{\nabla} \times \vec{F} = 0$, then \vec{F} is a gradient field

The conclusion now follows by the Fundamental Theorem of Line Integrals

What happens if $\vec{\nabla} \times \vec{F} \neq 0$?

Suppose

- D is a simply connected domain
- $C = \partial D$ is the boundary of D oriented counterclockwise
- F is a vector field on D

Green's Theorem says

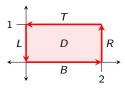
$$\int_C \vec{F} \cdot d\vec{r} = \int_D \vec{\nabla} \times \vec{F} \, dA$$

• Equivalently, if $\vec{F} = \vec{i}P + \vec{j}Q$, then

$$\int_C P\,dx + Q\,dy = \int_C Q_x - P_y\,dA$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example



$$\int_C -y\,dx + x\,dy,$$

where $C = B \cup R \cup T \cup L$

On one hand,

$$\int_{C} -y \, dx + x \, dy$$

$$= \int_{B} -y \, dx + x \, dy + \int_{R} -y \, dx + x \, dy + \int_{T} -y \, dx + x \, dy + \int_{L} -y \, dx + x \, dy$$

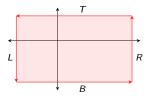
$$= \int_{x=0}^{x=2} -0 \, dx + \int_{y=0}^{y=1} 2 \, dy + \int_{x=2}^{x=0} -1 \, dx + \int_{y=1}^{y=0} 0 \, dy$$

$$= 2 + 2 = 4$$

On the other hand,

$$\int_{D} \partial_{x}(x) - \partial_{y}(-y) \, dA = \int_{D} 2 \, dA = 2 (\text{area of } D) = 4$$

Green's Theorem on a Rectangle



- Consider the domain $D = [a, b] \times [c, d]$
- Let C = boundary of $D = R \cup T \cup L \cup B$, oriented counterclockwise
- By the Fundamental Theorem of Calculus,

$$\int_{C} P \, dx + Q \, dy$$

$$= \int_{B} P \, dx + Q \, dy + \int_{R} P \, dx + Q \, dy + \int_{T} P \, dx + Q \, dy + \int_{L} P \, dx + Q \, dy$$

$$= \int_{x=a}^{x=b} P(x,c) \, dx + \int_{y=c}^{y=d} Q(b,y) \, dy - \int_{x=a}^{x=b} P(x,d) \, dx - \int_{y=c}^{y=d} Q(a,y) \, dy$$

$$= \int_{x=a}^{x=b} P(x,c) - P(x,d) \, dx + \int_{y=c}^{y=d} Q(b,y) - Q(a,y) \, dy$$

$$= \int_{x=a}^{x=b} \int_{y=c}^{y=d} -P_{y}(x,y) \, dy \, dx + \int_{y=c}^{y=d} \int_{x=a}^{x=b} Q_{x}(x,y) \, dx \, dy$$

$$= \int_{D} Q_{x} - P_{y} \, dA$$

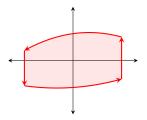
Theorem

If D is a rectangle, C is the boundary of D oriented counterclockwise, and $\vec{F} = \vec{i}P + \vec{j}Q$ is a vector field on D,

$$\int_C \vec{F} \cdot d\vec{r} = \int_C P \, dx + Q \, dy = \int_D Q_x - P_y \, dA = \int_D \vec{\nabla} \times \vec{F} \, dA.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Green's Theorem on a Simply Connected Domain



Green's Theorem can be generalized to a simply connected domain:

Theorem

If D is a simply connected domain with boundary ∂D oriented counterclockwise, then, for any vector field \vec{F} on D,

$$\int_C \vec{F} \cdot d\vec{r} = \int_D \vec{\nabla} \times \vec{F} \, dA$$

Equivalently, given any two functions P and Q on D,

$$\int_C P\,dx + Q\,dy = \int_D Q_x - P_y\,dA.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

• Let D be the upper half of a circular disk of radius R centered at the origin

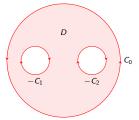
Consider the line integral

$$\int_{\partial D} (x^2 + y^2) \, dx + 2xy \, dy$$

By Green's Theorem,

$$\int_{\partial D} (x^2 + y^2) \, dx - 2xy \, dy = \int_D (-2xy)_x - (x^2 + y^2)_y \, dA$$
$$= \int_D -2y - 2y \, dA$$
$$= -4 \int_{r=0}^{r=R} \int_{\theta=0}^{\theta=\pi} r \sin \theta \, r \, d\theta \, dr$$
$$= -4 \int_{r=0}^{r=R} r^2 \, dr \int_{\theta=0}^{\theta=\pi} \sin \theta \, r \, d\theta$$
$$= -4 \left(\frac{R^3}{3}\right) \left(-\cos \theta|_{\theta=0}^{\theta=\pi}\right)$$
$$= \frac{8}{3}$$

Green's Theorem on a Non-Simply Connected Domain



- Let C₀ be a connected closed curve in 2-space, oriented counterclockwise
- Let C_1, \ldots, C_N be connected closed curves, oriented counterclockwise, inside C
- For each k, let $-C_k$ be the curve C_k but with the opposite orientation (clockwise)
- Let D be the domain that lies inside C but outside the curves C_1, \ldots, C_N

Theorem

Given $C = C_0 \cup (-C_1) \cup \cdots \cup (-C_N)$ and a vector field $\vec{F} = \vec{i}P + \vec{j}Q$ on D,

$$\int_C \vec{F} \cdot d\vec{r} = \int_{C_0} \vec{F} \cdot d\vec{r} - \int_{C_1} \vec{F} \cdot d\vec{r} - \dots - \int_{C_N} \vec{F} \cdot d\vec{r}$$
$$= \int_D Q_x - P_y \, dA.$$

Equivalently, given functions P and Q,

$$\int_{C} P \, dx + Q \, dy = \int_{D} Q_x - P_y \, dA.$$

Example



- Let C₁ and C₂ be the two circles of radius ¹/₂ shown above and C₃ the outer boundary of D, all oriented counterclockwise
- ▶ Let *D* be the domain inside *C*₃ but outside *C*₁ and *C*₂
- Suppose we want to calculate

$$\int_{\partial D} -y \, dx + x \, dy,$$

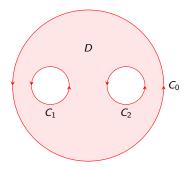
where ∂D is the positively oriented boundary of D

By Green's Theorem,

$$\int_{\partial D} -y \, dx + x \, dy = \int_D (x)_x - (-y)_y \, dA$$

= $2 \int_D dA = 2$ (area of D)
= 2((area of square) - 2(area of each disk))
= $2(8 - 2(\frac{\pi}{4})) = 16 - \pi$

Consequence of Green's Theorem



• If $\vec{F} = \vec{i}P + \vec{j}Q$ is a vector field on D such that $\vec{\nabla} \times \vec{F} = Q_x - P_y = 0$, then

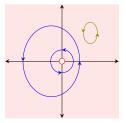
$$\int_{C_0} \vec{F} \cdot d\vec{r} - \int_{C_1 \cup \cdots \cup C_N} \vec{F} \cdot d\vec{r} = \int_D Q_X - P_Y \, dA = 0$$

▶ Therefore, if \vec{F} is a vector field on D such that $\vec{\nabla} \times \vec{F} = 0$, then

$$\int_{C_0} \vec{F} \cdot d\vec{r} = \int_{C_1 \cup \cdots \cup C_N} \vec{F} \cdot d\vec{r}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

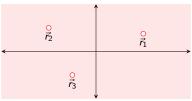
Fundamental Example of a Curl-Free Vector Field



- ▶ The vector field $\vec{F} = \frac{-\vec{i}y + \vec{j}x}{x^2 + y^2}$ is defined on 2-space except at the origin
- $\blacktriangleright \vec{\nabla} \times \vec{F} = 0$
- $\int_C \vec{F} \cdot d\vec{r} = 2\pi$ for any circle *C* of radius *R* centered at the origin, oriented counterclockwise
- $\int_C \vec{F} \cdot d\vec{r} = 2\pi$ for any connected closed curve *C* with the origin inside, oriented counterclockwise

• $\int_C \vec{F} \cdot d\vec{r} = 0$ for any connected closed curve *C* without the origin inside

Curl-Freee Vector Field on Domain With Holes



• Given points $(x_1, y_1), \ldots, (x_N, y_N)$, consider the vector fields

$$ec{F}_k = rac{-ec{i}(y-y_k) + ec{j}(x-x_k)}{(x-x_k)^2 + (y-y_k)^2}, \; k = 1, \dots, N$$

For each k = 1,..., N, v × F_k = 0 and a small circle C_k going counterclockwise around (x_k, y_k),

$$\int_{C_k} \vec{F}_k \cdot d\vec{r} = 2\pi$$

Consider

$$\vec{F} = a_1 \vec{F}_1 + \dots + a_N \vec{F}_N,$$

where a_1, \ldots, a_N are constant scalars

- $\vec{\nabla} \times \vec{F} = 0$ everywhere except at $(x_1, y_1), \ldots, (x_N, y_N)$
- ► If C is a closed curve that goes around all of the points (x₁, y₁), ..., (x_N, y_N), then by Green's Theorem,

$$\int_C \vec{F} \cdot d\vec{r} = 2\pi (a_1 + a_2 + \cdots + a_N)$$