

MATH-UA 123 Calculus 3: Rectangular, Polar, Cylindrical, Spherical Coordinates Vector Fields, Line Integrals

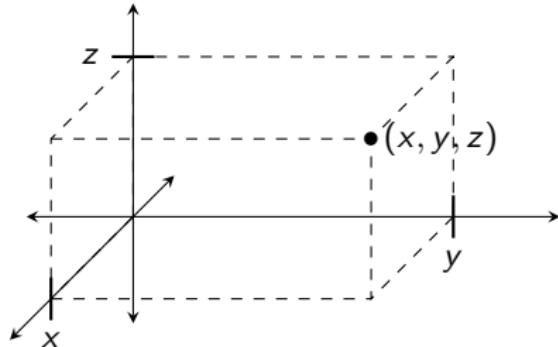
Deane Yang

Courant Institute of Mathematical Sciences
New York University

November 3, 2021

START RECORDING

Rectangular Coordinates in 2-Space and 3-Space



- ▶ Ranges

$$-\infty < x, y, z < \infty$$

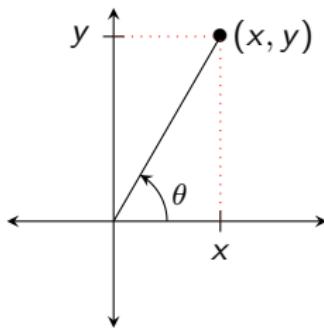
- ▶ Area form

$$dA = dx dy$$

- ▶ Volume form

$$dV = dx dy dz$$

Polar Coordinates



- ▶ Ranges

$$r \geq 0$$

$$0 \leq \theta \leq 2\pi \text{ or } -\pi \leq \theta \leq \pi$$

- ▶ Coordinate formulas

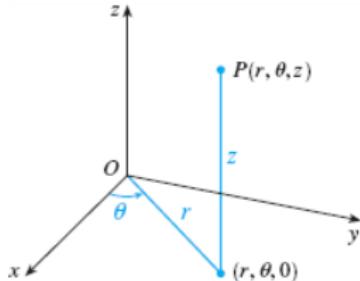
$$x = r \cos \theta$$

$$y = r \sin \theta$$

- ▶ Area form

$$dA = r dr d\theta$$

Cylindrical Coordinates



► Ranges

$$r \geq 0$$

$$0 \leq \theta \leq 2\pi \text{ or } -\pi \leq \theta \leq \pi$$

$$-\infty < z < \infty$$

► Coordinate formulas

$$x = r \cos \theta$$

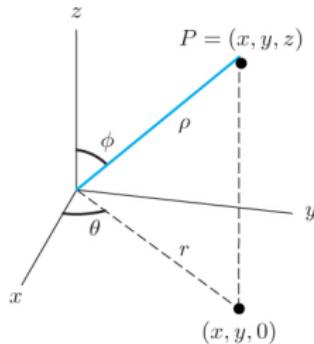
$$y = r \sin \theta$$

$$z = z$$

► Volume form

$$dV = r \, dr \, d\theta \, dz$$

Spherical Coordinates



► Ranges

$$\rho \geq 0$$

$$0 \leq \phi \leq \pi$$

$$0 \leq \theta \leq 2\pi \text{ or } -\pi \leq \theta \leq \pi$$

► Coordinate formulas

$$x = \rho \sin \phi \cos \theta$$

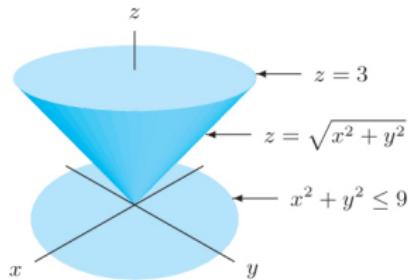
$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

► Volume form

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Cone



► Rectangular coordinates

$$x^2 + y^2 \leq 9$$

$$\sqrt{x^2 + y^2} \leq z \leq 3$$

► Cylindrical coordinates

$$0 \leq \theta \leq 2\pi$$

$$r \leq 3$$

$$r \leq z \leq 3$$

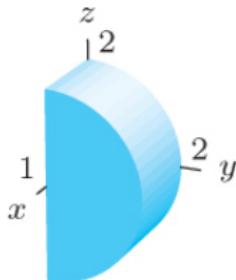
► Spherical coordinates

$$0 \leq \theta \leq 2\pi$$

$$0 \leq \phi \leq \frac{\pi}{2}$$

$$0 \leq \rho \leq \frac{3}{\cos \phi}$$

Half Cylinder



- Rectangular coordinates

$$y^2 + z^2 \leq 4$$

$$y \geq 0$$

$$0 \leq x \leq 1$$

- Cylindrical coordinates

$$y = r \cos \theta, \ z = r \sin \theta, \ x = x$$

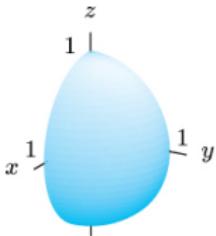
$$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$

$$r \leq 2$$

$$0 \leq x \leq 1$$

- Spherical coordinates: Too complicated

Triple Integral Over Quarter Sphere



- Rectangular or cylindrical coordinates:

- Region R is between the graphs $z = -\sqrt{1 - x^2 - y^2}$ and $z = \sqrt{1 - x^2 - y^2}$ over the 2D domain $D = \{x^2 + y^2 \leq 1 \text{ and } x, y, \geq 0\}$

- Integral over region is $\int_R f \, dV = \int_D \int_{z=-\sqrt{1-x^2-y^2}}^{z=\sqrt{1-x^2-y^2}} f(x, y, z) \, dx \, dA$

- In cylindrical coordinates this is equal to

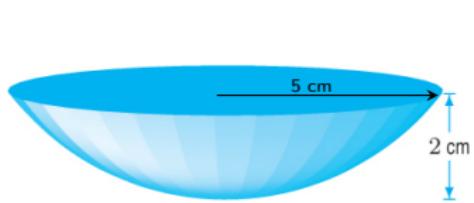
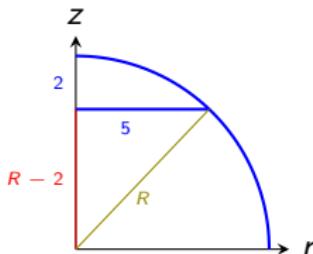
$$\int_{\theta=0}^{\theta=\frac{\pi}{2}} \int_{r=0}^{r=1} \int_{z=-\sqrt{1-r^2}}^{z=\sqrt{1-r^2}} f(r \cos \theta, r \sin \theta, z) \, dz \, r \, dr \, d\theta$$

- Spherical coordinates

- $R = \{0 \leq \rho \leq 1, 0 \leq \phi \leq \pi, 0 \leq \theta \leq \frac{\pi}{2}\}$

- $\int_R f \, dV = \int_{\rho=0}^{\rho=1} \int_{\phi=0}^{\phi=\pi} \int_{\theta=0}^{\theta=\frac{\pi}{2}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, d\theta \, \sin \phi \, d\phi \, \rho^2 \, d\rho$

Volume of Spherical Cap



- ▶ Find radius R of sphere

$$(R - 2)^2 + 5^2 = R^2 \implies R^2 - 4R + 4 + 25 = R^2 \implies R = \frac{29}{4}$$

- ▶ In cylindrical coordinates

$$V = \int_C dV = \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=5} \int_{z=R-2}^{z=\sqrt{R^2-r^2}} dz \, r \, dr \, d\theta$$

- ▶ In spherical coordinates, if $R \sin \phi = 5$, then

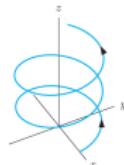
$$V = \int_C dV = \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\Phi} \int_{\rho=\frac{5}{\cos \phi}}^{\rho=R} \rho^2 \, d\rho \, \sin(\phi) \, d\phi \, d\theta$$

Parameterized Curves

- ▶ Recall that a parameterized curve is a map from an interval into 2-space or 3-space,

$$c : I \rightarrow \mathbb{R}^n, \text{ where } n = 2 \text{ or } 3$$

- ▶ The velocity of c is $\vec{v}(t) = c'(t)$
- ▶ We will assume that the velocity is always nonzero
- ▶ The path of the curve is the image of c



- ▶ Two different parameterized curves can have the same path
- ▶ The parameterized curves

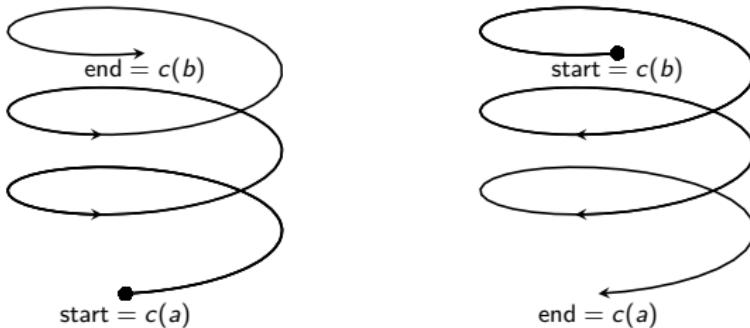
$$c_1(t) = (t, 0), \quad 0 \leq t \leq 1$$

$$c_2(t) = (t, 0), \quad 0 \leq t \leq 1$$

$$c_3(t) = (1 - t, 0), \quad 0 \leq t \leq 1$$

have the same path

Oriented Curve



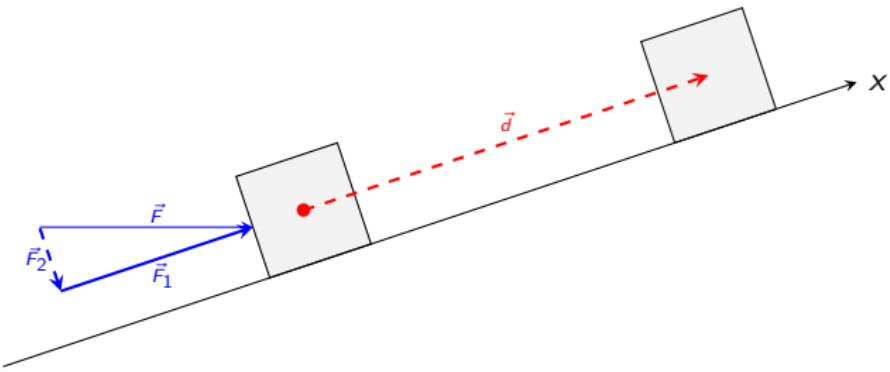
- ▶ Orientation of a parameterized curve is direction of travel
- ▶ There are two possible orientations
 - ▶ The direction of the velocity vector
 - ▶ The opposite direction to the velocity vector
- ▶ If the orientation is in the direction of the velocity vector, then $c(a)$ is the start point and $c(b)$ is the end point
- ▶ If the orientation is in the opposite direction of the velocity vector then $c(b)$ is the start point and $c(a)$ is the end point

Work or Energy

- ▶ Assume no friction, air resistance, or other forces
- ▶ If an object is moved horizontally a distance d by a constant horizontal force F , then the energy or work used is

$$E = Fd$$

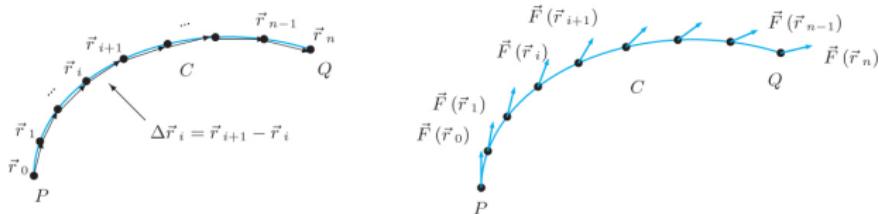
Work or Energy



- ▶ Assume no gravity, friction, air resistance, or other forces
- ▶ If a force \vec{F} acting on an object sitting on a flat surface moves the object by the displacement vector \vec{d} , then the energy or work used is

$$E = |\vec{F}_1| |\vec{d}| = (c_{\vec{d}/|\vec{d}|} \vec{F}) |\vec{d}| = \left(\vec{F} \cdot \frac{\vec{d}}{|\vec{d}|} \right) |\vec{d}| = \vec{F} \cdot \vec{d}$$

Object Moving Through Force Field



- ▶ Suppose $\vec{r}(t)$, $a \leq t \leq b$, is the path of an object through a force field $\vec{F}(\vec{r})$
- ▶ Suppose $a = t_0 < t_1 < \dots < t_n = b$
- ▶ The energy used is

$$\begin{aligned} E &\simeq \vec{F}(\vec{r}(t_0)) \cdot (\vec{r}(t_1) - \vec{r}(t_0)) + \dots + \vec{F}(\vec{r}(t_{n-1})) \cdot (\vec{r}(t_n) - \vec{r}(t_{n-1})) \\ &\simeq \vec{F}(\vec{r}(t_0)) \cdot \vec{r}'(t_0)(t_1 - t_0) + \dots + \vec{F}(\vec{r}(t_{n-1})) \cdot \vec{r}'(t_{n-1})(t_n - t_{n-1}) \end{aligned}$$

- ▶ If we take the limit, we get

$$E = \int_{t=a}^{t=b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Line integral of a Vector Field Along an Oriented Curve

- ▶ Suppose $\vec{F}(x, y, z)$ is a vector field and C is an oriented curve
- ▶ Suppose $\vec{r}(t)$, $a \leq t \leq b$, is a parameterization of C , where the orientation of the curve is in the direction of $\vec{r}'(t)$
- ▶ The line integral of \vec{F} along the curve is defined to be

$$\int_C \vec{F} \cdot d\vec{r} = \int_{t=a}^{t=b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

- ▶ Here, $d\vec{r} = \vec{r}'(t) dt$
- ▶ If the orientation of C is opposite the direction of $\vec{r}'(t)$, then

$$\int_C \vec{F} \cdot d\vec{r} = \int_{t=b}^{t=a} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

- ▶ Either way, if $c(t_{\text{start}})$ is the start of C and $c(t_{\text{end}})$ is the end of C , then

$$\int_C \vec{F} \cdot d\vec{r} = \int_{t=t_{\text{start}}}^{t=t_{\text{end}}} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$