

# MATH-UA 123 Calculus 3: Critical Points, Optimization

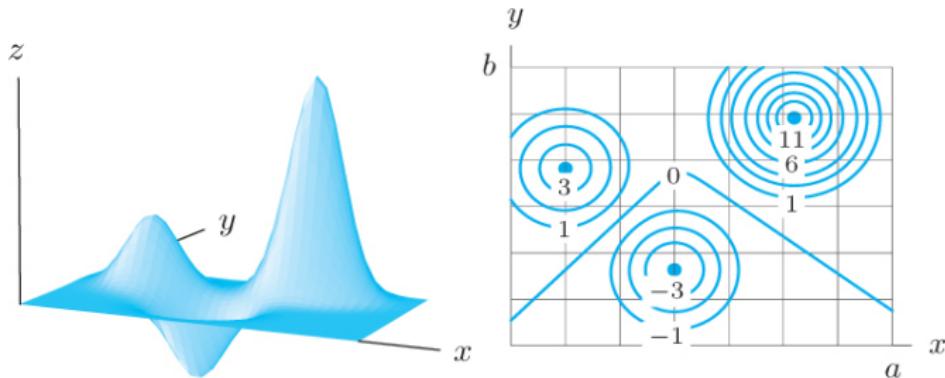
Deane Yang

Courant Institute of Mathematical Sciences  
New York University

October 13, 2021

# START RECORDING

# Shape Versus Contours of a Graph

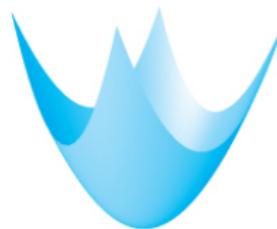


- ▶ Key features of a surface:
  - ▶ Peaks
  - ▶ Bottoms
  - ▶ Ridges and valleys between peaks or bottoms
- ▶ There are at least 4 points where the gradient is zero
  - ▶ Two peaks
  - ▶ One bottom
  - ▶ One point in between the peaks and bottom, where the contour consists of two intersecting curves

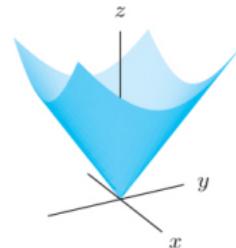
# Some Possible Shapes of a Graph



Isolated local maximum



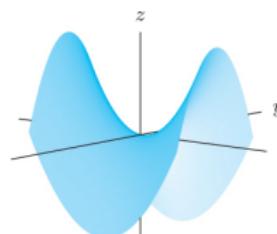
Isolated local minimum



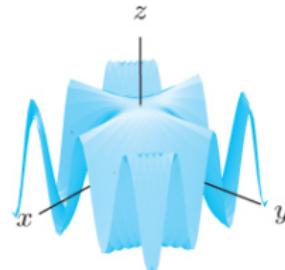
Isolated local minimum



Line of local minima



Saddle point

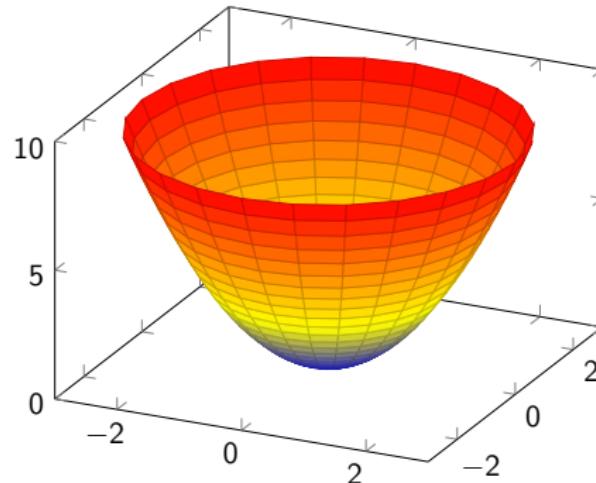
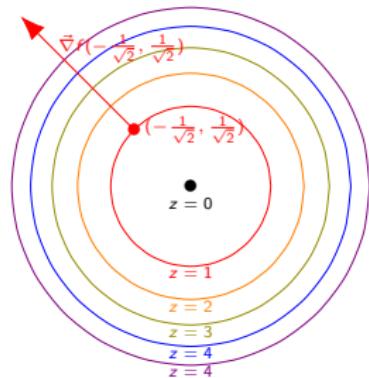


Complicated set of local maxima

# Critical Point of Function

- ▶ A point  $(x_0, y_0)$  is a critical point of a function  $f$  if
  - ▶ It is in the domain of  $f$
  - ▶ The gradient  $\vec{\nabla}f(x_0, y_0, z_0)$  is either zero or undefined
- ▶ Possible shapes of a surface near a critical point
  - ▶ Isolated local maximum: Top of a hill
  - ▶ Isolated local minimum: Bottom of a bowl
  - ▶ Curve of local minima: Bottom of a valley
  - ▶ Curve of local maxima: Top of a ridge
  - ▶ Saddle point
  - ▶ Other

# Circular Paraboloid

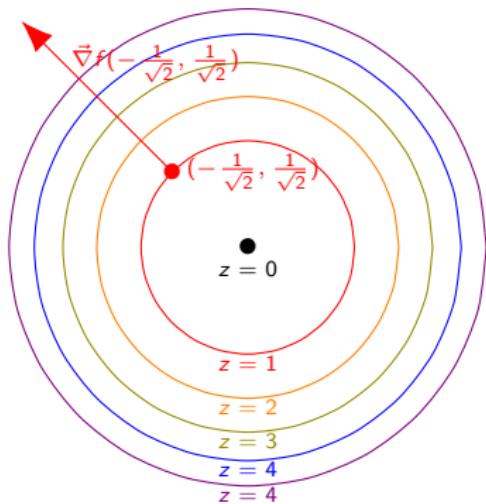


$$f(x, y) = x^2 + y^2$$

$$\vec{\nabla}f(x, y) = 2\langle x, y \rangle$$

Local minimum

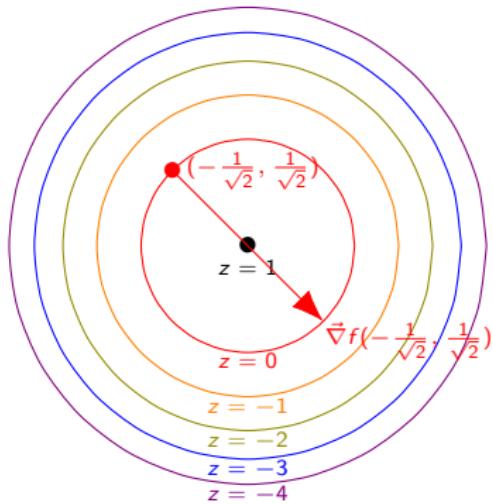
# Contours of Circular Paraboloids



$$f(x, y) = x^2 + y^2$$

$$\vec{\nabla}f(x, y) = 2\langle x, y \rangle$$

Local minimum

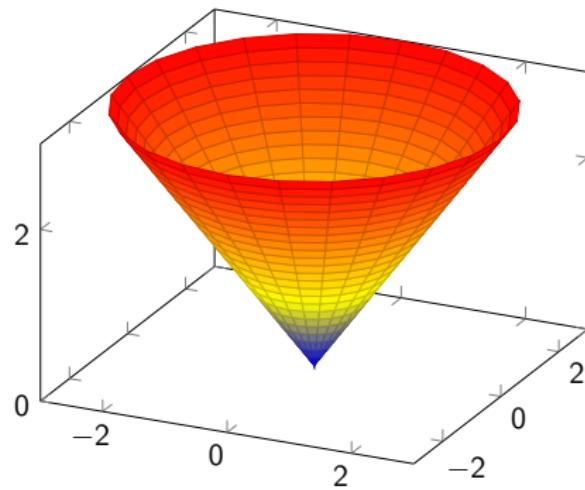
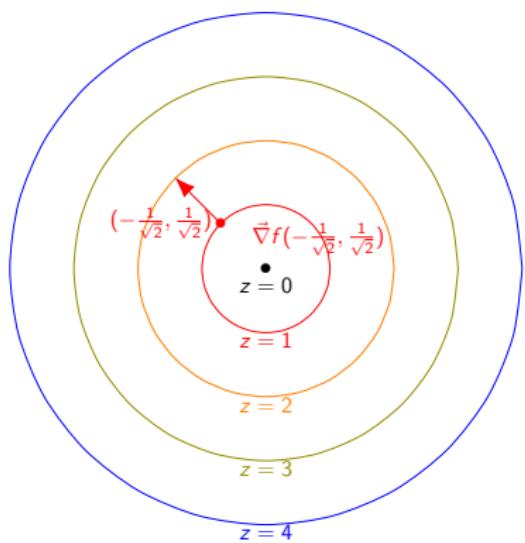


$$f(x, y) = 1 - x^2 - y^2$$

$$\vec{\nabla}f(x, y) = -2\langle x, y \rangle$$

Local maximum

# Contour of Circular Cone

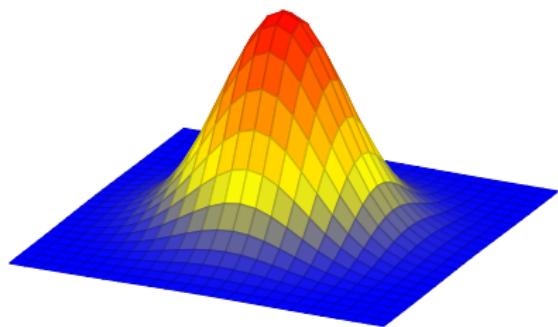
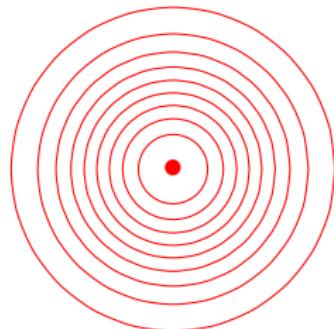


$$f(x, y) = \sqrt{x^2 + y^2}$$

$$\vec{\nabla}f = \frac{\langle x, y \rangle}{\sqrt{x^2 + y^2}}$$

Local minimum

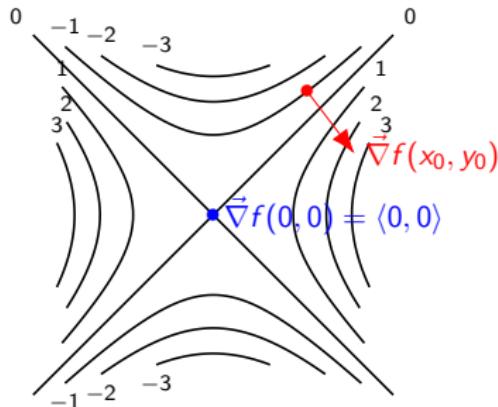
## Another Example of Local Maximum



$$x^2 + y^2 = -\ln(h)$$

$$z = e^{-x^2 - y^2}$$

# Saddle Point



- ▶ A point  $(x_0, y_0)$  is a saddle point of the graph  $z = f(x, y)$ , if the contours of  $f$  near  $(x_0, y_0)$  look like the above
- ▶ Examples
  - ▶  $(0, 0)$  for the function  $f(x, y) = x^2 - y^2$
  - ▶  $(0, 0)$  for the function  $f(x, y) = xy$

## Critical Point of Function

- ▶ A critical point of a function  $f$  is a point in the domain of  $f$  where  $\vec{\nabla}f$  is either undefined or equal to the zero vector
- ▶ Examples
  - ▶  $f(x, y) = \sqrt{x^2 + y^2}$ :  $\vec{\nabla}f(x, y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$  is undefined at  $(0, 0)$
  - ▶  $f(x, y) = e^{-x^2-y^2}$ :  $\vec{\nabla}f(x, y) = -2e^{-x^2-y^2} \langle x, y, \rangle$  is the zero vector at  $(0, 0)$
  - ▶  $f(x, y) = x^2 - y^2$ :  $\vec{\nabla}f(x, y) = 2\langle x, -y, \rangle$  is the zero vector at  $(0, 0)$
- ▶ If  $\vec{\nabla}f(x_0, y_0) = \langle 0, 0 \rangle$ , then the tangent plane

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = f(x_0, y_0)$$

is horizontal

## Types of Critical Points

- ▶ Suppose  $(x_0, y_0)$  is a critical point of a function  $f(x, y)$
- ▶ A point  $(x_0, y_0)$  is a **local maximum**, if

$$f(x, y) \leq f(x_0, y_0) \text{ for all } (x, y) \text{ near } (x_0, y_0)$$

- ▶ Example:  $(0, 0)$  for  $f(x, y) = -x^2 - y^2$
- ▶ A point  $(x_0, y_0)$  is a **local minimum**, if

$$f(x, y) \geq f(x_0, y_0) \text{ for all } (x, y) \text{ near } (x_0, y_0)$$

- ▶ Example:  $(0, 0)$  for  $f(x, y) = x^2 + y^2$
- ▶ A point  $(x_0, y_0)$  is a **saddle point**, if it meets the criteria in previous slide
  - ▶ Example:  $(0, 0)$  for  $f(x, y) = x^2 - y^2$
- ▶ There are other types of critical points that we will not study
  - ▶ Example:  $(0, 0)$  for  $f(x, y) = xy(x^2 - y^2)$

## Tests for Critical Point Type

- ▶ Analyze formula of function
- ▶ Draw graph
- ▶ Draw contours
- ▶ Second derivative test

## Second Derivative Test For Function of One Variable

Suppose  $x_0$  is a critical point of a function  $f(x)$ , where  $f'(x_0) = 0$  and  $f''(x_0)$  is defined

- ▶  $f''(x_0) > 0 \implies$  local minimum
- ▶  $f''(x_0) < 0 \implies$  local maximum
- ▶  $f''(x_0) = 0 \implies$  inconclusive

## Hessian of Function of Two Variables

- ▶ The Hessian of a function  $f(x, y)$  at  $(x_0, y_0)$  is the matrix

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} = \begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}$$

- ▶  $H$  is a matrix of numbers. There should be no  $x$  or  $y$  in the formula for  $H$
- ▶ The determinant of  $H$  is defined to be

$$\det H = H_{11}H_{22} - H_{12}H_{21}$$

## Second Derivative Test for Function of Two Variables

- ▶ The second derivative test of a function  $f(x, y)$  at a critical point  $(x_0, y_0)$ , where  $\vec{\nabla}f(x_0, y_0) = \langle 0, 0 \rangle$  and the Hessian is defined
  - ▶ If  $\det H(x_0, y_0) = 0$ , then the test is inconclusive
    - ▶ The shape of the surface near  $(x_0, y_0)$  can be simple or complicated
    - ▶ Look at contours to learn more
  - ▶ If  $\det H(x_0, y_0) < 0$ , then  $(x_0, y_0)$  is a saddle point
  - ▶ If  $\det H(x_0, y_0) > 0$ , then there are two possibilities
    - ▶ If  $H_{11}(x_0, y_0) > 0$  (or, equivalently,  $H_{22}(x_0, y_0) > 0$ ), then  $(x_0, y_0)$  is a local minimum
    - ▶ If  $H_{11}(x_0, y_0) < 0$  (or, equivalently,  $H_{22}(x_0, y_0) < 0$ ), then  $(x_0, y_0)$  is a local maximum

## Basic Examples

- ▶  $f(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + c$ , where  $a, b \neq 0$ 
  - ▶  $\vec{\nabla}f = 2 \langle a^{-2}x, b^{-2}y \rangle$
  - ▶ Only one critical point:  $(0, 0)$
  - ▶  $H = 2 \begin{bmatrix} a^{-2} & 0 \\ 0 & b^{-2} \end{bmatrix}$
  - ▶  $\det H(0, 0) = 4a^{-2}b^{-2} > 0$  and  $H_{11} = 2a^{-2} > 0$
  - ▶  **$(0, 0)$  is a local minimum**
- ▶  $f(x, y) = -\frac{x^2}{a^2} - \frac{y^2}{b^2} + c$ , where  $a, b \neq 0$ 
  - ▶  $\vec{\nabla}f = -2 \langle a^{-2}x, b^{-2}y \rangle$
  - ▶ Only one critical point:  $(0, 0)$
  - ▶  $H = -2 \begin{bmatrix} a^{-2} & 0 \\ 0 & b^{-2} \end{bmatrix}$
  - ▶  $\det H(0, 0) = 4a^{-2}b^{-2} > 0$  and  $H_{11} = -2a^{-2} > 0$
  - ▶  **$(0, 0)$  is a local maximum**

## Basic Examples

- ▶  $f(x, y) = -\frac{x^2}{a^2} + \frac{y^2}{b^2} + c$ , where  $a, b \neq 0$ 
  - ▶  $\vec{\nabla}f = -2\langle a^{-2}x, b^{-2}y \rangle$
  - ▶ Only one critical point:  $(0, 0)$
  - ▶  $H = 2 \begin{bmatrix} -a^{-2} & 0 \\ 0 & b^{-2} \end{bmatrix}$
  - ▶  $\det H(0, 0) = -4a^{-2}b^{-2} < 0$
  - ▶  $(0, 0)$  is a **saddle point**
- ▶  $f(x, y) = axy + c$ , where  $a \neq 0$ 
  - ▶  $\vec{\nabla}f = a\langle y, x \rangle$
  - ▶ Only one critical point:  $(0, 0)$
  - ▶  $H = 2 \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix}$
  - ▶  $\det H(0, 0) = -4a^2 < 0$
  - ▶  $(0, 0)$  is a **saddle point**

## Examples Where Second Derivative Test Fails

- ▶  $f(x, y) = x^4 + y^4$ 
  - ▶  $\vec{\nabla}f = 4\langle x^3, y^3 \rangle$
  - ▶ Only one critical point:  $(0, 0)$
  - ▶  $H = 4 \begin{bmatrix} x^3 & 0 \\ 0 & y^3 \end{bmatrix}$
  - ▶  $\det H(0, 0) = 0$
  - ▶ Contours and formula show that  $(0, 0)$  is a local minimum
- ▶  $f(x, y) = (ax + by)^2 + c$ , where  $ab \neq 0$ 
  - ▶  $\vec{\nabla}f = 2(ax + by)\langle a, b \rangle$
  - ▶ All points  $(x, y)$ , where  $ax + by = 0$  are critical points
  - ▶  $H = 2 \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$
  - ▶  $\det H(0, 0) = a^2b^2 - (ab)^2 = 0$
  - ▶ Contours and formula show that surface is a parabolic cylinder and all points in the line  $ax + by = 0$  are local minima

## Examples Where Second Derivative Test Fails

- ▶ Consider the function

$$f(x, y) = xy(x^2 - y^2) = xy(x + y)(x - y)$$

- ▶ Its gradient is

$$\begin{aligned}\vec{\nabla}f &= \langle y(x^2 - y^2) + 2x^2y, x(x^2 - y^2) - 2xy^2 \rangle \\ &= \langle y(3x^2 - y^2), x(x^2 - 3y^2) \rangle \\ &= \langle (y(\sqrt{3}x - y)(\sqrt{3}x + y), x(x - \sqrt{3}y)(x + \sqrt{3}y) \rangle\end{aligned}$$

- ▶ Only critical point is  $(0, 0)$
- ▶  $H = \begin{bmatrix} 6xy & 3x^2 - 3y^2 \\ 3x^2 - 3y^2 & -6xy \end{bmatrix}$
- ▶  $\det H(0, 0) = 0$
- ▶ The contour  $f = 0$  is given by the equation

$$xy(x + y)(x - y)$$

and consists of the lines  $x = 0$ ,  $y = 0$ ,  $y = x$ , and  $y = -x$

## Complicated Example of Second Derivative Test

- ▶  $f(x, y) = x^4 + y^4 - 4xy + 1$ 
  - ▶  $\vec{\nabla}f = \langle 4x^3 - 4y, 4y^3 - 4x \rangle$
  - ▶ Solve for critical points:  $x^3 = y$  and  $y^3 = x$
  - ▶ Substitute first inequation into second:  $x^9 = x$
  - ▶ Factor

$$\begin{aligned}0 &= x^9 - x = x(x^8 - 1) \\&= x(x^4 - 1)(x^4 + 1) = x(x^2 - 1)(x^2 + 1)(x^4 + 1) \\&= x(x - 1)(x + 1)(x^2 + 1)(x^4 + 1)\end{aligned}$$

- ▶ There are three possible values for  $x$ :  $-1, 0, 1$
- ▶ Since  $y = x^3$ , the critical points are  $(-1, -1)$ ,  $(0, 0)$ ,  $(1, 1)$

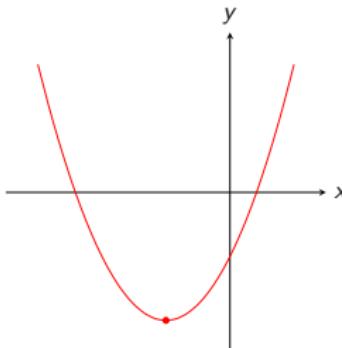
## Complicated Example of Second Derivative Test

- ▶  $f(x, y) = x^4 + y^4 - 4xy + 1$
- ▶  $\vec{\nabla}f = 4\langle x^3 - y, y^3 - x \rangle$
- ▶ Critical points are  $(-1, -1), (0, 0), (1, 1)$
- ▶  $H = \begin{bmatrix} 12x^2 & -4 \\ -4 & 12y^2 \end{bmatrix}$
- ▶ At the critical points  $(-1, 1)$  and  $(1, 1)$ 
  - ▶  $\det H(-1, 1) = \det H(1, 1) = \det \begin{bmatrix} 12 & -4 \\ -4 & 12 \end{bmatrix} = 144 - 16 > 0$
  - ▶  $H_{11}(-1, -1) = H_{11}(1, 1) = 12 > 0$
  - ▶ The critical points  $(-1, -1)$  and  $(1, 1)$  are local minima
- ▶ At the critical point  $(0, 0)$ 
  - ▶  $\det H(0, 0) = \det \begin{bmatrix} 0 & -4 \\ -4 & 0 \end{bmatrix} = -16$
  - ▶ The critical point  $(0, 0)$  is a saddle point

## Global Optimization

- ▶ Consider a function  $f(x, y)$  on a domain  $D$  in 2-space
- ▶ A point  $(x_0, y_0)$  is a global maximum point, if  $f(x, y) \leq f(x_0, y_0)$  for every  $(x, y) \in D$ .  $f(x_0, y_0)$  is the global maximum value.
- ▶ There is at most one maximum value but there can be any number, including infinitely many, maximum points
- ▶ A point  $(x_0, y_0)$  is a global minimum point, if  $f(x, y) \leq f(x_0, y_0)$  for every  $(x, y) \in D$ .  $f(x_0, y_0)$  is the global minimum value.
- ▶ There is at most one minimum value but there can be any number, including infinitely many, minimum points
- ▶ If  $D$  has no boundary, then global optimum points are all critical points
- ▶ If  $D$  has a boundary then global optimum points are either critical points or boundary points

# Global Optimization on the Real Line



- ▶ Suppose  $f(x)$  is a smooth function on the entire real line
- ▶ Optimal values, if they exist, must occur at a critical point
- ▶ To find optima:
  - ▶ Study what happens when  $x \rightarrow \pm\infty$
  - ▶ Find all critical points and calculate  $f$  at each of them
- ▶ In picture:
  - ▶  $f(x) \rightarrow +\infty$  as  $x \rightarrow \pm\infty$ , which implies that  $f$  has no maximum value
  - ▶  $f$  is bounded from below, which means that it has a minimum value
  - ▶ There is only one critical point, so that has to be the minimum

## Global Optimization in 2-Space

- ▶ Find rectangular cardboard box without a top that encloses a given volume  $V$  but using the minimum amount of cardboard
- ▶ If dimensions of box are  $H$  by  $W$  by  $D$ , then

$$\text{Volume } V = HWD$$

$$\text{Area of card board } A = 2(HW + HD) + WD$$

- ▶  $V$  is constant, and we want to minimize  $A$
- ▶ Eliminate one variable  $H = \frac{V}{WD}$ :

$$A(W, D) = 2 \frac{V}{WD} (W + D) + WD = 2V \left( \frac{1}{D} + \frac{1}{W} \right) + WD$$

## Optimal Cardboard Box

- ▶  $A(W, D) = 2V(\frac{1}{D} + \frac{1}{W}) + WD$
- ▶ Solution must be at a critical point of  $A$
- ▶ Find critical points:

$$A_W = -\frac{2V}{W^2} + D = 0, \quad A_D = -\frac{2V}{D^2} + W = 0$$

$$D = \frac{2V}{W^2}, \quad W = \frac{2V}{D^2} = 2V \frac{W^4}{4V^2} = \frac{W^4}{2V}$$

- ▶ Therefore,

$$0 = \frac{W^4}{2V} - W = W \left( \frac{W^3}{2V} - 1 \right)$$

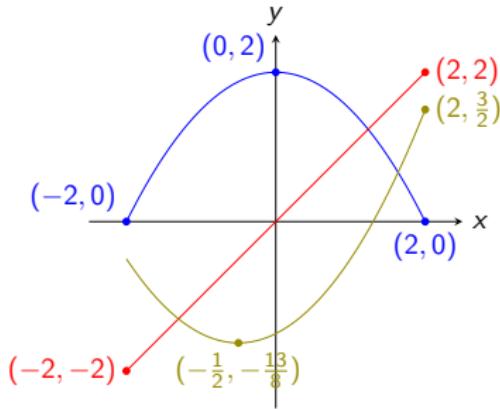
- ▶ Since  $W \neq 0$ ,

$$W = (2V)^{1/3}$$

$$D = \frac{2V}{W^2} = (2V)^{1/3}$$

$$H = \frac{V}{WD} = \frac{V}{(2V)^{2/3}} = 2(2V)^{1/3}$$

# Global Optimization on a Bounded Interval



- ▶ The global optima of a smooth function on a bounded closed interval are always at critical or end points
- ▶ Here, we have three functions:

$$f(x) = 2 - \frac{1}{2}x^2$$

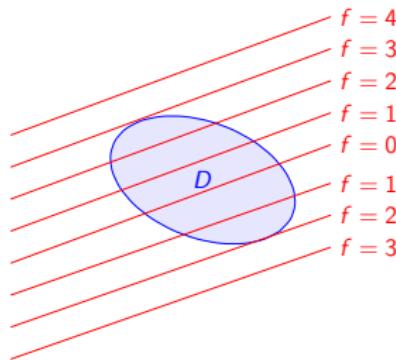
$$g(x) = x$$

$$h(x) = \frac{1}{2}(x^2 - x - 3)$$

## Finding Optimal Values and Points on an Interval

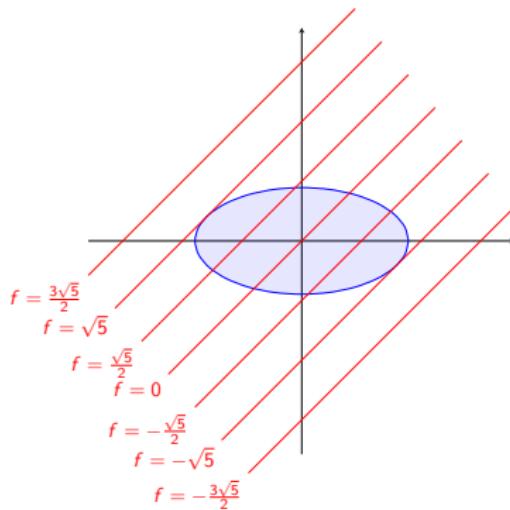
- ▶ Find all of the critical points that lie in the interval
- ▶ Calculate the value of the function at each critical and each end point
- ▶ Identify where the function is maximum and where it is minimum

# Global Optima on a Bounded Domain in 2-Space



- ▶ Suppose  $D = \{(x, y) : g(x, y) \leq 1\}$
- ▶ Maximize or minimize  $f(x, y)$  with  $(x, y)$  restricted to the domain  $D$
- ▶ An optimal point must be either a critical point or a point on the boundary
- ▶ If optimal point is on boundary, then it must be at a point where the contour of  $f$  and the boundary are tangent
  - ▶ Where  $\vec{\nabla}f(x_0, y_0) = \lambda \vec{\nabla}g(x_0, y_0)$  for some scalar  $\lambda$

## Example



- ▶ Optimize  $f(x, y) = y - x$  over all  $(x, y)$  such that  $\frac{x^2}{4} + y^2 \leq 1$
- ▶ Since  $\vec{\nabla}f = \langle -1, 1 \rangle$ , there are no critical points
- ▶ The boundary is the contour  $g = 1$ , where  $g(x, y) = \frac{x^2}{4} + y^2$
- ▶ Solve for  $x, y, \lambda$  such that

$$\vec{\nabla}f(x, y) = \lambda \vec{\nabla}g(x, y) \text{ and } g(x, y) = 1$$