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Directional Derivative of a Function

I Consider a function f on a domain D in R2 or R3

I Given a point ~r0 in the domain and a vector ~v0, the directional
derivative of f in the direction ~v0 at ~r0 is defined to be

D~v f (~r0) =
d

dt

∣∣∣∣
t=0

f (~r(t))

I Define the gradient of f to be the vector field

~∇f = 〈fx , fy , fz〉

I The chain rule shows that

D~v f (~r) = ~v · ~∇f (~r)



Examples of Directional Derivatives

I The directional derivative of a linear function
f (x , y , z) = ax + by + cz + d in a direction ~u is

D~uf (x , y , z) = ~u · 〈fx , fy , fz〉 = ~u · 〈a, b, c〉,

which is constant for all points (x , y , z)

I The directional derivative of the function

f (x , y , z) = x2 + y2 + z2 = |~r |2

in a direction ~u is

D~uf (x , y , z) = ~u · 〈fx , fy , fz〉 = ~u · 〈2x , 2y , 2z〉
= 2~u · 〈x , y , z〉
= 2~u · ~r



Vector Fields and the Gradient of a Function

~r = 〈x , y , z〉 ~V ~V (~r) = 〈V1(x , y , z),V2(x , y , z),V3(x , y , z)〉

I A vector field is a function where the input is a point in space
and the output is a vector

I The gradient of a scalar function of space is a vector field

~∇f (~r) = 〈fx(x , y , z), fy (x , y , z), fz(x , y , z)〉

~r = 〈x , y , z〉 ~∇f ~∇f (~r) = 〈fx(x , y , z), fy (x , y , z), fz(x , y , z)〉



Directional Derivatives and the Gradient

I The directional derivative of a function f at a point ~r in the
direction ~u is defined to be

D~uf (~r) = ~u · ~∇f (~r)

I Since ~u is a unit vector,

D~uf (~r) = |~u||~∇f (~u)| cos θ = |~∇f (~u)| cos θ,

where θ is the angle between the direction ~u and the vector
~∇f (~r)

I The directional derivative of f at ~r is greatest when ~u points
in the same direction as ~∇f (~r)

I The directional derivative of f at ~r is most negative when ~u
points in the opposite direction to ~∇f (~r)

I The directional derivative of f at ~r is zero when ~u is
orthogonal to ~∇f (~r)



Directional Derivatives and the Gradient

(x0, y0, z0)•

~∇f

~u

θ

I The directional derivative of f in the direction ~u at ~r is

D~uf (~r) = ~u · ~∇f (~r)

I Since ~u is a unit vector,

D~uf (~r) = |~u||~∇f (~r)| cos θ = |~∇f (~r)| cos θ,

where θ is the angle between ~u and ~∇f (~r)

I
−|~∇f (~r)| ≤ D~uf (~r) ≤ |~∇f (~r)|



The Gradient is Orthogonal to Each Level Set
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~∇f (x0, y0)

I Since f is constant along a contour,

D~uf (~r) = 0

if ~u is a direction tangent to the contour at ~r

I Therefore, ~u · ~∇f (~r) = 0 for any direction ~u tangent to the
contour at ~r

I Therefore, ~∇f (~r) is normal to the contour at ~r



The Gradient is Orthogonal to Each Level Set
I Consider the contour f = c in 3-space

I Suppose f (x0, y0, z0) = c and ~v is tangent to the contour at
(x0, y0, z0)

I Let ~r(t) = 〈x(t), y(t), z(t)〉 be a parameterized curve lying in
the contour such that ~r(0) = 〈x0, y0, z0〉 and ~r ′(0) = ~v

I Since the curve lies in the contour f = c ,

f (x(t), y(t), z(t)) = c , for all t in the domain of ~r

I Differentiating this using the chain rule, we get

0 =
d

dt
f (x(t), y(t), z(t))

= fx(x(t), y(t), z(t))x ′(t) + fy (x(t), y(t), z(t))y ′(t)

+ fz(x(t), y(t), z(t))z ′(t)

= ~r ′(t) · ~∇f (~r(t))

I At t = 0, we get ~v · ~∇f (x0, y0, z0) = 0



Tangent Line to Level Set in 2-Space
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I Consider a level set f (x , y) = c and a point (x0, y0) in the
contour

I The line tangent to the level set at (x0, y0) passes through
(x0, y0) and is orthogonal to ~∇f

I Given any (x , y , ) in the tangent line, the vector
〈x − x0, y − y0〉 is parallel to the line

I Therefore, the equation of the line is

~n · 〈x − x0, y − y0〉 = 0, where ~n = ~∇f (x0, y0)



Example of Line Tangent to Contour in 2-Space

I Suppose g(x , y) = x2 − y2 and we want the tangent line to
the contour passing through (2, 1)

I Contour passing through (2, 1) is g(x , y) = 3

I Gradient of g is ~∇g = 〈2x ,−2y〉
I Gradient of g at (2, 1) is ~∇g(2, 1) = 〈4,−2〉
I Equation of line passing through (x0, y0) and normal to ~n is

~n · 〈x − x0, y − y0〉 = 0

I The equation of the tangent line is

~∇g(2, 1) · 〈x − 2, y − 1〉 = 0

〈4,−2〉 · 〈x − 2, y − 1〉 = 0

4(x − 2)− 2(y − 1) = 0

4x − 2y = 6



Example of Line Tangent to Contour in 2-Space

I Suppose f (1, 3) = −2, fx(1, 3) = 4, fy (1, 3) = −17

I Find equation of plane tangent to contour f = −2 at (1, 3)

I No formula for ~∇f (x , y)

I ~∇f (1, 3) = 〈4,−17〉
I Equation of line passing through (x0, y0) and normal to ~n is

~n · 〈x − x0, y − y0〉 = 0

I The equation of the tangent line is

~∇f (1, 3) · 〈x − 1, y − 3〉 = 0

〈4,−17〉 · 〈x − 1, y − 3〉 = 0

4(x − 1)− 17(y − 3) = 0

4x − 17y = −47



Plane Tangent to Level Set in 3-Space

f = c

~n = ~∇f (x0, y0, z0)

•(x0, y0, z0)

I Suppose (x0, y0, z0) lies in the contour f (x , y , z) = c

I The gradient of f is normal to the plane tangent to the
contour at (x0, y0, z0)

I If a plane contains a point (x0, y0, z0) and has a normal ~n,
then an equation for it is

~n · 〈x − x0, y − y0, z − z0〉 = 0

I Here, we can set ~n = ~∇f (x0, y0, z0)



Example of Plane Tangent to Contour in 3-Space

I Suppose f (1, 2, 3) = −5, fx(1, 2, 3) = 7, fy (1, 2, 3) = −11,
fz(1, 2, 3) = 13

I Find equation of plane tangent to contour f = −5 at (1, 2, 3)

I No formula for ~∇f (x , y)

I ~∇f (1, 2, 3) = 〈7,−11, 13〉
I Equation of plane with normal ~n and containing (x0, y0, z0) is

~n · 〈x − x0, y − y0, z − z0〉 = 0

I The equation of the tangent plane is

~∇f (1, 2, 3) · 〈x − 1, y − 2, z − 3〉 = 0

〈7,−11, 13〉 · 〈x − 1, y − 2, z − 3〉 = 0

7(x − 1)− 11(y − 2) + 13(z − 3) = 0

7x − 11y + 13z = 24



Contours of Plane Versus Parabolic Cylinder
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Contours of Circular Paraboloids
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Contour of Circular Cone
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Shape Versus Contours of a Graph

I Key features of a surface:
I Peaks
I Bottoms
I Ridges and valleys between peaks or bottoms

I There are at least 4 points where the gradient is zero
I Two peaks
I One bottom
I One point in between the peaks and bottom, where the

contour consists of two intersecting curves



Some Possible Shapes of a Graph

Isolated local
maximum

Isolated local
minimum

Isolated local
minimum

Line of local
minima

Saddle point Complicated set of
local maxima



Critical Point of Function

I A point (x0, y0) is a critical point of a function f if
I It is in the domain of f
I The gradient ~∇f (x0, y0, z0) is either zero or undefined

I Possible shapes of a surface near a critical point
I Isolated local maximum: Top of a hill
I Isolated local minimum: Bottom of a bowl
I Curve of local minima: Bottom of a valley
I Curve of local maxima: Top of a ridge
I Saddle point
I Other



Contours of Circular Paraboloids
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Contour of Circular Cone
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Another Example of Local Maximum

z = e−x
2−y2

•

x2 + y2 = − ln(c)



Saddle Point
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I A point (x0, y0) is a saddle point of the graph z = f (x , y), if
the contours of f near (x0, y0) look like the above

I Examples
I (0, 0) for the function f (x , y) = x2 − y2

I (0, 0) for the function f (x , y) = xy



Critical Point of Function

I A critical point of a function f is a point in the domain of f
where ~∇f is either undefined or equal to the zero vector

I Examples

I f (x , y) =
√
x2 + y2: ~∇f (x , y) =

〈
x√

x2 + y2
,

y√
x2 + y2

〉
is

undefined at (0, 0)
I f (x , y) = e−x

2−y2

: ~∇f (x , y) = −2e−x
2−y2〈x , y , 〉 is the zero

vector at (0, 0)
I f (x , y) = x2 − y2: ~∇f (x , y) = 2〈x ,−y , 〉 is the zero vector at

(0, 0)

I If ~∇f (x0, y0) = 〈0, 0〉, then the tangent plane

z = f (x0, y0)+fx(x0, y0)(x−x0)+fy (x0, y0)(y−y0) = f (x0, y0)

is horizontal



Types of Critical Points
I Suppose (x0, y0) is a critical point of a function f (x , y)

I A point (x0, y0) is a local maximum, if

f (x , y) ≤ f (x0, y0) for all (x , y) near (x0, y0)

I Example: (0, 0) for f (x , y) = −x2 − y2

I A point (x0, y0) is a local minimum, if

f (x , y) ≥ f (x0, y0) for all (x , y) near (x0, y0)

I Example: (0, 0) for f (x , y) = x2 + y2

I A point (x0, y0) is a saddle point, if it meets the criteria in
previous slide
I Example: (0, 0) for f (x , y) = x2 − y2

I There are other types of critical points that we will not study
I Example: (0, 0) for f (x , y) = xy(x2 − y2)



Tests for Critical Point Type

I Analyze formula of function

I Draw graph

I Draw contours

I Second derivative test


