

MATH-UA 123 Calculus 3: Line Integrals, Fundamental Theorem of Line Integrals

Deane Yang

Courant Institute of Mathematical Sciences
New York University

November 8, 2021

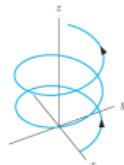
LIVE TRANSCRIPT
START RECORDING

Parameterized Curves

- ▶ Recall that a parameterized curve is a map from an interval into 2-space or 3-space,

$$c : I \rightarrow \mathbb{R}^n, \text{ where } n = 2 \text{ or } 3$$

- ▶ The velocity of c is $\vec{v}(t) = c'(t)$
- ▶ We will assume that the velocity is always nonzero
- ▶ The path of the curve is the image of c



- ▶ A path has many different parameterizations
- ▶ The parameterized curves

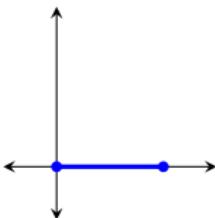
$$c_1(t) = (t, 0), \quad 0 \leq t \leq 1$$

$$c_2(t) = (t, 0), \quad 0 \leq t \leq 1$$

$$c_3(t) = (1 - t, 0), \quad 0 \leq t \leq 1$$

have the same path

Same Path, Different Parameterizations



- ▶ $c_1 : [0, 1] \rightarrow \mathbb{R}^2$, where

$$c_1(s) = s$$

- ▶ $c_1 : [-1, 0] \rightarrow \mathbb{R}^2$, where

$$c_1(s) = -s$$

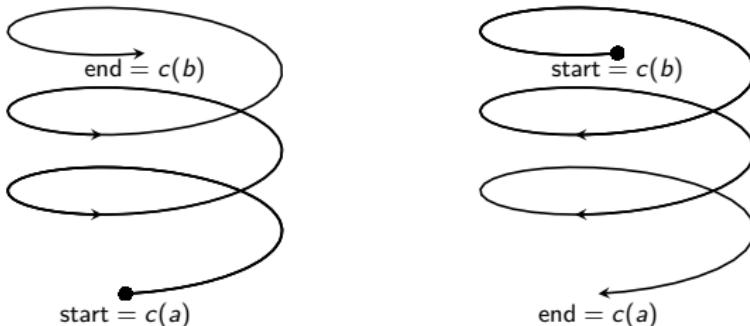
- ▶ $c_1 : [0, 1] \rightarrow \mathbb{R}^2$, where

$$c_1(s) = 1 - s$$

- ▶ $c_1 : [0, 1] \rightarrow \mathbb{R}^2$, where

$$c_1(s) = s^2$$

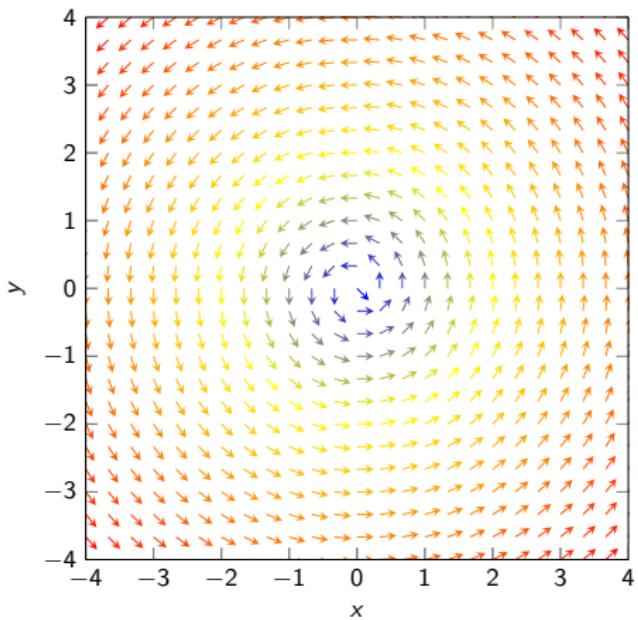
Oriented Curve



- ▶ Orientation of a parameterized curve is direction of travel
- ▶ There are two possible orientations
 - ▶ The direction of the velocity vector
 - ▶ The opposite direction to the velocity vector
- ▶ Consider a curve $c : [a, b] \rightarrow \mathbb{R}^n$
- ▶ If the orientation is in the direction of the velocity vector $c'(t)$, then $c(a)$ is the start point and $c(b)$ is the end point
- ▶ If the orientation is in the opposite direction of the velocity vector $c'(t)$, then $c(b)$ is the start point and $c(a)$ is the end point

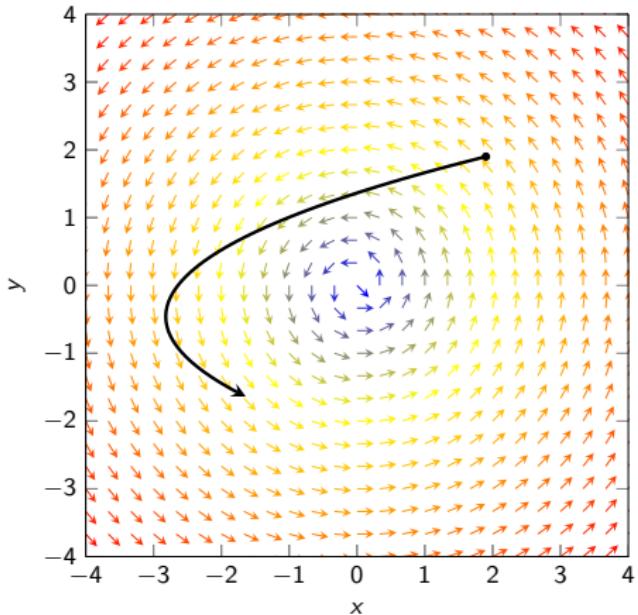
Vector Field

$$\vec{V}(x, y) = \langle v_1(x, y), v_2(x, y) \rangle$$



Oriented Curve in Vector Field

$$\vec{r}(t) = \langle x(t), y(t) \rangle, \quad a \leq t \leq b$$



Oriented Curve in Vector Field

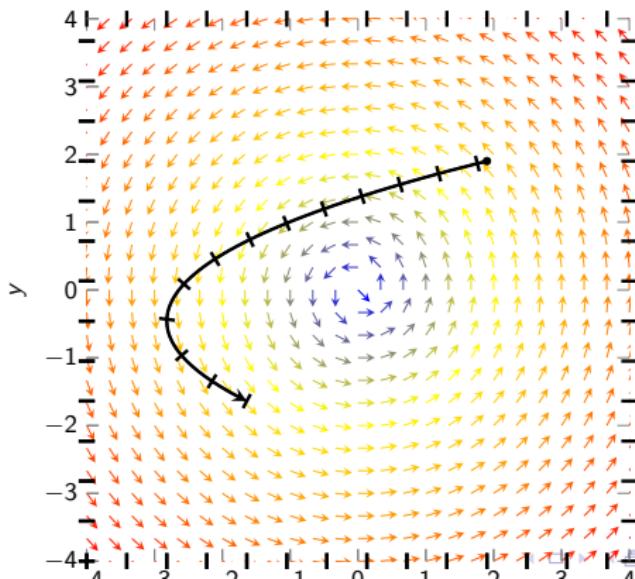
- Chop interval $[a, b]$ into N equal pieces

$$\Delta t = \frac{b - a}{N}$$

$$a = t_1 < t_2 = t_1 + \Delta t < \cdots < t_N = t_1 + (N-1)\Delta t < t_{N+1} = t_1 + (N+1)\Delta t = b$$

- Linear approximation of curve

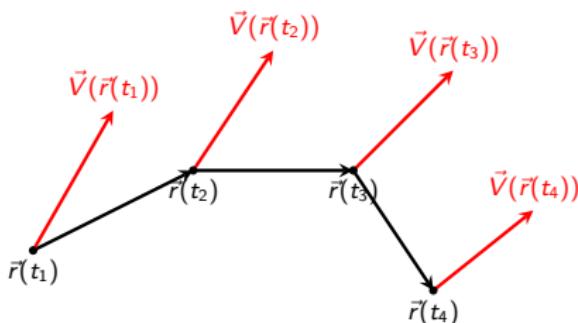
$$\vec{r}(t_k) - \vec{r}(t_{k-1}) \simeq \vec{r}'(t_k)(t_k - t_{k-1})$$



Line Integral of Vector Field Along Oriented Curve

- ▶ Let C be a curve in a domain D with parameterization $\vec{r}(t)$, for each t between a and b
- ▶ Let \vec{V} be a vector field on the domain D
- ▶ Define the line integral of a vector field \vec{V} along an oriented curve C to be

$$\begin{aligned}\int_C \vec{V} \cdot d\vec{r} &\simeq \vec{V}(\vec{r}(t_1)) \cdot (\vec{r}(t_2) - \vec{r}(t_1)) + \cdots + \vec{V}(\vec{r}(t_N)) \cdot (\vec{r}(t_{N+1}) - \vec{r}(t_N)) \\ &\simeq \vec{V}(\vec{r}(t_1)) \cdot \vec{r}'(t_1)(t_2 - t_1) + \cdots + \vec{V}(\vec{r}(t_N)) \cdot (\vec{r}'(t_N)(t_{N+1} - t_N)) \\ &\rightarrow \int_{t=a}^{t=b} \vec{V}(\vec{r}(t)) \cdot \vec{r}'(t) dt,\end{aligned}$$



- ▶ Does not matter whether $a \leq b$ or $a \geq b$

Line integral of a Vector Field Along an Oriented Curve

- ▶ Let $\vec{F}(x, y, z)$ be a vector field on a domain D
- ▶ Let C an oriented curve in D with start point \vec{r}_{start} and end point \vec{r}_{end}
- ▶ Let $\vec{r}(t)$ be a parameterization of C such that

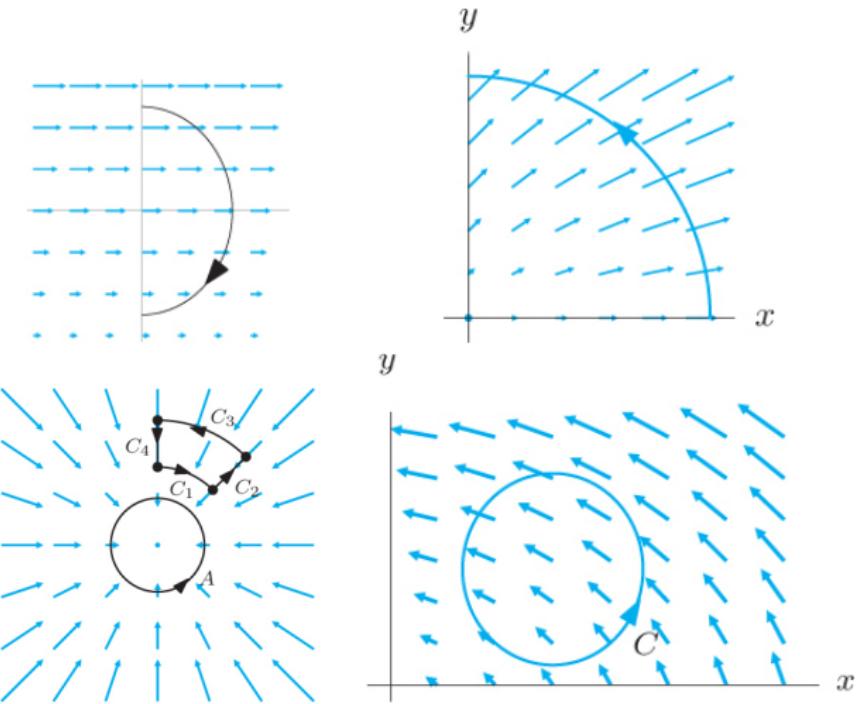
$$\vec{r}(t_{\text{start}}) = \vec{r}_{\text{start}} \text{ and } \vec{r}(t_{\text{end}}) = \vec{r}_{\text{end}}$$

- ▶ The line integral of \vec{F} along the curve C is defined to be

$$\int_C \vec{F} \cdot d\vec{r} = \int_{t=t_{\text{start}}}^{t=t_{\text{end}}} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

- ▶ Here, $\vec{F} = \vec{F}(\vec{r}(t))$ and $d\vec{r} = \vec{r}'(t) dt$

Examples

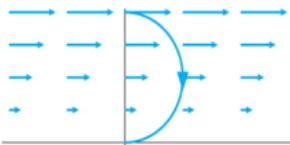


Calculation of Line Integral in Constant Vector Field

- ▶ Consider a constant vector field $\vec{F} = \vec{i}F_1 + \vec{j}F_2 + \vec{k}F_3$, where F_1, F_2, F_3 are scalar constants
- ▶ An oriented curve C with parameterization $\vec{r}(t) = \vec{i}x(t) + \vec{j}y(t) + \vec{k}z(t)$, $a \leq t \leq b$, oriented in the direction of the velocity vector
 - ▶ $d\vec{r} = \vec{r}'(t) dt = (\vec{i}x'(t) + \vec{j}y'(t) + \vec{k}z'(t)) dt$
- ▶ We want to compute the line integral of \vec{F} along the oriented curve C

$$\begin{aligned}\int_C \vec{F} \cdot d\vec{r} &= \int_{t=a}^{t=b} \langle F_1, F_2, F_3 \rangle \langle x'(t), y'(t), z'(t) \rangle dt \\ &= \int_{t=a}^{t=b} F_1 x'(t) + F_2 y'(t) + F_3 z'(t) dt \\ &= F_1 x(t) + F_2 y(t) + F_3 z(t) \Big|_{t=a}^{t=b} \\ &= F_1(x(b) - x(a)) + F_2(y(b) - y(a)) + F_3(z(b) - z(a)) \\ &= \vec{F} \cdot (\vec{r}(b) - \vec{r}(a))\end{aligned}$$

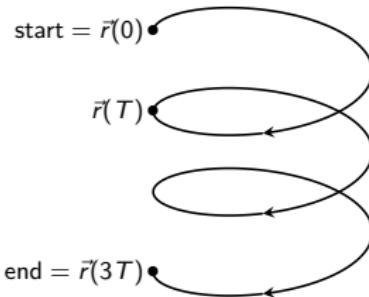
Example of Line Integral



- ▶ Vector field: $\vec{F}(x, y) = y \vec{i}$
- ▶ Curve C : $\vec{r}(t) = \vec{i} \cos(t) + \vec{j}(1 + \sin(t)), -\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$, oriented opposite to the velocity
- ▶ $d\vec{r} = (-\vec{i} \sin(t) + \vec{j} \cos(t)) dt$

$$\begin{aligned}\int_C \vec{F} \cdot d\vec{r} &= \int_{t=\frac{\pi}{2}}^{t=-\frac{\pi}{2}} (\sin(t) \vec{i}) \cdot (-\vec{i} \sin(t) + \vec{j} \cos(t)) dt \\ &= \int_{t=\frac{\pi}{2}}^{t=-\frac{\pi}{2}} -(\sin(t))^2 dt = \int_{t=\frac{\pi}{2}}^{t=-\frac{\pi}{2}} \frac{-1 + \cos(2t)}{2} dt \\ &= -\frac{t}{2} + \frac{\sin(2t)}{4} \Big|_{t=\frac{\pi}{2}}^{t=-\frac{\pi}{2}} = \frac{\pi}{2}\end{aligned}$$

Work Done By Gravity Along Helical Path



- ▶ $\vec{r}(t) = \langle R \cos\left(\frac{2\pi t}{T}\right), R \sin\left(\frac{2\pi t}{T}\right), h(t) \rangle$, $0 \leq t \leq 3T$, where
 T = period and $h(t)$ = height at time t (meters)

- ▶ Work done by gravity $\vec{F} = -g\vec{k}$

$$\begin{aligned}\int_C \vec{F} \cdot d\vec{r} &= \int_{t=0}^{t=3T} -g \cdot \left\langle -\frac{2\pi R}{T} \sin\left(\frac{2\pi t}{T}\right), R \frac{2\pi}{T} \cos\left(\frac{2\pi t}{T}\right), -h'(t) \right\rangle dt \\ &= \int_{t=0}^{t=3T} gh'(t) dt = g(h(3T))\end{aligned}$$

Another Notation for a Line Integral

- ▶ Consider a vector $\vec{F} = \vec{i}F_1 + \vec{j}F_2 + \vec{k}F_3$ and a parameterized curve $\vec{r}(t) = \vec{i}x(t) + \vec{j}y(t) + \vec{k}z(t)$
- ▶ $d\vec{r} = \vec{i}dx + \vec{j}dy + \vec{k}dz$
- ▶ $\vec{F} \cdot d\vec{r} = F_1 dx + F_2 dy + F_3 dz$
- ▶ The line integral of \vec{F} along an oriented curve C is

$$\int_C \vec{F} \cdot d\vec{r} = \int_C F_1 dx + F_2 dy + F_3 dz$$

- ▶ Example: Suppose C is parameterized by

$$\vec{r}(t) = \langle t, t^2, t^3 \rangle, \quad 0 \leq t \leq 1$$

and we want to compute

$$\int_C \vec{F} \cdot d\vec{r} = \int_C x dx + y dy + z dz$$

- ▶ Since $x = t$, $y = t^2$, $z = t^3$,

$$dx = dt, \quad dy = 2t dt, \quad dz = 3t^2 dt$$

- ▶ Therefore,

$$\begin{aligned} \int_C x dx + y dy + z dz &= \int_{t=0}^{t=1} t dt + t^2(2t dt) + t^3(3t^2) dt \\ &= \int_{t=0}^{t=1} (t + 2t^3 + 3t^5) dt = \frac{3}{2} \end{aligned}$$

Example of Line Integral in 2-space

- ▶ Suppose C is an oriented curve in 2-space with parameterization $\vec{r}(t) = \vec{i}x(t) + \vec{j}y(t)$, $a \leq t \leq b$, and $P(x, y)$, $Q(x, y)$ are scalar functions
- ▶ To compute the line integral $\int_C P \, dx + Q \, dy$,

$$\int_C P \, dx + Q \, dy = \int_{t=a}^{t=b} (P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)) \, dt$$

- ▶ Example: Suppose the curve C has the parameterization $\vec{r}(t) = \vec{i}t \cos(t) + \vec{j}t \sin(t)$, $0 \leq t \leq 2\pi$, with orientation in the direction of the velocity vector
- ▶ To calculate $\int_C -y \, dx + x \, dy$,

$$\begin{aligned}\int_C -y \, dx + x \, dy &= \int_{t=0}^{t=2\pi} -(t \sin t)(\cos(t) - t \sin(t)) \, dt \\ &\quad + (t \cos(t))(\sin(t) + t \cos(t)) \, dt \\ &= \int_{t=0}^{t=2\pi} t^2 \, dt = \frac{(2\pi)^3}{3}\end{aligned}$$

Properties of Line Integrals

- If C is an oriented curve and \vec{F} is a vector field, then the line integral of \vec{F} along C is

$$\int_C \vec{F} \cdot d\vec{r} = \int_{t=t_{\text{start}}}^{t=t_{\text{end}}} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt,$$

where $\vec{r}(t)$ is a parameterization of C

- The value of the line integral stays the same, even if a different parameterization is used
- Given an oriented curve C , $-C$ will denote the same curve but with the opposite orientation:

$$\int_{-C} \vec{F} \cdot d\vec{r} = - \int_C \vec{F} \cdot d\vec{r}$$

- If $C = C_1 \cup C_2$, then

$$\int_C \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{C_2} \vec{F} \cdot d\vec{r}$$

Gradient Field

- A vector field \vec{F} a domain D is a *gradient field*, if there is a scalar function f on D such that

$$\vec{F} = \vec{\nabla}f$$

- Equivalently, a vector field $\vec{F} = \vec{i}F_1 + \vec{j}F_2 + \vec{k}F_3$ is a gradient field if there is a scalar function such that

$$F_1 = f_x, \quad F_2 = f_y, \quad F_3 = f_z$$

- The function f is called the potential or the energy potential of \vec{F}
- $\vec{F} = \langle x, y, z \rangle$ is a gradient field, because $\vec{F} = \nabla f$, where

$$f(x, y, z) = \frac{1}{2}(x^2 + y^2 + z^2)$$

- $\vec{G} = \langle y, x \rangle$ is a gradient field, because $\vec{G} = \nabla q$, where

$$q(x, y, z) = xy$$

- $\vec{H} = \langle y, -x \rangle$ is not a gradient field, because if $\vec{H} = \langle y, -x \rangle = \nabla p = \langle p_x, p_y \rangle$, then

$$p_x = y \text{ and } p_y = -x, \text{ which implies } p_{xy} = 1 \text{ and } p_{yx} = -1$$

Test for a Gradient Field: Partial Derivatives Commute

- If $\vec{F} = \vec{i}F_1 + \vec{j}F_2 = \nabla f = \vec{i}f_x + \vec{j}f_y$, then

$$\partial_y F_1 = (f_x)_y = (f_y)_x = \partial_x F_2$$

- If $\vec{F} = \vec{i}F_1 + \vec{j}F_2 + \vec{k}F_3 = \nabla f = \vec{i}f_x + \vec{j}f_y + \vec{k}f_z$, then

$$\partial_y F_1 = (f_x)_y = (f_y)_x = \partial_x F_2$$

$$\partial_z F_1 = (f_x)_z = (f_z)_x = \partial_x F_3$$

$$\partial_z F_2 = (f_y)_z = (f_z)_y = \partial_y F_3$$

- BEWARE: The converse is not necessarily true: If $\vec{F} = \vec{i}F_1 + \vec{j}F_2$ satisfies

$$\partial_y F_1 = \partial_x F_2,$$

it does not necessarily imply that \vec{F} is a gradient field

Line Integral of Gradient Field

- ▶ Suppose $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ is a parameterization of an oriented curve that starts at $\vec{r}_{\text{start}} = \vec{r}(t_{\text{start}})$ and ends at $\vec{r}_{\text{end}} = \vec{r}(t_{\text{end}})$
- ▶ Consider the scalar function $\phi(t) = f(\vec{r}(t))$
- ▶ By the chain rule,

$$\begin{aligned}\phi'(t) &= \frac{d}{dt}(f(\vec{r}(t))) \\ &= f_x x' + f_y y' + f_z z' \\ &= \langle f_x, f_y, f_z \rangle \cdot \langle x', y', z' \rangle \\ &= \vec{\nabla} f(\vec{r}(t)) \cdot \vec{r}'(t)\end{aligned}$$

- ▶ Therefore, by the definition of the line integral and the Fundamental Theorem of Calculus,

$$\begin{aligned}\int_C \vec{\nabla} f \cdot d\vec{r} &= \int_{t=t_{\text{start}}}^{t=t_{\text{end}}} \vec{\nabla} f(\vec{r}(t)) \cdot \vec{r}'(t) dt \\ &= \int_{t=t_{\text{start}}}^{t=t_{\text{end}}} \phi'(t) dt \\ &= \phi(t_{\text{end}}) - \phi(t_{\text{start}}) \\ &= f(\vec{r}(t_{\text{end}})) - f(\vec{r}(t_{\text{start}})) \\ &= f(\vec{r}_{\text{end}}) - f(\vec{r}_{\text{start}})\end{aligned}$$

Fundamental Theorem of Line Integrals

- ▶ Let $\vec{F} = \vec{\nabla}f$ be a gradient field on a domain D
- ▶ Let C be an oriented curve in D with start point \vec{r}_{start} and end point \vec{r}_{end}
- ▶ We have shown that

$$\int_C \vec{F} \cdot d\vec{r} = f(\vec{r}_{\text{end}}) - f(\vec{r}_{\text{start}})$$

- ▶ If C is a closed curve, then $\vec{r}_{\text{end}} = \vec{r}_{\text{start}}$ and therefore

$$\int_C \vec{F} \cdot d\vec{r} = 0$$

- ▶ If C_1 and C_2 are any two oriented curves with the same start and end points, then

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$

Path Independent, Conservative, Gradient Vector Fields

- ▶ A vector field \vec{F} is path-independent on a domain D , if, for any two oriented curves C_1 and C_2 in D with the same start points and same end points,

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$

- ▶ A vector field \vec{F} is path-independent on a domain D , if, for any closed curve C in D ,

$$\int_C \vec{F} \cdot d\vec{r} = 0$$

- ▶ A vector field \vec{F} is gradient or conservative on a domain D , if there is a potential function f on domain D such that $\vec{\nabla}f = \vec{F}$
- ▶ Any path-independent vector field on a domain D is conservative, and any conservative vector field on a domain D is path-independent
- ▶ Gradient \iff conservative \iff path-independent