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Limit of a Function

I Suppose f (x , y) is a function with domain D and (x0, y0) ∈ D

I
lim

(x ,y)→(x0,y0)
f (x , y) = L,

means the following: If (x1, y1), (x2, yx), . . . is any sequence of
points such that

lim
k→∞

(xk , yk) = (x0, y0),

then
lim
k→∞

f (xk , yk) = L



Informal Rules on Limits

I Consider
lim

(x ,y)→(x0,y0)
f (x , y)

I Assume f is defined by a single formula
I First, try substituting (x0, y0) into the formula for f

I If f (x0, y0) has a valid value, then the limit is f (x0, y0)
I If f (x0, y0) is equal to an undefined expression such as

nonzero

0
,
√

negative, or log(nonpositive),

then the limit is undefined
I If f (x0, y0) is equal to an indeterminate expression such as

0

0
or
∞
∞

,

then you have to investigate further



Examples of Limits

I lim
(x ,y)→(1,0)

x2 + y2

x2 − y2
= 1

I lim
(x ,y)→(1,−1)

x2 + y2

x2 − y2
is undefined

I lim
(x ,y)→(0,0)

x2 + y2

x2 − y2
is indeterminate

I Need to investigate further



Detection of Undefined Limits

I Consider
lim

(x ,y)→(x0,y0)
f (x , y)

I If there is a sequence (xk , yk)→ (x0, y0) such that every
f (xk , yk) is undefined, then the limit is undefined

I If there is a sequence (xk , yk)→ (x0, y0) such that the
sequence f (xk , yk) has no limit, then the limit is undefined
then the limit is undefined

I If there is a sequence

(xk , yk)→ (x0, y0) such that f (xk , yk)→ L

and another sequence

(x̃k , ỹk)→ (x̃0, ỹ0) such that f (x̃k , ỹk)→ L̃,

and L 6= L̃, the the limit is undefined



Examples of Undefined Limits
I Consider lim

(x ,y)→(0,0)

x + 2y

x2 − y2

I If (xk , yk) = 1
k , then (xk , yk)→ (0, 0), but

xk + 2yk
x2k − y2

k

=
1
k + 2

k
1
k2 − 1

k2

is undefined for every k

I Therefore, the limit is undefined

I Consider lim
(x ,y)→(0,0)

x2 − xy

x2 + y2

I If (xk , yk) = ( 1
k , 0), then (xk , yk)→ (0, 0) and

x2k − xkyk
x2k + y2

k

=
1
k2 − 0
1
k2 + 0

= 1→ 1

I If (xk , yk) = (0, 1
k ), then (xk , yk)→ (0, 0) and

x2k − xkyk
x2k + y2

k

=
0− 0

0 + 1
= 0→ 0

I No limit because answers are inconsistent



Example of a Convergent Limit

I Consider

lim
(x ,y)→(0,0)

2x2y − 5xy2

x2 + 3y2

I Key observations:
I Denominator is never zero when (x , y) 6= (0, 0)
I x2 + 3y2 ≥ x2 + y2

I |x |, |y | ≤
√
x2 + y2

I For each (x , y) 6= 0, the measurement error is∣∣∣∣2x2y − 5xy2

x2 + 3y2

∣∣∣∣ ≤ 2|x |2|y |+ 5|x ||y |2

x2 + y2

≤ 7(x2 + y2)3/2

x2 + y2
≤ 7(x2 + y2)1/2

I Since, lim(x ,y)→(0,0)

√
x2 + y2 = 0, the limit is zero



Evaluation of a Limit

I Consider

lim
(x ,y)→(x0,y0)

(single formula in x and y)

I First, try plugging (x , y) = (x0, y0) into the formula
I If it works, then the answer is the limit
I If it is undefined, then the limit is undefined
I If it is indeterminate, need to investigate further



Limit at (0, 0) of a Rational Function

I Consider

lim
(x ,y)→(0,0)

polynomial in x , y

polynomial in x , y

I Plug (x , y) = (0, 0) into the formula
I If the denominator is nonzero, then the limit exists
I If the denominator is zero and the numerator is nonzero, then

the limit does not exist

I Rules of thumb (Added in revised version of these slides):
I Let p be the lowest degre of terms in the numerator
I Let p be the lowest degre of terms in the numerator
I If p ≤ q, then the limit is undefined
I If p > q, then the limit is 0

I These conclusions need to be justified



First Attempt
I Consider the limit

lim
(x ,y)→(0,0)

f (x , y)

g(x , y)
, (1)

where f and g are polynomials
I First, plug the sequences

(xk , yk) =

(
1

k
, 0

)
and (xk , yk) =

(
0,

1

k

)
into (1) and consider

lim
k→∞

f (xk)

g(xk)
(2)

I If (2) is undefined for either sequence, the (1) is undefined
I If the the limits of (2) are defined for both sequences but are

not equal, then the limit (1) is undefined
I If the the limits of (2) are defined for both sequences and are

equal, then proceed to next step



Second Attempt

I Let a and b be unspecified constants, to be chosen later and
plug the sequence

(xk , yk) =

(
a

k
,
b

k

)
into (2)

I You will get a formula that contains a and b only
I If it is possible to choose values for a and b such that the

formula is undefined, then the limit (1) does not exist
I This will usually happen if p < q

I If it is possible to choose values for a and b and get two
different values for the formula, then the limit (1) does not
exist
I This will usually happen if p = q

I If the formula is a constant that depends on neither a nor b,
then proceed to next step



Third Attempt
I Verify that the denominator g(x , y) is never zero, no matter

what x and y are
I Key facts to use:

|A + B| ≤ |A|+ |B|, |AB| = |A||B|, |A|, |B| ≥
√

A2 + B2

I Use key facts to find a constant d > 0 such that the
denominator satisfies

|g(x , y)| ≥ d(x2 + y2)q/2 if (x , y) 6= (0, 0)

and a constant c > 0 such that the numerator satisfies

|g(x , y)| ≤ c(x2 + y2)p/2 for all (x , y)

I Therefore, since p < q,∣∣∣∣ lim
(x ,y)→(0,0)

f (x , y)

g(x , y)

∣∣∣∣ ≤ lim
(x ,y)→(0,0)

c(x2 + y2)p/2

d(x2 + y2)q/2

= lim
(x ,y)→(0,0)

c

d
(x2 + y2)(p−q)/2 = 0



If none of the above works, move on to another problem



Continuity of a function

I A function f is continuous, if it never jumps suddenly in value

I A function f is continuous at a point (x0, y0) in its domain, if

lim
(x ,y)→(x0,y0)

f (x , y) = f (x0, y0)

I A continuous function has a continuous graph with no sudden
jumps

I The function f (x , y) =
√

1− x2 + y2 is continuous for all
(x , y) in the domain of f

I The function

f (x , y) =

{√
1 + x2 + y2, if (x , y) 6= (0, 0)

0, otherwise

is not



Continuous Extension of a Function

I The function

f (x , y) =
2x2y − 5xy2

x2 + 3y2

is defined and continuous for all (x , y) 6= (0, 0)

I However, since

lim
(x ,y)→(0,)

f (x , y) = lim
(x ,y)→(0,0)

2x2y − 5xy2

x2 + 3y2
= 0,

the function

g(x , y) =

{
f (x , y) if (x , y) 6= 0

0 if (x , y) = 0

is defined and continuous for all (x , y)



Derivative of a Function

input f output

I The derivative of a function measures the senstivity of the
function to a small change in input

f ′(input) ' change in output

change in input

I A constant function has sensitivity zero
I A linear function has constant sensitivity
I The sensitivity of a nonlinear function depends on the iput
I Given f (1) = 3 and f ′(1) = −2, estimate f (0.8)

Change in output ' (sensitivity)(change in input)

= (−2)(−0.2) = 0.4

f (0.8)− f (1) ' (sensitivity)(change in input)

= (−2)(0.8− 1) = 0.4

f (0.8) ' f (1) + (f (0.8)− f (1)) = 3 + 0.4 = 3.4



Partial Derivatives

P
Q
R

A A(P,Q,R)

I Sensitivity to a small change in one of the inputs, while
keeping the others unchanged

∂A

∂Q
(P0,Q0,R0) ' small change in A

small change in Q

=
A(P0,Q1,R0)− A(P0,Q0,R0)

Q1 − Q0

I Total change in A estimated by adding partial changes

A(P1,Q1,R1)− A(P0,Q0,R0)

' ∂A

∂P
(P0,Q0,R0)(P1 − P0) +

∂A

∂Q
(P0,Q0,R0)(Q1 − Q0)

+
∂A

∂R
(P0,Q0,R0)(R1 − R0)



Calculating Partial Derivatives

I Shorthand: AQ = ∂QA =
∂A

∂Q
I To calculate ∂QA, treat all other variables as constants and

differentiate with respect to Q

I If A(P,Q,R) = P4Q − 5Q3R2 + e−PQR , then

∂PA = 4P3Q + e−PQR(−QR) = 4P3Q − QRe−PQR

∂QA = P4 − 15Q2R2 − PRe−PQR

∂RA = −10Q3R − PQe−PQR



Higher Order Derivatives

If P(A,B) = eAB
2−A2B ,

PA = (B2 − 2AB)eAB
2−A2B

PB = (2AB − A2)eAB
2−A2B

PAA = (−2B)eAB
2−A2B + (B2 − 2AB)(B2 − 2AB)eAB

2−A2B

= (−2B + (B2 − 2AB)2)eAB
2−A2B

PAB = (−2A)eAB
2−A2B + (B2 − 2AB)(2AB − A2)eAB

2−A2B

= (−2A + (B2 − 2AB)(2AB − A2))eAB
2−A2B

PBA = (−2A)eAB
2−A2B + (2AB − A2)(B2 − 2AB)eAB

2−A2B

= (−2A + (2AB − A2)(B2 − 2AB))eAB
2−A2B

PBB = (2AB − A2)2eAB
2−A2B



Mixed Partial Commute

I If a function, its partial derivatives, and its second partial
derivatives are all continuous, then it does not matter which
order the second partials are calculated

I Given a function Q(B,C ,D),

∂C (∂BQ) = ∂B(∂C )B

(QC )D = (QD)C

(QB)D = (QD)B

I Example: f (x , y) = xexy

fx = 1(exy ) + x(yexy ) = (1 + xy)exy

(fx)y = x(exy ) + (1 + xy)(xexy ) = (2x + x2y)exy

fy = x(xexy ) = x2exy

(fy )x = (2x)(exy ) + x2(yexy ) = (2x + x2y)exy



Estimate Area of a Box

3

2 1.7

3.4

I Estimate the area of a box with dimensions 3.4 by 1.7;

I Zeroth order estimate: A = 3(2) = 6

I First order estimate:
A = 6− 3(0.3) + 2(0.4) = 6− 0.9 + 0.8 = 5.9

I Exact answer: 3.4(1.7) = 5.78



Estimate Area of a Box

w0

h0 h

w

I Estimate the area of a box with dimensions w by h

I Zeroth order estimate: A0 = w0h0
I First order estimate: A1 = A0 + w0(h − h0) + h0(w − w0)

I Exact answer:

A = (w0 + (w − w0))(h0 + (h − h0))

= w0h0 + w0(h − h0) + h0(w − w0) + (w − w0)(h − h0)

= A1 + (w − w0)(h − h0)



Linear Approximation

I Suppose (x , y) is close to (x0, y0)

I Given a function f (x , y),

f (x , y) ' f (x0, y0)

+ (change in f due to change in x)

+ (change in f due to change in y)

' f (x0, y0) + (fx(x0, y0))(x − x0) + (fy (x0, y0))(y − y0)

I Right side, with (x0, y0) held fixed, is a linear function of (x , y)

L(x , y) = f (x0, y0) + (fx(x0, y0))(x − x0) + (fy (x0, y0))(y − y0)

I This is called the linear approximation of f at (x0, y0)

I Note similarity to

z = c + a(x − x0) + b(y − y0)



Example of Linear Approximation
I Suppose f (x , y) =

√
x2 + y2

I f (3, 4) = 5

I f (3.1, 3.9) =?

I fx = ∂x((x2 + y2)1/2) =
x√

x2 + y2

I fx(3, 4) =
3

5

I fy = ∂y ((x2 + y2)1/2) =
y√

x2 + y2

I fy (3, 4) =
4

5
I Therefore,

f (3.1, 3.9) ' f (3, 4) + fx(3, 4)(3.1− 3) + fy (3, 4)(3.9− 4)

= 5 +
3

5
(0.1) +

4

5
(−0.1)

= 5 + 0.6− 0.8 = 4.8



Example of Linear Approximation

I Suppose

f (1, 2) = 2, fx(1, 2) = 3, fy (1, 2) = 5

I Estimate f (0.8, 2.1)

I The zeroth order approximation is

f (0.8, 2.1) ' f (1, 2) = 2

I The first order (or linear) approximation is

f (0.8, 2.1) ' f (1, 2) + fx(1, 2)(0.8− 1) + fy (1, 2)(2.1− 2)

= 2 + 3(−0.2) + 5(0.1)

= 2− 0.6 + 0.5

= 1.9



Another Example of Linear Approximation

I Suppose we want to estimate Q(−0.1, 1.12), where

Q(A,B) = Be2AB

I (−0.1, 1.12) is close to (0, 1) and Q(0, 1) = 1

I Partials of Q are QA = 2B2eAB and QB = eA + 2BAeAB

I Therefore,

Q(0, 1) = 1

QA(0, 1) = 2

QB(0, 1) = 1

Q(−0.1, 1.12) ' Q(0, 1) + QA(0, 1)(−0.1− 0)

+ QB(0, 1)(1.12− 1)

= 1− 2(0.1) + 0.12

= 0.92


