

MATH-UA 123 Calculus 3: Directional Derivatives, Gradient, Contours, Maximum and Minimum Values of a Function

Deane Yang

Courant Institute of Mathematical Sciences
New York University

October 12, 2021

START RECORDING LIVE TRANSCRIPT

REMINDER

**First Midterm
is on Monday, October 25**

Directional Derivative of a Function

- ▶ Consider a function f on a domain D in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Given a point \vec{r}_0 in the domain and a vector \vec{v}_0 , the directional derivative of f in the direction \vec{v}_0 at \vec{r}_0 is defined to be

$$D_{\vec{v}}f(\vec{r}_0) = \frac{d}{dt} \bigg|_{t=0} f(\vec{r}(t))$$

- ▶ Define the gradient of f to be the vector field

$$\vec{\nabla}f = \langle f_x, f_y, f_z \rangle$$

- ▶ The chain rule shows that

$$D_{\vec{v}}f(\vec{r}) = \vec{v} \cdot \vec{\nabla}f(\vec{r})$$

Examples of Directional Derivatives

- ▶ The directional derivative of a linear function $f(x, y, z) = ax + by + cz + d$ in a direction \vec{u} is

$$D_{\vec{u}}f(x, y, z) = \vec{u} \cdot \langle f_x, f_y, f_z \rangle = \vec{u} \cdot \langle a, b, c \rangle,$$

which is constant for all points (x, y, z)

- ▶ The directional derivative of the function

$$f(x, y, z) = x^2 + y^2 + z^2 = |\vec{r}|^2$$

in a direction \vec{u} is

$$\begin{aligned} D_{\vec{u}}f(x, y, z) &= \vec{u} \cdot \langle f_x, f_y, f_z \rangle = \vec{u} \cdot \langle 2x, 2y, 2z \rangle \\ &= 2\vec{u} \cdot \langle x, y, z \rangle \\ &= 2\vec{u} \cdot \vec{r} \end{aligned}$$

Vector Fields and the Gradient of a Function

$$\vec{r} = \langle x, y, z \rangle \rightarrow \boxed{\vec{V}} \rightarrow \vec{V}(\vec{r}) = \langle V_1(x, y, z), V_2(x, y, z), V_3(x, y, z) \rangle$$

- ▶ A vector field is a function where the input is a point in space and the output is a vector
- ▶ The gradient of a scalar function of space is a vector field

$$\vec{\nabla}f(\vec{r}) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

$$\vec{r} = \langle x, y, z \rangle \rightarrow \boxed{\vec{\nabla}f} \rightarrow \vec{\nabla}f(\vec{r}) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

Directional Derivatives and the Gradient

- ▶ The directional derivative of a function f at a point \vec{r} in the direction \vec{u} is defined to be

$$D_{\vec{u}}f(\vec{r}) = \vec{u} \cdot \vec{\nabla}f(\vec{r})$$

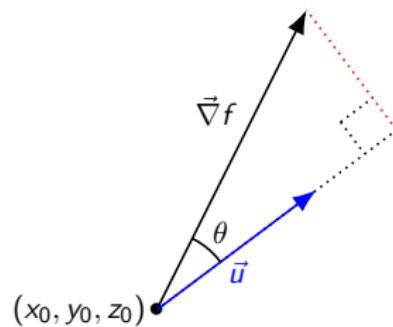
- ▶ Since \vec{u} is a unit vector,

$$D_{\vec{u}}f(\vec{r}) = |\vec{u}| |\vec{\nabla}f(\vec{u})| \cos \theta = |\vec{\nabla}f(\vec{u})| \cos \theta,$$

where θ is the angle between the direction \vec{u} and the vector $\vec{\nabla}f(\vec{r})$

- ▶ The directional derivative of f at \vec{r} is greatest when \vec{u} points in the same direction as $\vec{\nabla}f(\vec{r})$
- ▶ The directional derivative of f at \vec{r} is most negative when \vec{u} points in the opposite direction to $\vec{\nabla}f(\vec{r})$
- ▶ The directional derivative of f at \vec{r} is zero when \vec{u} is orthogonal to $\vec{\nabla}f(\vec{r})$

Directional Derivatives and the Gradient



- ▶ The directional derivative of f in the direction \vec{u} at \vec{r} is

$$D_{\vec{u}}f(\vec{r}) = \vec{u} \cdot \vec{\nabla}f(\vec{r})$$

- ▶ Since \vec{u} is a unit vector,

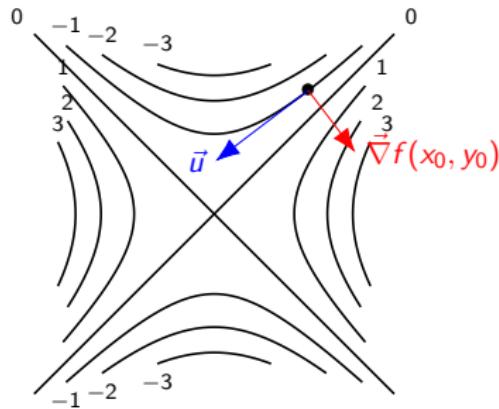
$$D_{\vec{u}}f(\vec{r}) = |\vec{u}| |\vec{\nabla}f(\vec{r})| \cos \theta = |\vec{\nabla}f(\vec{r})| \cos \theta,$$

where θ is the angle between \vec{u} and $\vec{\nabla}f(\vec{r})$

- ▶

$$-|\vec{\nabla}f(\vec{r})| \leq D_{\vec{u}}f(\vec{r}) \leq |\vec{\nabla}f(\vec{r})|$$

The Gradient is Orthogonal to Each Level Set



- ▶ Since f is constant along a contour,

$$D_{\vec{u}} f(\vec{r}) = 0$$

if \vec{u} is a direction tangent to the contour at \vec{r}

- ▶ Therefore, $\vec{u} \cdot \vec{\nabla} f(\vec{r}) = 0$ for any direction \vec{u} tangent to the contour at \vec{r}
- ▶ Therefore, $\vec{\nabla} f(\vec{r})$ is normal to the contour at \vec{r}

The Gradient is Orthogonal to Each Level Set

- ▶ Consider the contour $f = c$ in 3-space
- ▶ Suppose $f(x_0, y_0, z_0) = c$ and \vec{v} is tangent to the contour at (x_0, y_0, z_0)
- ▶ Let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ be a parameterized curve lying in the contour such that $\vec{r}(0) = \langle x_0, y_0, z_0 \rangle$ and $\vec{r}'(0) = \vec{v}$
- ▶ Since the curve lies in the contour $f = c$,

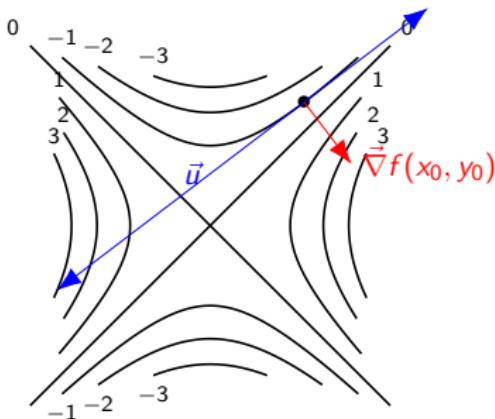
$$f(x(t), y(t), z(t)) = c, \text{ for all } t \text{ in the domain of } \vec{r}$$

- ▶ Differentiating this using the chain rule, we get

$$\begin{aligned} 0 &= \frac{d}{dt} f(x(t), y(t), z(t)) \\ &= f_x(x(t), y(t), z(t))x'(t) + f_y(x(t), y(t), z(t))y'(t) \\ &\quad + f_z(x(t), y(t), z(t))z'(t) \\ &= \vec{r}'(t) \cdot \vec{\nabla} f(\vec{r}(t)) \end{aligned}$$

- ▶ At $t = 0$, we get $\vec{v} \cdot \vec{\nabla} f(x_0, y_0, z_0) = 0$

Tangent Line to Level Set in 2-Space



- ▶ Consider a level set $f(x, y) = c$ and a point (x_0, y_0) in the contour
- ▶ The line tangent to the level set at (x_0, y_0) passes through (x_0, y_0) and is orthogonal to $\vec{\nabla}f$
- ▶ Given any (x, y) in the tangent line, the vector $\langle x - x_0, y - y_0 \rangle$ is parallel to the line
- ▶ Therefore, the equation of the line is

$$\vec{n} \cdot \langle x - x_0, y - y_0 \rangle = 0, \text{ where } \vec{n} = \vec{\nabla}f(x_0, y_0)$$

Example of Line Tangent to Contour in 2-Space

- ▶ Suppose $g(x, y) = x^2 - y^2$ and we want the tangent line to the contour passing through $(2, 1)$
- ▶ Contour passing through $(2, 1)$ is $g(x, y) = 3$
- ▶ Gradient of g is $\vec{\nabla}g = \langle 2x, -2y \rangle$
- ▶ Gradient of g at $(2, 1)$ is $\vec{\nabla}g(2, 1) = \langle 4, -2 \rangle$
- ▶ Equation of line passing through (x_0, y_0) and normal to \vec{n} is

$$\vec{n} \cdot \langle x - x_0, y - y_0 \rangle = 0$$

- ▶ The equation of the tangent line is

$$\vec{\nabla}g(2, 1) \cdot \langle x - 2, y - 1 \rangle = 0$$

$$\langle 4, -2 \rangle \cdot \langle x - 2, y - 1 \rangle = 0$$

$$4(x - 2) - 2(y - 1) = 0$$

$$4x - 2y = 6$$

Example of Line Tangent to Contour in 2-Space

- ▶ Suppose $f(1, 3) = -2$, $f_x(1, 3) = 4$, $f_y(1, 3) = -17$
- ▶ Find equation of plane tangent to contour $f = -2$ at $(1, 3)$
- ▶ No formula for $\vec{\nabla}f(x, y)$
- ▶ $\vec{\nabla}f(1, 3) = \langle 4, -17 \rangle$
- ▶ Equation of line passing through (x_0, y_0) and normal to \vec{n} is

$$\vec{n} \cdot \langle x - x_0, y - y_0 \rangle = 0$$

- ▶ The equation of the tangent line is

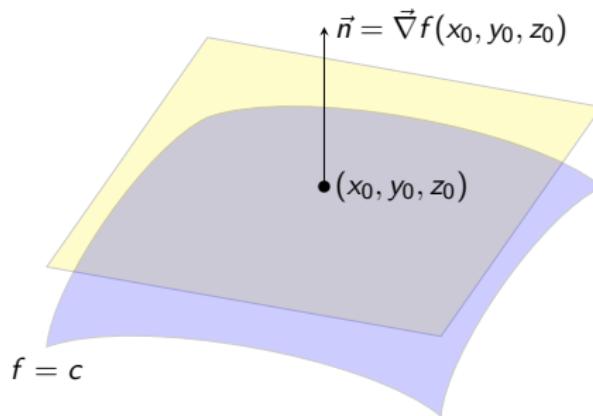
$$\vec{\nabla}f(1, 3) \cdot \langle x - 1, y - 3 \rangle = 0$$

$$\langle 4, -17 \rangle \cdot \langle x - 1, y - 3 \rangle = 0$$

$$4(x - 1) - 17(y - 3) = 0$$

$$4x - 17y = -47$$

Plane Tangent to Level Set in 3-Space



- ▶ Suppose (x_0, y_0, z_0) lies in the contour $f(x, y, z) = c$
- ▶ The gradient of f is normal to the plane tangent to the contour at (x_0, y_0, z_0)
- ▶ If a plane contains a point (x_0, y_0, z_0) and has a normal \vec{n} , then an equation for it is

$$\vec{n} \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

- ▶ Here, we can set $\vec{n} = \vec{\nabla} f(x_0, y_0, z_0)$

Example of Plane Tangent to Contour in 3-Space

- ▶ Suppose $f(1, 2, 3) = -5$, $f_x(1, 2, 3) = 7$, $f_y(1, 2, 3) = -11$, $f_z(1, 2, 3) = 13$
- ▶ Find equation of plane tangent to contour $f = -5$ at $(1, 2, 3)$
- ▶ No formula for $\vec{\nabla}f(x, y)$
- ▶ $\vec{\nabla}f(1, 2, 3) = \langle 7, -11, 13 \rangle$
- ▶ Equation of plane with normal \vec{n} and containing (x_0, y_0, z_0) is

$$\vec{n} \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

- ▶ The equation of the tangent plane is

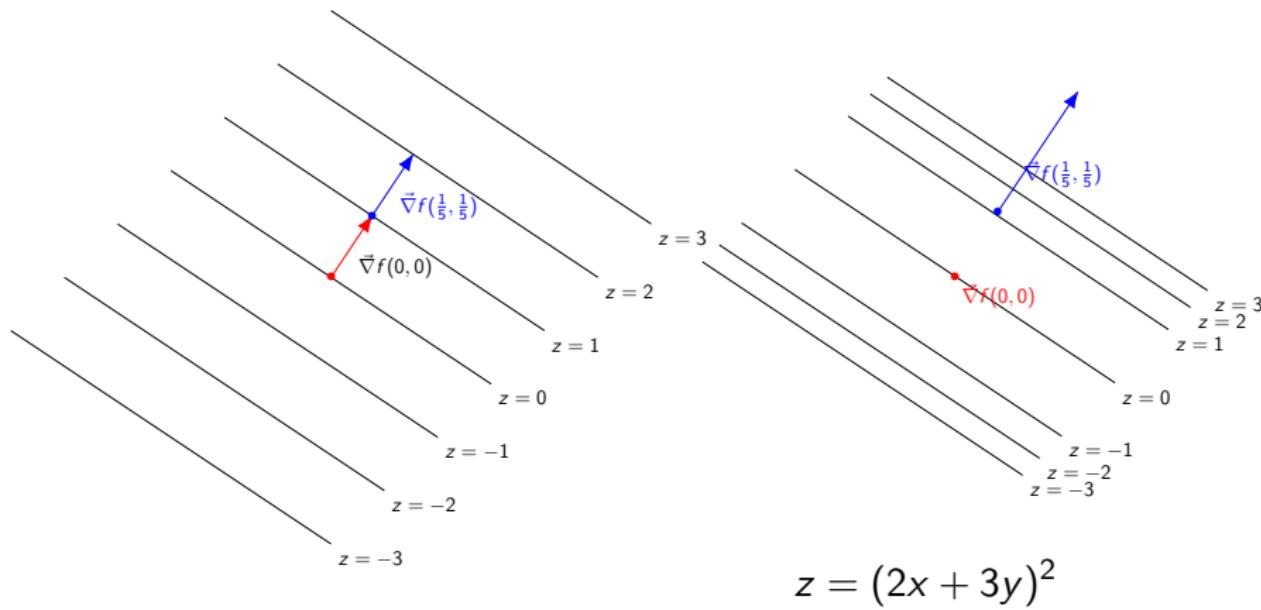
$$\vec{\nabla}f(1, 2, 3) \cdot \langle x - 1, y - 2, z - 3 \rangle = 0$$

$$\langle 7, -11, 13 \rangle \cdot \langle x - 1, y - 2, z - 3 \rangle = 0$$

$$7(x - 1) - 11(y - 2) + 13(z - 3) = 0$$

$$7x - 11y + 13z = 24$$

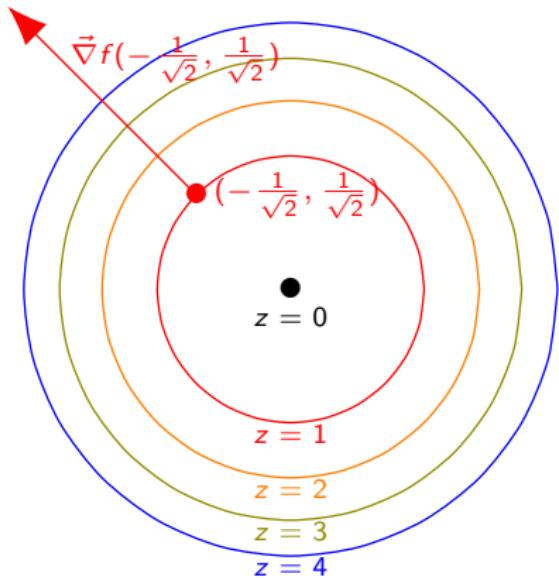
Contours of Plane Versus Parabolic Cylinder



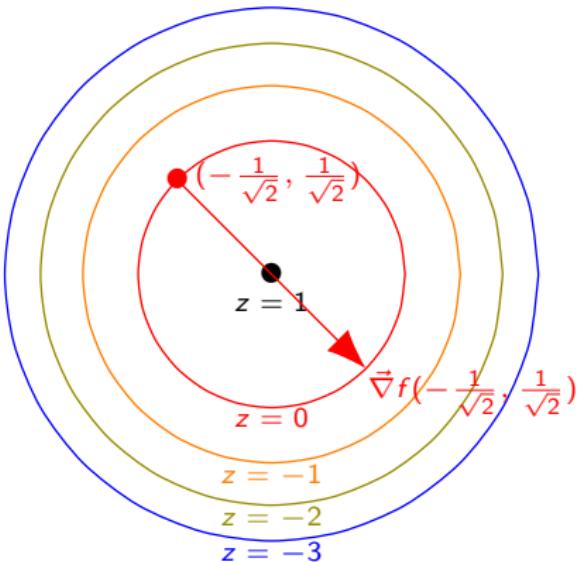
$$z = 2x + 3y$$

$$z = (2x + 3y)^2$$

Contours of Circular Paraboloids

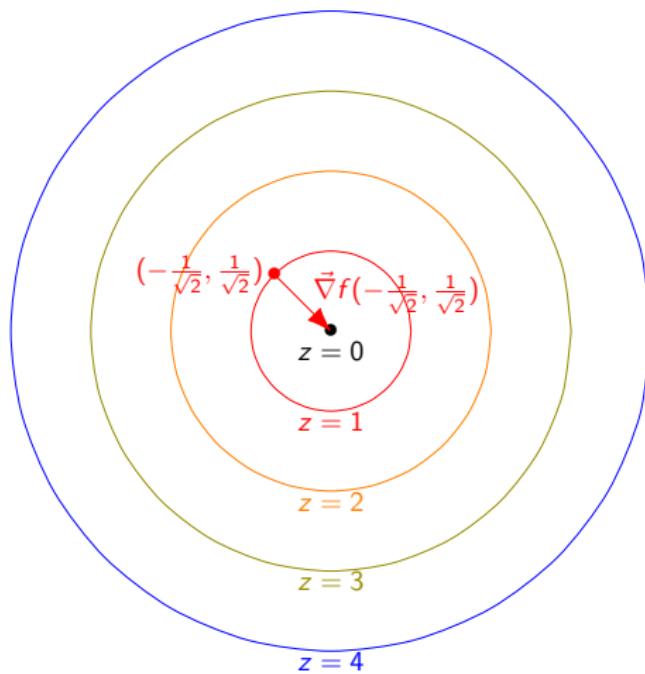


$$z = x^2 + y^2$$



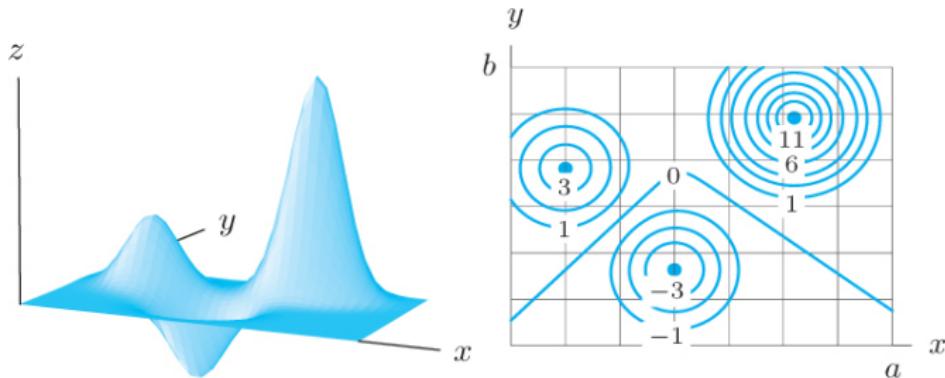
$$z = 1 - x^2 - y^2$$

Contour of Circular Cone



$$z = \sqrt{x^2 + y^2}$$

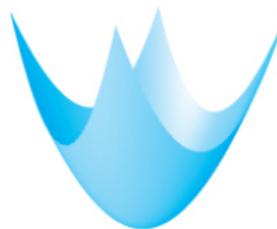
Shape Versus Contours of a Graph



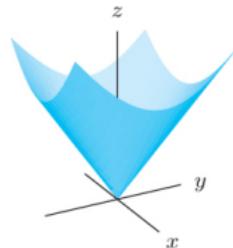
- ▶ Key features of a surface:
 - ▶ Peaks
 - ▶ Bottoms
 - ▶ Ridges and valleys between peaks or bottoms
- ▶ There are at least 4 points where the gradient is zero
 - ▶ Two peaks
 - ▶ One bottom
 - ▶ One point in between the peaks and bottom, where the contour consists of two intersecting curves

Some Possible Shapes of a Graph

Isolated local maximum

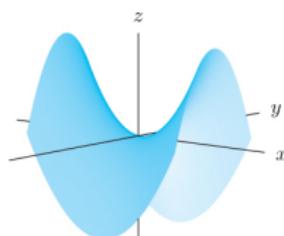


Isolated local minimum

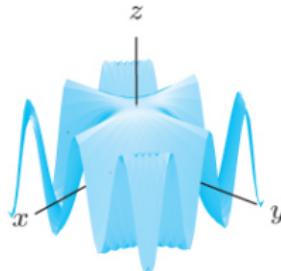


Isolated local minimum

Line of local minima



Saddle point

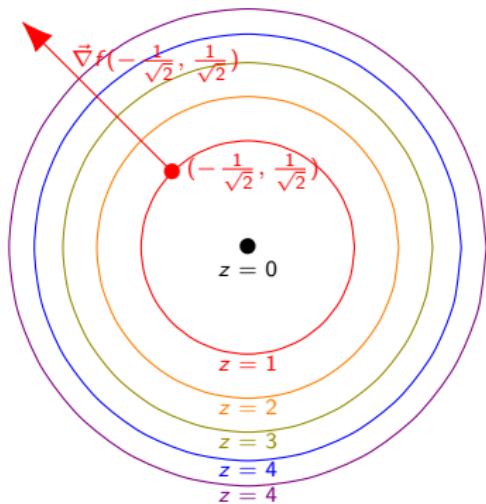


Complicated set of local maxima

Critical Point of Function

- ▶ A point (x_0, y_0) is a critical point of a function f if
 - ▶ It is in the domain of f
 - ▶ The gradient $\vec{\nabla}f(x_0, y_0, z_0)$ is either zero or undefined
- ▶ Possible shapes of a surface near a critical point
 - ▶ Isolated local maximum: Top of a hill
 - ▶ Isolated local minimum: Bottom of a bowl
 - ▶ Curve of local minima: Bottom of a valley
 - ▶ Curve of local maxima: Top of a ridge
 - ▶ Saddle point
 - ▶ Other

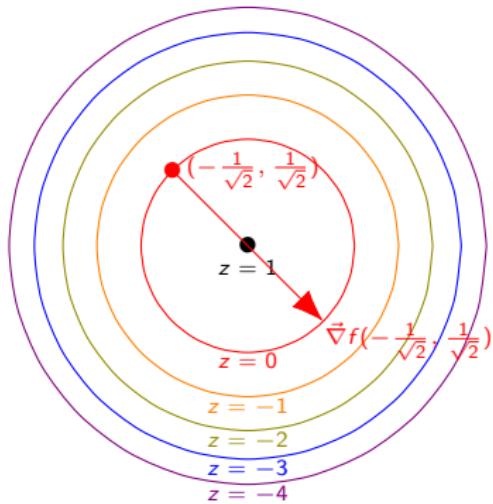
Contours of Circular Paraboloids



$$f(x, y) = x^2 + y^2$$

$$\vec{\nabla}f(x, y) = 2\langle x, y \rangle$$

Local minimum

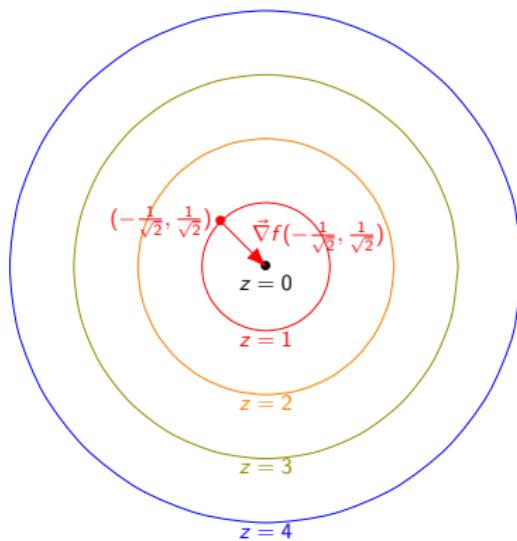


$$f(x, y) = 1 - x^2 - y^2$$

$$\vec{\nabla}f(x, y) = -2\langle x, y \rangle$$

Local maximum

Contour of Circular Cone

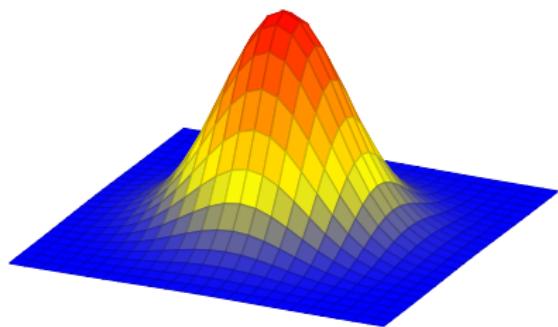
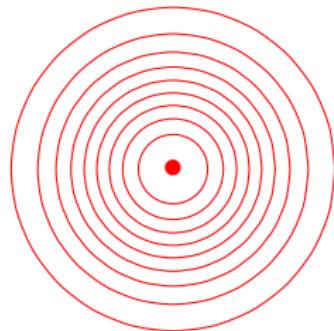


$$f(x, y) = \sqrt{x^2 + y^2}$$

$$\vec{\nabla}f = \frac{\langle x, y \rangle}{\sqrt{x^2 + y^2}}$$

Local minimum

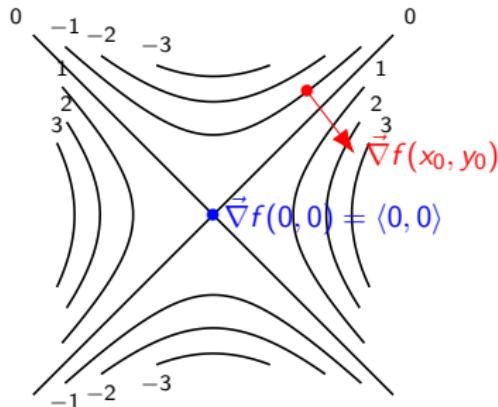
Another Example of Local Maximum



$$x^2 + y^2 = -\ln(c)$$

$$z = e^{-x^2 - y^2}$$

Saddle Point



- ▶ A point (x_0, y_0) is a saddle point of the graph $z = f(x, y)$, if the contours of f near (x_0, y_0) look like the above
- ▶ Examples
 - ▶ $(0, 0)$ for the function $f(x, y) = x^2 - y^2$
 - ▶ $(0, 0)$ for the function $f(x, y) = xy$

Critical Point of Function

- ▶ A critical point of a function f is a point in the domain of f where $\vec{\nabla}f$ is either undefined or equal to the zero vector
- ▶ Examples
 - ▶ $f(x, y) = \sqrt{x^2 + y^2}$: $\vec{\nabla}f(x, y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$ is undefined at $(0, 0)$
 - ▶ $f(x, y) = e^{-x^2-y^2}$: $\vec{\nabla}f(x, y) = -2e^{-x^2-y^2} \langle x, y, \rangle$ is the zero vector at $(0, 0)$
 - ▶ $f(x, y) = x^2 - y^2$: $\vec{\nabla}f(x, y) = 2\langle x, -y, \rangle$ is the zero vector at $(0, 0)$
- ▶ If $\vec{\nabla}f(x_0, y_0) = \langle 0, 0 \rangle$, then the tangent plane

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = f(x_0, y_0)$$

is horizontal

Types of Critical Points

- ▶ Suppose (x_0, y_0) is a critical point of a function $f(x, y)$
- ▶ A point (x_0, y_0) is a **local maximum**, if

$$f(x, y) \leq f(x_0, y_0) \text{ for all } (x, y) \text{ near } (x_0, y_0)$$

- ▶ Example: $(0, 0)$ for $f(x, y) = -x^2 - y^2$
- ▶ A point (x_0, y_0) is a **local minimum**, if

$$f(x, y) \geq f(x_0, y_0) \text{ for all } (x, y) \text{ near } (x_0, y_0)$$

- ▶ Example: $(0, 0)$ for $f(x, y) = x^2 + y^2$
- ▶ A point (x_0, y_0) is a **saddle point**, if it meets the criteria in previous slide
 - ▶ Example: $(0, 0)$ for $f(x, y) = x^2 - y^2$
- ▶ There are other types of critical points that we will not study
 - ▶ Example: $(0, 0)$ for $f(x, y) = xy(x^2 - y^2)$

Tests for Critical Point Type

- ▶ Analyze formula of function
- ▶ Draw graph
- ▶ Draw contours
- ▶ Second derivative test