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Fundamental Theorem of Line Integrals

I Let C be an oriented closed curve

I Let ~F = ~∇f be a conservative vector field

I Then ∫
C

~F · d~r = 0

I Equivalently, ∫
C
fx dx + fy dy = 0



Fundamental Theorem of Line Integrals (Special Case)

D

C

I Let D ⊂ R2 be a simply connected domain

I Let C = ∂D be boundary of D

I If ~F is a vector field on D such that

~∇× ~F = 0,

then ∫
C

~F · d~r = 0,

I Proof:
I If D is simply connected and ~∇× ~F = 0, then ~F is a gradient field
I The conclusion now follows by the Fundamental Theorem of Line Integrals



What happens if ~∇× ~F 6= 0?

I Suppose
I D is a simply connected domain
I C = ∂D is the boundary of D oriented counterclockwise
I ~F is a vector field on D

I Green’s Theorem says ∫
C

~F · d~r =

∫
D

~∇× ~F dA

I Equivalently, if ~F = ~iP + ~jQ, then∫
C
P dx + Q dy =

∫
C
Qx − Py dA



Example

2
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I Consider ∫
C
−y dx + x dy ,

where C = B ∪ R ∪ T ∪ L
I On one hand,∫

C
−y dx + x dy

=

∫
B
−y dx + x dy +

∫
R
−y dx + x dy +

∫
T
−y dx + x dy +

∫
L
−y dx + x dy

=

∫ x=2

x=0
−0 dx +

∫ y=1

y=0
2 dy +

∫ x=0

x=2
−1 dx +

∫ y=0

y=1
0 dy

= 2 + 2 = 4

I On the other hand,∫
D
∂x (x)− ∂y (−y) dA =

∫
D

2 dA = 2(area of D) = 4



Green’s Theorem on a Rectangle

L

T

R

B

I Consider the domain D = [a, b]× [c, d ]
I Let C = boundary of D = R ∪ T ∪ L ∪ B, oriented counterclockwise
I By the Fundamental Theorem of Calculus,∫

C
P dx + Q dy

=

∫
B
P dx + Q dy +

∫
R
P dx + Q dy +

∫
T
P dx + Q dy +

∫
L
P dx + Q dy

=

∫ x=b

x=a
P(x , c) dx +

∫ y=d

y=c
Q(b, y) dy −

∫ x=b

x=a
P(x , d) dx −

∫ y=d

y=c
Q(a, y) dy

=

∫ x=b

x=a
P(x , c)− P(x , d) dx +

∫ y=d

y=c
Q(b, y)− Q(a, y) dy

=

∫ x=b

x=a

∫ y=d

y=c
−Py (x , y) dy dx +

∫ y=d

y=c

∫ x=b

x=a
Qx (x , y) dx dy

=

∫
D
Qx − Py dA



Green’s Theorem on a Rectangle

Theorem
If D is a rectangle, C is the boundary of D oriented counterclockwise, and
~F = ~iP + ~jQ is a vector field on D,∫

C

~F · d~r =

∫
C
P dx + Q dy =

∫
D
Qx − Py dA =

∫
D

~∇× ~F dA.



Green’s Theorem on a Simply Connected Domain

Green’s Theorem can be generalized to a simply connected domain:

Theorem
If D is a simply connected domain with boundary ∂D oriented counterclockwise, then,
for any vector field ~F on D, ∫

C

~F · d~r =

∫
D

~∇× ~F dA.

Equivalently, given any two functions P and Q on D,∫
C
P dx + Q dy =

∫
D
Qx − Py dA.



Example

D

I Let D be the upper half of a circular disk of radius R centered at the origin

I Consider the line integral ∫
∂D

(x2 + y2) dx + 2xy dy

I By Green’s Theorem,∫
∂D

(x2 + y2) dx − 2xy dy =

∫
D

(−2xy)x − (x2 + y2)y dA

=

∫
D
−2y − 2y dA

= −4

∫ r=R

r=0

∫ θ=π

θ=0
r sin θ r dθ dr

= −4

∫ r=R

r=0
r2 dr

∫ θ=π

θ=0
sin θ r dθ

= −4

(
R3

3

)(
− cos θ|θ=π

θ=0

)
=

8

3



Green’s Theorem on a Non-Simply Connected Domain

C0

−C1 −C2

D

I Let C0 be a connected closed curve in 2-space, oriented counterclockwise
I Let C1, . . . , CN be connected closed curves, oriented counterclockwise, inside C
I For each k, let −Ck be the curve Ck but with the opposite orientation (clockwise)
I Let D be the domain that lies inside C but outside the curves C1, . . . ,CN

Theorem
Given C = C0 ∪ (−C1) ∪ · · · ∪ (−CN) and a vector field ~F = ~iP + ~jQ on D,∫

C

~F · d~r =

∫
C0

~F · d~r −
∫
C1

~F · d~r − · · · −
∫
CN

~F · d~r

=

∫
D
Qx − Py dA.

Equivalently, given functions P and Q,∫
C
P dx + Q dy =

∫
D
Qx − Py dA.



Example

D

21−1

2

I Let C1 and C2 be the two circles of radius 1
2

shown above and C3 the outer
boundary of D, all oriented counterclockwise

I Let D be the domain inside C3 but outside C1 and C2

I Suppose we want to calculate ∫
∂D
−y dx + x dy ,

where ∂D is the positively oriented boundary of D
I By Green’s Theorem,∫

∂D
−y dx + x dy =

∫
D

(x)x − (−y)y dA

= 2

∫
D

dA = 2(area of D)

= 2((area of square)− 2(area of each disk))

= 2(8− 2(
π

4
)) = 16− π



Consequence of Green’s Theorem

C0

C1 C2

D

I If ~F = ~iP + ~jQ is a vector field on D such that ~∇× ~F = Qx − Py = 0, then∫
C0

~F · d~r −
∫
C1∪···∪CN

~F · d~r =

∫
D
Qx − Py dA = 0

I Therefore, if ~F is a vector field on D such that ~∇× ~F = 0, then∫
C0

~F · d~r =

∫
C1∪···∪CN

~F · d~r



Fundamental Example of a Curl-Free Vector Field

I The vector field ~F = −~iy+~jx
x2+y2 is defined on 2-space except at the origin

I ~∇× ~F = 0

I
∫
C

~F · d~r = 2π for any circle C of radius R centered at the origin, oriented

counterclockwise

I
∫
C

~F · d~r = 2π for any connected closed curve C with the origin inside, oriented

counterclockwise

I
∫
C

~F · d~r = 0 for any connected closed curve C without the origin inside



Curl-Freee Vector Field on Domain With Holes

~r1
~r2

~r3

I Given points (x1, y1), . . . , (xN , yN), consider the vector fields

~Fk =
−~i(y − yk ) + ~j(x − xk )

(x − xk )2 + (y − yk )2
, k = 1, . . . ,N

I For each k = 1, . . . ,N, ~∇× ~Fk = 0 and a small circle Ck going counterclockwise
around (xk , yk ), ∫

Ck

~Fk · d~r = 2π

I Consider
~F = a1

~F1 + · · ·+ aN ~FN ,

where a1, . . . , aN are constant scalars
I ~∇× ~F = 0 everywhere except at (x1, y1), . . . , (xN , yN)
I If C is a closed curve that goes around all of the points (x1, y1), . . . , (xN , yN),

then by Green’s Theorem,∫
C

~F · d~r = 2π(a1 + a2 + · · · aN)


