

MATH-UA 123 Calculus 3: Global Optimization, Lagrange Multipliers

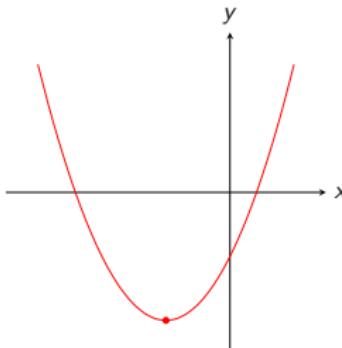
Deane Yang

Courant Institute of Mathematical Sciences
New York University

October 18, 2021

START RECORDING

Global Optimization on the Real Line



- ▶ Suppose $f(x)$ is a smooth function on the entire real line
- ▶ Optimal values, if they exist, must occur at a critical point
- ▶ To find optima:
 - ▶ Study what happens when $x \rightarrow \pm\infty$
 - ▶ Find all critical points and calculate f at each of them
- ▶ In picture:
 - ▶ $f(x) \rightarrow +\infty$ as $x \rightarrow \pm\infty$, which implies that f has no maximum value
 - ▶ f is bounded from below, which means that it has a minimum value
 - ▶ There is only one critical point, so that has to be the minimum

Global Optimization in 2-Space

- ▶ Find rectangular cardboard box without a top that encloses a given volume V but using the minimum amount of cardboard
- ▶ If dimensions of box are H by W by D , then

$$\text{Volume } V = HWD$$

$$\text{Area of card board } A = 2(HW + HD) + WD$$

- ▶ V is constant, and we want to minimize A
- ▶ Eliminate one variable $H = \frac{V}{WD}$:

$$A(W, D) = 2 \frac{V}{WD} (W + D) + WD = 2V \left(\frac{1}{D} + \frac{1}{W} \right) + WD$$

Optimal Cardboard Box

- ▶ $A(W, D) = 2V(\frac{1}{D} + \frac{1}{W}) + WD$
- ▶ Solution must be at a critical point of A
- ▶ Find critical points:

$$A_W = -\frac{2V}{W^2} + D = 0, \quad A_D = -\frac{2V}{D^2} + W = 0$$

$$D = \frac{2V}{W^2}, \quad W = \frac{2V}{D^2} = 2V \frac{W^4}{4V^2} = \frac{W^4}{2V}$$

- ▶ Therefore,

$$0 = \frac{W^4}{2V} - W = W \left(\frac{W^3}{2V} - 1 \right)$$

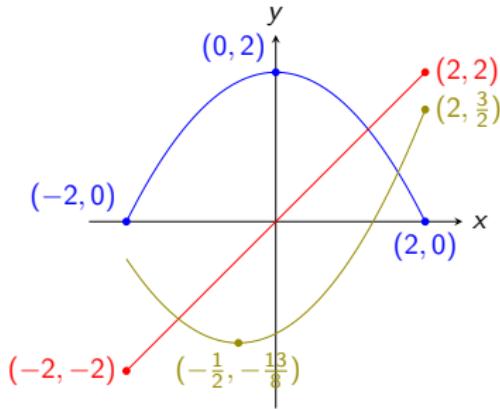
- ▶ Since $W \neq 0$,

$$W = (2V)^{1/3}$$

$$D = \frac{2V}{W^2} = (2V)^{1/3}$$

$$H = \frac{V}{WD} = \frac{V}{(2V)^{2/3}} = 2(2V)^{1/3}$$

Global Optimization on a Bounded Interval



- ▶ The global optima of a smooth function on a bounded closed interval are always at critical or end points
- ▶ Here, we have three functions:

$$f(x) = 2 - \frac{1}{2}x^2$$

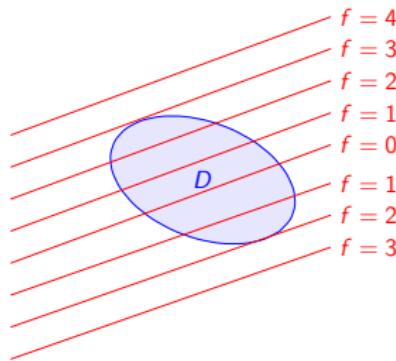
$$g(x) = x$$

$$h(x) = \frac{1}{2}(x^2 - x - 3)$$

Finding Optimal Values and Points on an Interval

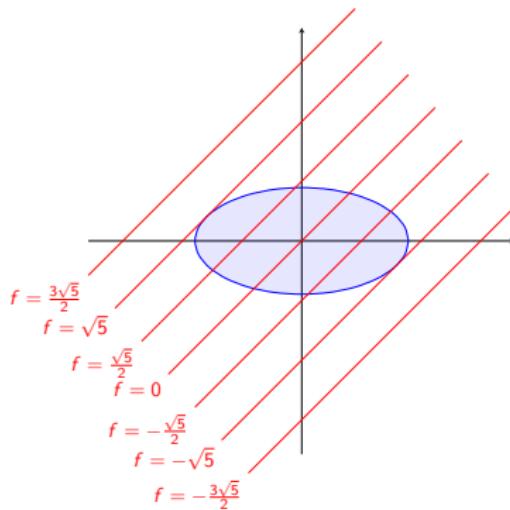
- ▶ Find all of the critical points that lie in the interval
- ▶ Calculate the value of the function at each critical and each end point
- ▶ Identify where the function is maximum and where it is minimum

Global Optima on a Bounded Domain in 2-Space



- ▶ Suppose $D = \{(x, y) : g(x, y) \leq 1\}$
- ▶ Maximize or minimize $f(x, y)$ with (x, y) restricted to the domain D
- ▶ An optimal point must be either a critical point or a point on the boundary
- ▶ If optimal point is on boundary, then it must be at a point where the contour of f and the boundary are tangent
 - ▶ Where $\vec{\nabla}f(x_0, y_0) = \lambda \vec{\nabla}g(x_0, y_0)$ for some scalar λ

Example



- ▶ Optimize $f(x, y) = y - x$ over all (x, y) such that $\frac{x^2}{4} + y^2 \leq 1$
- ▶ Since $\vec{\nabla}f = \langle -1, 1 \rangle$, there are no critical points
- ▶ The boundary is the contour $g = 1$, where $g(x, y) = \frac{x^2}{4} + y^2$
- ▶ Solve for x, y, λ such that

$$\vec{\nabla}f(x, y) = \lambda \vec{\nabla}g(x, y) \text{ and } g(x, y) = 1$$

Constrained Optimization Example

- ▶ Constraint: $g = 1$, where $g(x, y) = \frac{x^2}{4} + y^2$
- ▶ Objective function: $f(x, y) = y - x$
- ▶ Solve for (x, y) and λ such that $\vec{\nabla}f = \lambda \vec{\nabla}g$

$$\langle -1, 1 \rangle = \lambda \langle \frac{x}{2}, 2y \rangle$$

- ▶ $\lambda \neq 0$ because left side is nonzero
- ▶ Therefore,

$$\langle -\lambda^{-1}, \lambda^{-1} \rangle = \langle \frac{x}{2}, 2y \rangle$$

$$2y = -\frac{x}{2}$$

$$y = -\frac{x}{4}$$

$$1 = \frac{x^2}{4} + \frac{x^2}{16} = \frac{5}{16}x^2$$

$$x = \pm \frac{4}{\sqrt{5}}$$

Constrained Optimization Example

- ▶ Constraint: $g = 1$, where $g(x, y) = \frac{x^2}{4} + y^2$
- ▶ Objective function: $f(x, y) = y - x$
- ▶ Solve for (x, y) and λ such that $\vec{\nabla}f = \lambda \vec{\nabla}g$
- ▶ $y = -\frac{x}{4}$ and $x = \pm \frac{4}{\sqrt{5}}$
- ▶ Therefore,

$$(x, y) = \left(\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \text{ or } \left(-\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right)$$

- ▶ Calculate values of f

$$f\left(\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right) = -\sqrt{5} \text{ and } f\left(-\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) = \sqrt{5}$$

- ▶ The constrained maximum value of f is $\sqrt{5}$ and occurs at $(x, y) = \left(-\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
- ▶ The constrained minimum value of f is $-\sqrt{5}$ and occurs at $(x, y) = \left(\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$

Optimization on a Bounded Domain

- ▶ Suppose you want to find the maximum or minimum value of a function f on a closed bounded domain D in 2-space
- ▶ Closed means D contains its boundary
- ▶ The maximum and minimum points of f must either be critical points in D or lie on the boundary of D
- ▶ To find the optimal points and corresponding values of f :
 - ▶ Find all critical points of f that lie in D
 - ▶ Find all maximum or minimum points on the boundary D by doing constrained optimization
 - ▶ Calculate the value of f on each point identified in previous steps

Constrained Optimization on a Contour

- ▶ Objective function $f(x, y)$
- ▶ Constraint equation $g(x, y) = c$, where c is a constant
- ▶ Assume
 - ▶ The contour $g = c$ is bounded
 - ▶ $\vec{\nabla}g(x, y) \neq 0$ for any (x, y) in the contour $g = c$
- ▶ The constrained maxima and minima must occur at points in the contour that are either critical points of f or where $\vec{\nabla}f$ and $\vec{\nabla}g$ point in the same or opposite directions, i.e.

$$\vec{\nabla}f = \lambda \vec{\nabla}g$$

- ▶ Note that $\lambda = 0$ corresponds to a critical point of f
- ▶ Solution process:
 - ▶ Find all points (x, y) such that $g(x, y) = 0$ and there is a scalar λ such that $\vec{\nabla}f(x, y) = \lambda \vec{\nabla}g(x, y)$
 - ▶ Calculate f at all points found in previous step
 - ▶ Identify maximum or minimum points and values

Two Approaches to solving a Lagrange Multiplier Problem

► **Approach 1**

- ▶ Use each of first two equations to solve for λ
- ▶ Combine two equations from first step to get an equation in x and y only
- ▶ Use equation from previous step and the third (constraint) equation to solve for x and y

► **Approach 2 (use only if first step is relatively easy to do)**

- ▶ Use first two equations to get formulas for x and y in terms of λ only
- ▶ Substitute formulas from previous step into the third (constraint) equation
- ▶ Solve resulting equation for λ
- ▶ Substitute formula for λ into the formulas for x and y

Example

- ▶ Objective function $f(x, y) = (x + 2)^2 + (y - 1)^2$
- ▶ Domain: $x^2 + y^2 \leq 1$
- ▶ Critical points of f :
 - ▶ $\vec{\nabla}f = 2\langle x + 2, y - 1 \rangle$
 - ▶ Only one: $(x, y) = (-2, 1)$
 - ▶ Check if it is in D : $x^2 + y^2 = 4 + 1 = 5 > 1$
 - ▶ Not in D , so remove from consideration
- ▶ Constrained optimization on boundary

Constrained Optimization on Boundary

- ▶ Objective function: $f(x, y) = (x + 2)^2 + (y - 1)^2$
- ▶ Constraint equation: $x^2 + y^2 = 1$
- ▶ Constraint is $g = 1$, where $g(x, y) = x^2 + y^2$
- ▶ $\vec{\nabla}g = 2\langle x, y \rangle$
- ▶ $\vec{\nabla}f = \lambda \vec{\nabla}g$ and $g = 1$ imply

$$x + 2 = \lambda x$$

$$y - 1 = \lambda y$$

$$x^2 + y^2 = 1$$

Approach 1

- ▶ Solve first two equations for λ :

$$\frac{x+2}{x} = \lambda = \frac{y-1}{y}$$

$$1 + \frac{2}{x} = 1 - \frac{1}{y}$$

$$y = -\frac{x}{2}$$

- ▶ If $x = 0$, then there is no solution to first equation
- ▶ If $y = 0$, then there is no solution to second equation
- ▶ Assume x and y are nonzero and substitute equation above into constraint equation

$$1 = x^2 + y^2 = x^2 + \frac{x^2}{4} = \frac{5}{4}x^2$$

- ▶ Therefore, $x = \pm \frac{2}{\sqrt{5}}$ and $y = -\frac{x}{2}$
- ▶ The solutions are $(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$ and $(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$

Approach 2

- Equations are

$$x + 2 = \lambda x$$

$$y - 1 = \lambda y$$

$$x^2 + y^2 = 1$$

- Solve first two equations for x and y in terms of λ

$$x = \frac{2}{\lambda - 1} \text{ and } y = -\frac{1}{\lambda - 1}$$

If $\lambda = 1$, there is no solution

- Assume $\lambda \neq 1$
- Substitute equations above into third equation and solve for λ

$$1 = \frac{4}{(\lambda - 1)^2} + \frac{1}{(\lambda - 1)^2} = \frac{5}{(\lambda - 1)^2} \implies \lambda = 1 \pm \frac{1}{\sqrt{5}}$$

- Substitute into formulas for x and y

$$(x, y) = \left(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right) \text{ or } (x, y) = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

Calculate Values of Objective Function

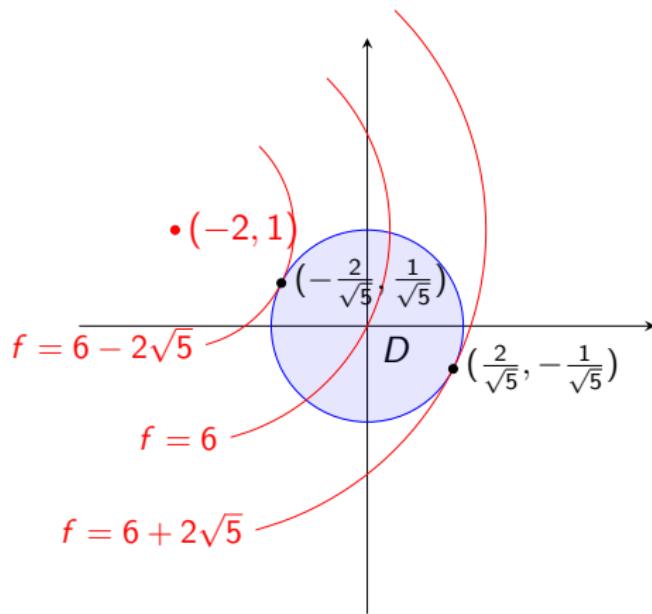
- ▶ Calculate f :

$$\begin{aligned}f\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) &= \left(-\frac{2}{\sqrt{5}} + 2\right)^2 + \left(\frac{1}{\sqrt{5}} - 1\right)^2 \\&= 6 - 2\sqrt{5}\end{aligned}$$

$$\begin{aligned}f\left(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right) &= \left(\frac{2}{\sqrt{5}} + 2\right)^2 + \left(-\frac{1}{\sqrt{5}} - 1\right)^2 \\&= 6 + 2\sqrt{5}\end{aligned}$$

- ▶ Constrained maximum value of $6 + 2\sqrt{5}$ occurs at $(\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$
- ▶ Constrained minimum value of $6 - 2\sqrt{5}$ occurs at $(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$

Picture of Optimization Problem and Solution



- ▶ $D = \{x^2 + y^2 = 1\}$
- ▶ $f(x, y) = (x + 2)^2 + (y - 1)^2$