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Line integral of a Vector Field Along an Oriented Curve

I Let ~F (x , y , z) be a vector field on a domain D

I The formulas for the components of ~F should use the variables x , y , z only
I All other variables should be treated as constants

I Let C an oriented curve in D with start point ~rstart and end point ~rend

I The line integral of ~F along C is written as∫
C

~F · d~r =

∫
C

F1 dx + F2 dy + F3 dz

I The line integral of ~F along C is a scalar
I To compute the value of a line integral, do the following:

I Choose a parameterization of C
I This gives you formulas for x , y , z in terms of the parameter for C
I Calculate dx , dy , dz in terms of the parameter and its differential

I In the integral, replace x , y , z and their differentials by their formulas in
terms of the curve parameter and its differential

I You now have an integral in terms of a single variable, namely the curve
parameter

I Calculate the integral using what you learned in Calculus 2



Properties of Line Integrals

I If C is an oriented curve and ~F is a vector field, then the line integral of ~F
along C is ∫

C

~F · d~r =

∫ t=tend

t=tstart

~F (~r(t)) · ~r ′(t) dt,

where ~r(t) is a parameterization of C

I The value of the line integral stays the same, even if a different
parameterization is used

I Given an oriented curve C , −C will denote the same curve but with the
opposite orientation: ∫

−C

~F · d~r = −
∫
C

~F · d~r

I If C = C1 ∪ C2, then∫
−C

~F · d~r =

∫
C1

~F · d~r +

∫
C2

~F · d~r



Line Integral Around Closed Curve

I A closed curve is a curve where the start and end points are the same
I A parameterized curve given by

~r : [tstart, tend]→ Rn

is closed, if ~r(tstart) = ~r(tend)
I If C is closed, a line integral ∫

C

~F · d~r

is NOT necessarily zero
I Example: Let C be the unit circle centered at the origin, oriented

counterclockwise and parameterized as

x(t) = cos t, y(t) = sin t, 0 ≤ t ≤ 2π,

and consider the line integral∫
C

−y dx + x dy =

∫ t=2π

t=0

−(sin t)(− sin t dt) + (cos t)(cos t) dt

=

∫ t=2π

t=0

1 dt = 2π



Gradient Field

I A vector field ~F a domain D is a gradient field, if there is a scalar function
f on D such that

~F = ~∇f
I Equivalently, a vector field ~F = ~iF1 + ~jF2 + ~kF3 is a gradient field if there

is a scalar function such that

F1 = fx , F2 = fy , F3 = fz

I The function f is called the potential or the energy potential of ~F



Fundamental Theorem of Line Integrals

I Let ~F = ~∇f be a gradient field on a domain D

I Let C be an oriented curve in D with start point ~rstart and end point ~rend

I We have shown that∫
C

~F · d~r = f (~rtextend)− f (~rtextstart)

I If C is a closed curve, then ~rend = ~rstart and therefore∫
C

~F · d~r = 0

I If C1 and C2 are any two oriented curves with the same start and end
points, then ∫

C1

~F · d~r =

∫
C2

~F · d~r



Examples
I Let C be the unit circle centered around the origin, going counterclockwise
I ~F = 〈y , x〉 is a gradient field, since ~F = ~∇f , where f (x , y) = xy∫

C

~F · d~r = 0

I ~G = 〈−y , x〉 is not a gradient field∫
C

~G · d~r =

∫
C

−y dx + x dy

=

∫ t=2π

t=0

−(sin t)(− sin t dt) + (cos t)(cos t) dt

=

∫ t=2π

t=0

1 dt = 2π

I ~H = 〈x , y 2〉 is not a gradient field∫
C

~H · d~r =

∫
C

x dx + y 2 dy

=

∫ t=2π

t=0

(cos t)(− sin t dt) + (sin t)2(cos t) dt

= −1

2
(sin t)2 +

1

3
(sin t)3

∣∣∣∣t=2pi

t=0

= 0



Path Independent, Conservative, Gradient Vector Fields

I A vector field ~F is path-independent on a domain D, if, for any two
oriented curves C1 and C2 in D with the same start points and same end
points, ∫

C1

~F · d~r =

∫
C2

~F · d~r

I A vector field ~F is path-independent on a domain D, if, for any closed
curve C in D, ∫

C

~F · d~r = 0

I A vector field ~F is gradient or conservative on a domain D, if there is a
potential function f on domain D such that ~∇f = ~F

I Any path-independent vector field on a domain D is conservative, and any
conservative vector field on a domain D is path-independent

I Gradient ⇐⇒ conservative ⇐⇒ path-independent



Best Test for a Gradient Field

I Try to solve for the potential function using antidifferentiation

I Consider ~F = ~ixy 2 + ~jxy 2 + y

I If ~F is gradient, then there is a function f such that

fx = xy 2 and fy = xy 2 + y

I Antidifferentiating the first equation with respect to x , we get

f (x , y) =
1

2
x2y 2 + g(y)

The “constant term” is allowed to be a function of y because y is a
“constant”

I Now test the second equation

fy = x2y + g ′(y)
?
= xy 2 + y

I If we set g(y) = 1
2
y 2 and therefore,

f (x , y) =
1

2
x2y 2 +

1

2
y 2,

then
~∇f = 〈xy 2, x2y + y〉 = ~F



Another Example

I Consider ~F = 〈3x2y 2 + 2xy , 2x3y + 2xy〉
I fx = 3x2y 2 + 2xy =⇒ f = x3y 2 + x2y + g(y)

I fy = 2x3y + x2 + g ′(y)
?
= 2x3y + 2xy

I No solution exists =⇒ ~F is not a gradient field



The Curl of a Vector Field

I In dimension 2
I Recall that the curl of two vectors ~v = ~iv1 + ~jv2 and ~w = ~iw1 + ~jw2 is the

scalar
~v × ~w = v1w2 − v2w1

I The curl of a vector field ~F = ~iF1 + ~jF2 is the scalar function

~∇× ~F = (~i∂x + ~j∂y )× (~iF1 + ~jF2) = (F2)x − (F1)y

I In dimension 3
I Recall that the curl of two vectors ~v = ~iv1 + ~jv2 + ~kv3 and

~w = ~iw1 + ~jw2 + ~kw3 is the vector

~v × ~w = ~i(v2w3 − v3w2) + ~k(v3w1 − v1w3) + ~k(v1w2 − v2w1)

I The curl of a vector field ~F = ~iF1 + ~jF2 + ~jF3 is the vector field

~∇× ~F = (~i∂x + ~j∂y + ~k∂z )× (~iF1 + ~jF2 + ~kF3)

= ~i((F3)y − (F2)z ) + ~j((F1)z − (F3)x )

+ ~k((F2)x − (F1)y )



Curl Test for Gradient Field

I In dimension 2: If ~F = ~∇f , then

~∇× ~F = (F2)x − (F1)y = (fy )x − (fx)y = 0

I In dimension 3: If ~F = ~∇f , then

~∇× ~F = ~i((F3)y − (F2)z) + ~j((F1)z − (F3)x) + ~k((F2)x − (F1)y )

= ~i((fz)y − (fx)y ) + ~j((fx)z − (fz)x) + ~k((fy )x − (fx)y )

= ~0

I In either dimension: If ~F is a gradient field, then ~∇× ~F = 0

I BEWARE: The converse is not necessarily true: If ~F = ~iF1 + ~jF2 satisfies

∂yF1 = ∂xF2,

it does not necessarily imply that ~F is a gradient field



Simply Connected Domain

I A domain D in 2-space is called simply connected, if, given any closed
curve C in D, all points inside C are in D

Simply
connected

Not simply
connected

Not simply
connected

Simply
connected

I A domain D in 3-space is simply connected if, given any closed curve C
in D, there is a surface in D whose boundary is C
I 3-space with the origin removed is simply connected
I 3-space with the z-axis removed is not simply connected



Curl Test on a Simply Connected Domain

I If ~F is a vector field on a simply connected domain D and

~∇× ~F = 0,

then ~F is a gradient field on D

I If ~F is a vector field on a simply connected domain D and

~∇× ~F = 0,

then there is a potential function f such that ~F = ~∇f



Fundamental Example

I ~F (x , y) =
−~iy + ~jx

x2 + y 2

I ~F is undefined at the origin

I Suppose C is a circle centered at the origin oriented counterclockwise

I A parameterization of C is

~r(t) = R〈cos(t), sin(t)〉, where R = radius of circle

I The line integral around a circle C centered at the origin is∫
C

~F · d~r =

∫ t=2π

t=0

~F (x(t), y(t)) · 〈x ′(t), y ′(t)〉 dt

=

∫ t=2π

t=0

(
−~iy + ~jx

x2 + y 2

)
· (~ix ′ + ~jy ′) dt

=
1

R2

∫ t=2π

t=0

−yx ′ + xy ′ dt

=
1

R2

∫ t=2π

t=0

(R sin(t))2 + (R cos(t))2 dt

= 2π

I Therefore, ~F is not conservative on 2-space with the origin removed



Curl of Fundamental Example

I ~F =
−y~i + x~j

x2 + y 2

I The curl of ~F is

~∇× ~F = −∂y
(
−y

x2 + y 2

)
+ ∂x

(
x

x2 + y 2

)
=

1

x2 + y 2
− y(2y)

(x2 + y 2)2

1

x2 + y 2
− x(2x)

(x2 + y 2)2

=
2(x2 + y 2)− 2y 2 − 2x2

(x2 + y 2)2

= 0



Fundamental Example

D

C

Not simply connected

E

Simply connected

I ~F (x , y) =
−~iy + ~jx

x2 + y 2

I ~∇× ~F = 0

I ~F on D is not a gradient field, because∫
C

~F · d~r = 2π 6= 0,

I ~F on E is a gradient field, because E is simply connected



Fundamental Example

I Consider the function f (x , y) = θ, where

x = r cos θ, y = r sin θ, r =
√

x2 + y 2

I Compute gradient of f implicitly

〈x , y〉 = 〈r cos θ, r sin θ〉
〈dx , dy〉 = 〈dr cos θ − dθ r sin θ, dr sin θ + dθ r cos θ〉

= dr〈cos θ, sin θ〉+ dθ〈−r sin θ, r cos θ〉

=
dr

r
〈x , y〉+ dθ〈−y , x〉

−y dx + x dy = dθ (x2 + y 2)

dθ = −−y , dx + x dy

x2 + y 2

I Therefore,

~∇f = ~i fx + ~j fy = ~iθx + ~jθy =
−y , dx + x dy

x2 + y 2
= ~F



The Fundamental Example Is Not And Is A Gradient Field

D E

I ~F (x , y) =
−~iy + ~jx

x2 + y 2

I If f (x , y) = θ, then ~F = ~∇f
I There is no way to define θ as a smooth function on D
I There is, however, a way to define θ as a smooth function on E

I For each (x , y) not on the negative x-axis, define θ so that

−π < θ < π

I For each (x , y), there is a unique such θ satisfying this


