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REMINDER

Next week’s Monday lecture

is on TUESDAY, October 12



REMINDER

First Midterm
is on Monday, October 25



Partial Derivatives

A
B
C

Q Q(A,B,C )

I Function: Q
I Input values: A,B,C
I Output value: Q(A,B,C )

I Partial derivative of Q with respect to B:

QB =
∂Q

∂B
' Change in Q

Small change in B

with A and C assumed to be constants
I Change in Q due to small change in B

Change in Q ' QB(Change in B)

I Change in Q due to small changes in A,B,C

Change in Q ' QA(Change in A) + QB(Change in B)

+ QC (Change in C )



Example of Linear Approximation
I Suppose f (x , y) is a function such that

f (1,−1) = 2, fx(1,−1) = −3, fy (1,−1) = 1

I Since

Change in f ' fx(small change in x + fy (small change in y ,

it follows that

f (1.1,−1.2)− f (1,−1)

' fx(1,−1)(1.1− 1) + fy (1,−1)(−1.2− (−1.1))

I Equivalently,

f (1.1,−1.2)

' f (1,−1) + fx(1,−1)(1.1− 1) + fy (1,−1)(−1.2− (−1.1))

= 2 + (−3)(0.1) + 1(−0.2)

= 2− 0.3− 0.2 = 1.5



Tangent Plane

I Suppose f (x , y) is a function such that

f (1,−1) = 2, fx(1,−1) = −3, fy (1,−1) = 1

I Linear Approximation: If (x , y) is clos to (1,−1), then

f (x , y) ' f (1,−1) + fx(1,−1)(x − 1) + fy (1,−1)(y − (−1))

= 2− 3(x − 1) + 1(y + 1)

= −3x + y + 4

I The graph
z = −3x + y + 4

is called the tangent plane of f at (1,−1)

I The tangent plane of f at (1,−1) touches the graph of f at
(1,−1)



Linear Approximation
I Change in f (x , y) due to small changes in x , y

Change in f ' fx(Change in x) + fy (Change in y)

I If (x , y) is close to (x0, y0), then

f (x , y) ' f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)

I If x0, y0 are viewed as constants, then this is the same as

f (x , y) ' ax + by + c ,

where

a = fx(x0, y0), b = fy (x0, y0),

c = f (x0, y0)− x0fx(x0, y0)− y0fy (x0, y0)

I The graph of the linear approximation is a plane

z = ax+by+c = f (x0, y0)+fx(x0, y0)(x−x0)+fy (x0, y0)(y−y0)

I This is called the tangent plane of f at (x0, y0)



Tangent Plane

•(x0, y0, f (x0, y0))

~n



Differential of a Function

I Recall that if f (x) is a function with one input, then

df =
df

dx
dx

I The differential of a function A(P,Q,R) is

dA =
∂A

∂P
dP +

∂A

∂Q
dQ +

∂A

∂R
dR = AP dP + AQ dQ + AR dR

I The differentials dP, dQ, dR are small changes in inputs

I dA is the resulting change in output



Rules of Differentials

I Sum rule: d(f + g) = df + dg

I Constant factor rule: d(cf ) = c df

I Product rule: d(fg) = g df + f dg

I Quotient rule: d
(

f
g

)
= g df−f dg

g2

I Example: Suppose f (x , y , z) = yez

x

df =
x d(yez)− (yez) dx

x2

=
x(ez dy + yez dz)− yez dx

x2

=
−yez dx + xez dy + yez dz

x2



Linear Approximation Using Differential

I Suppose (x , y) is close to (x0, y0)

I f (x0, y0, fx(x0, y0), fy (x0, y0), fz(x0, y0) are known

I Estimate f (x , y)

I Differential of f :
df = fx dx + fy dy

I Differentials represent small changes:

dx ' x − x0

dy ' y − y0

df ' f (x , y)− f (x0, y0)

I Change in f is therefore

f (x , y)− f (x0, y0) ' fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)



Example of Linear Approximation Using Differential
I Suppose

f (1, 2) = 2

fx(1, 2) = 3

fy (1, 2) = 5

I Suppose we want to estimate f (0.8, 2.1)
I View each differential as a small change:

dx ' 0.8− 1 = −0.2

dy ' 2.1− 2 = 0.1

df ' f (0.8, 2.1)− f (1, 2)

I Therefore,

df = fx dx + fy dy

f (0.8, 2.1)− f (1, 2) ' 3(0.8− 1) + 5(2.1− 2)

f (0.8, 2.1) ' 2− 0.6 + 0.5

= 1.9



Implicit Differentiation Using Differentials
I Suppose we want to find the partial derivatives of f (x , y),

where the graph z = f (x , y) satisfies

x2 + y2 + z2 = 3xyz

I Take differential of both sides of equation

2x dx + 2y dy + 2z dz = 3yz dx + 3xz dy + 3xy dz

I Solve for dz :

(2z − 3xy) dz = (3yz − 2x) dx + (3xz − 2y) dy

dz =
(3yz − 2x) dx + (3xz − 2y) dy

2z − 3xy

I Since z = f (x , y), dz = fx dx + fy dy

I Therefore,

fx =
3yz − 2x

2z − 3xy
and fy =

3xz − 2y

2z − 3xy



Ideal Gas Law
I The ideal gas law says

PV

T
= k ,

where k is a physical constant and

P = pressure, V = volume, T = temperature

I Any variable can be viewed as a function of the other two

I Suppose we want formulas for PV , PT , TV , TP , VP , VT

I Rewrite equation: PV = kT

I Compute differential: V dP + P dV = k dT

I To compute PV and PT , solve for dP:

dP = −P

V
dV +

k

V
dT

I Therefore, PV = − P
V and PT = k

V



Tangent Plane Using Differentials
I Suppose we want to find the tangent plane of

x2 + y2 + z2 = 3xyz

at (1, 1, 2)

I Differential:

2x dx + 2y dy + 2z dz = 3yz dx + 3xz dy + 3xy dz

I Only (x , y , z) = (1, 1, 2) matters:

2 dx + 2 dy + 4 dz = 6 dx + +6 dy + 3 dz

dz = 4 dx + 4 dy

z − 2 = 4(x − 1) + 4(y − 1)

I The tangent plane is therefore given by

z = 4x + 4y − 6



Chain Rule Using Differentials
I Suppose f (x , y) = xe−y

I Define a new function h(p) = f (1 + 2p, 1− 3p)
I We want to compute h′(p)
I On one hand, dh = h′(p) dp
I On the other, h(p) = f (x , y), where x = 1 + 2p and

y = 1− 3p
I Therefore,

dx = 2 dp

dy = −3 dp

dh = df

= e−y dx − xe−y dy

= e3p−12 dp − (1 + 2p)e3p−1(−3) dp

= e3p−1(2 + (3 + 6p)) dp

= e3p−1(5 + 6p) dp

I Therefore, h′(p) = e3p−1(5 + 6p)



Chain Rule Using Differentials

I Suppose
f (x , y) = (2y + 3)2e5x−4

and we want to calculate fx and fy
I Write this as f = p2eq, where p = 2y + 3 and q = 5x − 4

I Then

dp = 2 dy

dq = 5 ddx

df = 2peq dp + p2eq dq

= 2(2y + 3)e5x−4 dx + (2y + 3)2e5x−4 dy

I Since df = fx dx + fy dy ,

fx = 2(2y + 3)e5x−4

fy = (2y + 3)2e5x−4



Chain Rule for Functions with Multiple Inputs

f h(p, q) = f (x , y)
Ap x = A(p)

Bq y = B(q)

I Suppose we have a function f (x , y) and functions A(p) and
B(p)

I Define a new function h(p) = f (A(p),B(p))
I Two step description:

I Given p, set x = A(p) and y = B(p)
I Set h(p) = f (x , y)

I We want to compute the sensitivity of h to a small change in
p, i.e., h′(p)



Chain Rule Using Differentials
I h(p) = f (A(p),B(p)) = f (x , y), where

x = A(p) and y = B(p)

I A small change dp causes
I A small change dx = A′(p) dp
I A small change dy = B ′(p) dp

I The small changes dx and dy in turn causes a small change in
f , which is also the resulting change in f

dh = d(f (x , y))

= fx(x , y) dx + fy (x , y) dy

= fx(A(p),B(p))A′(p) dp + fy (A(p),B(p))B ′(p) dp

= (fx(A(p),B(p))A′(p) + fy (A(p),B(p))B ′(p)) dp

I Since dh = h′(p) dp,

h′(p) = fx(A(p),B(p))A′(p) + fy (A(p),B(p))B ′(p)



Chain Rule Using Differentials
I Suppose f (x , y) = xey

I Define a new function
h(p, q) = f (p + q, p − q) = (p + q)2ep−q

I We want to compute the partial derivatives hp(p, q) and
hq(p, q)

I If x = p + q and y = p − q, then h(p, q) = f (x , y)
I Their differentials are dx = dp + dq and dy = dp − dq
I Since h(p) = f (x , y) = xey ,

dh = df

= ey dx + xey dy

= ep−q (dp + dq) + (p + q)ep−q (dp − dq)

= ep−q(1 + p + q) dp + ep−q(1− p − q) dq

I Since dh = hp dp + hq dq,

hp(p, q) = ep−q(1 + p + q)

hq(p, q) = ep−q(1− p − q)



Doing the Chain Rule Directly

I If h(p, q) = (p + q)ep=q, then

hp(p, q) = ∂p(p + q)ep−q + (p + q)∂p(ep−q) by the product rule

= ep−q + (p + q)ep−q

= (1 + p + q)ep−q

hq(p, q) = ∂q(p + q)ep−q + (p + q)∂q(ep−q) by the product rule

= ep−q − (p + q)ep−q

= (1− p + q)ep−q

I Two separate calculations required, one for each partial
derivative

I Using differentials requires only one calculation



Derivative of a Function Along a Curve

~r = 〈x , y , z〉 f f (~r) = f (x , y , z)

I Suppose f is a function of points in space
I Suppose ~r(t) = 〈x(t), y(t), z(t)〉 is a parameterized curve

such that ~r(0) = ~r0 = 〈x0, y0, z0〉
I The derivative of f along the curve ~r(t) is defined to be

d

dt
f (~r(t)) =

d

dt
f (x(t), y(t), z(t))

= fx(~r(t))x ′(t) + fy (~r(t))y ′(t) + fz(~r(t))z ′(t)

I In particular, when t = 0,

d

dt

∣∣∣∣
t=0

f (~r(t)) = fx(~r0)x ′(0) + fy (~r0)y ′(0) + fz(~r0)z ′(0)

= 〈fx(~r0), fy (~r0), fz(~r0)〉 · 〈x ′(0), y ′(0), z ′(0)〉
= ~∇f (~r0) · ~r ′(0),

where ~∇f = 〈fx , fy , fz〉



Directional Derivative of a Function
I Given point ~r0, any vector ~v0, and any curve ~r(t) such that
~r(0) = ~r0 and ~r ′(0) = ~v0,

d

dt

∣∣∣∣
t=0

f (~r(t)) = ~∇f (~r0) · ~r ′(0) = ~v0 · ~∇f (~r0)

I The value of the right side depends only on f , ~r0, and ~v0 and
not on the curve

I Define the gradient of f to be the vector field

~∇f = 〈fx , fy , fz〉
I Given a function f , a vector ~v , and a position ~r , denote

D~v f (~r) = ~v · ~∇f (~r)

I The directional derivative of f at ~r in the direction of the
vector ~v is

D~uf (~r) = ~u · ~∇f (~r),

where ~u =
~v

|~v |
is the direction of ~v



Examples of Directional Derivatives

I The directional derivative of a linear function
f (x , y , z) = ax + by + cz + d in a direction ~u is

D~uf (x , y , z) = ~u · 〈fx , fy , fz〉 = ~u · 〈a, b, c〉,

which is constant for all points (x , y , z)

I The directional derivative of the function

f (x , y , z) = x2 + y2 + z2 = |~r |2

in a direction ~u is

D~uf (x , y , z) = ~u · 〈fx , fy , fz〉 = ~u · 〈2x , 2y , 2z〉
= 2~u · 〈x , y , z〉
= 2~u · ~r



Vector Fields and the Gradient of a Function

~r = 〈x , y , z〉 ~V ~V (~r) = 〈V1(x , y , z),V2(x , y , z),V3(x , y , z)〉

I A vector field is a function where the input is a point in space
and the output is a vector

I The gradient of a scalar function of space is a vector field

~∇f (~r) = 〈fx(x , y , z), fy (x , y , z), fz(x , y , z)〉

~r = 〈x , y , z〉 ~∇f ~∇f (~r) = 〈fx(x , y , z), fy (x , y , z), fz(x , y , z)〉



Directional Derivatives and the Gradient

I The directional derivative of a function f at a point ~r in the
direction ~u is defined to be

D~uf (~r) = ~u · ~∇f (~u)

I Since ~u is a unit vector,

D~uf (~r) = |~u||~∇f (~u)| cos θ = |~∇f (~u)| cos θ,

where θ is the angle between the direction ~u and the vector
~∇f (~r)

I The directional derivative of f at ~r is greatest when ~u points
in the same direction as ~∇f (~r)

I The directional derivative of f at ~r is most negative when ~u
points in the opposite direction to ~∇f (~r)

I The directional derivative of f at ~r is zero when ~u is
orthogonal to ~∇f (~r)


