

MATH-UA 123 Calculus 3: Limits, Continuity, Partial Derivatives, Linear Approximations

Deane Yang

Courant Institute of Mathematical Sciences
New York University

October 4, 2021

START RECORDING LIVE TRANSCRIPT

REMINDER

**Next week's Monday lecture
is on TUESDAY, October 12**

REMINDER
MIDTERM
Monday, October 25

Limit of a Function

- ▶ Suppose $f(x, y)$ is a function with domain D and $(x_0, y_0) \in D$
- ▶

$$\lim_{(x,y) \rightarrow (x_0,y_0)} f(x, y) = L,$$

means the following: If $(x_1, y_1), (x_2, y_2), \dots$ is any sequence of points such that

$$\lim_{k \rightarrow \infty} (x_k, y_k) = (x_0, y_0),$$

then

$$\lim_{k \rightarrow \infty} f(x_k, y_k) = L$$

Informal Rules on Limits

- ▶ Consider

$$\lim_{(x,y) \rightarrow (x_0,y_0)} f(x,y)$$

- ▶ Assume f is defined by a single formula
- ▶ First, try substituting (x_0, y_0) into the formula for f
 - ▶ If $f(x_0, y_0)$ has a valid value, then the limit is $f(x_0, y_0)$
 - ▶ If $f(x_0, y_0)$ is equal to an undefined expression such as

$$\frac{\text{nonzero}}{0}, \sqrt{\text{negative}}, \text{ or } \log(\text{nonpositive}),$$

then the limit is undefined

- ▶ If $f(x_0, y_0)$ is equal to an indeterminate expression such as

$$\frac{0}{0} \text{ or } \frac{\infty}{\infty},$$

then you have to investigate further

Examples of Limits

- ▶ $\lim_{(x,y) \rightarrow (1,0)} \frac{x^2 + y^2}{x^2 - y^2} = 1$
- ▶ $\lim_{(x,y) \rightarrow (1,-1)} \frac{x^2 + y^2}{x^2 - y^2}$ is undefined
- ▶ $\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 + y^2}{x^2 - y^2}$ is indeterminate
 - ▶ Need to investigate further

Detection of Undefined Limits

- ▶ Consider

$$\lim_{(x,y) \rightarrow (x_0,y_0)} f(x,y)$$

- ▶ If there is a sequence $(x_k, y_k) \rightarrow (x_0, y_0)$ such that every $f(x_k, y_k)$ is undefined, then the limit is undefined
- ▶ If there is a sequence $(x_k, y_k) \rightarrow (x_0, y_0)$ such that the sequence $f(x_k, y_k)$ has no limit, then the limit is undefined
- ▶ If there is a sequence

$$(x_k, y_k) \rightarrow (x_0, y_0) \text{ such that } f(x_k, y_k) \rightarrow L$$

and another sequence

$$(\tilde{x}_k, \tilde{y}_k) \rightarrow (\tilde{x}_0, \tilde{y}_0) \text{ such that } f(\tilde{x}_k, \tilde{y}_k) \rightarrow \tilde{L},$$

and $L \neq \tilde{L}$, the the limit is undefined

Examples of Undefined Limits

► Consider $\lim_{(x,y) \rightarrow (0,0)} \frac{x+2y}{x^2-y^2}$

► If $(x_k, y_k) = \left(\frac{1}{k}, 0\right)$, then $(x_k, y_k) \rightarrow (0, 0)$, but

$$\frac{x_k + 2y_k}{x_k^2 - y_k^2} = \frac{\frac{1}{k} + \frac{2}{k}}{\frac{1}{k^2} - \frac{1}{k^2}} \text{ is undefined for every } k$$

► Therefore, the limit is undefined

► Consider $\lim_{(x,y) \rightarrow (0,0)} \frac{x^2 - xy}{x^2 + y^2}$

► If $(x_k, y_k) = \left(\frac{1}{k}, 0\right)$, then $(x_k, y_k) \rightarrow (0, 0)$ and

$$\frac{x_k^2 - x_k y_k}{x_k^2 + y_k^2} = \frac{\frac{1}{k^2} - 0}{\frac{1}{k^2} + 0} = 1 \rightarrow 1$$

► If $(x_k, y_k) = (0, \frac{1}{k})$, then $(x_k, y_k) \rightarrow (0, 0)$ and

$$\frac{x_k^2 - x_k y_k}{x_k^2 + y_k^2} = \frac{0 - 0}{0 + 1} = 0 \rightarrow 0$$

► No limit because answers are inconsistent

Example of a Convergent Limit

- ▶ Consider

$$\lim_{(x,y) \rightarrow (0,0)} \frac{2x^2y - 5xy^2}{x^2 + 3y^2}$$

- ▶ Key observations:

- ▶ Denominator is never zero when $(x, y) \neq (0, 0)$
- ▶ $x^2 + 3y^2 \geq x^2 + y^2$
- ▶ $|x|, |y| \leq \sqrt{x^2 + y^2}$

- ▶ For each $(x, y) \neq 0$, the measurement error is

$$\begin{aligned} \left| \frac{2x^2y - 5xy^2}{x^2 + 3y^2} \right| &\leq \frac{2|x|^2|y| + 5|x||y|^2}{x^2 + y^2} \\ &\leq \frac{7(x^2 + y^2)^{3/2}}{x^2 + y^2} \leq 7(x^2 + y^2)^{1/2} \end{aligned}$$

- ▶ Since, $\lim_{(x,y) \rightarrow (0,0)} \sqrt{x^2 + y^2} = 0$, the limit is zero

Evaluation of a Limit

- ▶ Consider

$$\lim_{(x,y) \rightarrow (x_0,y_0)} \text{(single formula in } x \text{ and } y\text{)}$$

- ▶ First, try plugging $(x, y) = (x_0, y_0)$ into the formula
 - ▶ If it works, then the answer is the limit
 - ▶ If it is undefined, then the limit is undefined
 - ▶ If it is indeterminate, need to investigate further

Limit at $(0, 0)$ of a Rational Function

- ▶ Consider

$$\lim_{(x,y) \rightarrow (0,0)} \frac{\text{polynomial in } x, y}{\text{polynomial in } x, y}$$

- ▶ Plug $(x, y) = (0, 0)$ into the formula
 - ▶ If the denominator is nonzero, then the limit exists
 - ▶ If the denominator is zero and the numerator is nonzero, then the limit does not exist
- ▶ Rules of thumb (Added in revised version of these slides):
 - ▶ Let p be the lowest degree of terms in the numerator
 - ▶ Let p be the lowest degree of terms in the numerator
 - ▶ If $p \leq q$, then the limit is undefined
 - ▶ If $p > q$, then the limit is 0
- ▶ These conclusions need to be justified

First Attempt

- ▶ Consider the limit

$$\lim_{(x,y) \rightarrow (0,0)} \frac{f(x,y)}{g(x,y)}, \quad (1)$$

where f and g are polynomials

- ▶ First, plug the sequences

$$(x_k, y_k) = \left(\frac{1}{k}, 0 \right) \text{ and } (x_k, y_k) = \left(0, \frac{1}{k} \right)$$

into (1) and consider

$$\lim_{k \rightarrow \infty} \frac{f(x_k)}{g(x_k)} \quad (2)$$

- ▶ If (2) is undefined for either sequence, the (1) is undefined
- ▶ If the the limits of (2) are defined for both sequences but are not equal, then the limit (1) is undefined
- ▶ If the the limits of (2) are defined for both sequences and are equal, then proceed to next step

Second Attempt

- ▶ Let a and b be unspecified constants, to be chosen later and plug the sequence

$$(x_k, y_k) = \left(\frac{a}{k}, \frac{b}{k} \right)$$

into (2)

- ▶ You will get a formula that contains a and b only
- ▶ If it is possible to choose values for a and b such that the formula is undefined, then the limit (1) does not exist
 - ▶ This will usually happen if $p < q$
- ▶ If it is possible to choose values for a and b and get two different values for the formula, then the limit (1) does not exist
 - ▶ This will usually happen if $p = q$
- ▶ If the formula is a constant that depends on neither a nor b , then proceed to next step

Third Attempt

- ▶ Verify that the denominator $g(x, y)$ is never zero, no matter what x and y are
- ▶ Key facts to use:

$$|A + B| \leq |A| + |B|, \quad |AB| = |A||B|, \quad |A|, |B| \geq \sqrt{A^2 + B^2}$$

- ▶ Use key facts to find a constant $d > 0$ such that the denominator satisfies

$$|g(x, y)| \geq d(x^2 + y^2)^{q/2} \text{ if } (x, y) \neq (0, 0)$$

and a constant $c > 0$ such that the numerator satisfies

$$|g(x, y)| \leq c(x^2 + y^2)^{p/2} \text{ for all } (x, y)$$

- ▶ Therefore, since $p < q$,

$$\begin{aligned} \left| \lim_{(x,y) \rightarrow (0,0)} \frac{f(x, y)}{g(x, y)} \right| &\leq \lim_{(x,y) \rightarrow (0,0)} \frac{c(x^2 + y^2)^{p/2}}{d(x^2 + y^2)^{q/2}} \\ &= \lim_{(x,y) \rightarrow (0,0)} \frac{c}{d} (x^2 + y^2)^{(p-q)/2} = 0 \end{aligned}$$

If none of the above works, move on to another problem

Continuity of a function

- ▶ A function f is continuous, if it never jumps suddenly in value
- ▶ A function f is continuous at a point (x_0, y_0) in its domain, if

$$\lim_{(x,y) \rightarrow (x_0,y_0)} f(x,y) = f(x_0, y_0)$$

- ▶ A continuous function has a continuous graph with no sudden jumps
- ▶ The function $f(x,y) = \sqrt{1 - x^2 + y^2}$ is continuous for all (x,y) in the domain of f
- ▶ The function

$$f(x,y) = \begin{cases} \sqrt{1 + x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{otherwise} \end{cases}$$

is not

Continuous Extension of a Function

- ▶ The function

$$f(x, y) = \frac{2x^2y - 5xy^2}{x^2 + 3y^2}$$

is defined and continuous for all $(x, y) \neq (0, 0)$

- ▶ However, since

$$\lim_{(x,y) \rightarrow (0,0)} f(x, y) = \lim_{(x,y) \rightarrow (0,0)} \frac{2x^2y - 5xy^2}{x^2 + 3y^2} = 0,$$

the function

$$g(x, y) = \begin{cases} f(x, y) & \text{if } (x, y) \neq 0 \\ 0 & \text{if } (x, y) = 0 \end{cases}$$

is defined and continuous for all (x, y)

Derivative of a Function

- ▶ The derivative of a function measures the sensitivity of the function to a small change in input

$$f'(\text{input}) \simeq \frac{\text{change in output}}{\text{change in input}}$$

- ▶ A constant function has sensitivity zero
- ▶ A linear function has constant sensitivity
- ▶ The sensitivity of a nonlinear function depends on the input
- ▶ Given $f(1) = 3$ and $f'(1) = -2$, estimate $f(0.8)$

$$\text{Change in output} \simeq (\text{sensitivity})(\text{change in input})$$

$$= (-2)(-0.2) = 0.4$$

$$f(0.8) - f(1) \simeq (\text{sensitivity})(\text{change in input})$$

$$= (-2)(0.8 - 1) = 0.4$$

$$f(0.8) \simeq f(1) + (f(0.8) - f(1)) = 3 + 0.4 = 3.4$$

Partial Derivatives

- ▶ Sensitivity to a small change in one of the inputs, while keeping the others unchanged

$$\begin{aligned}\frac{\partial A}{\partial Q}(P_0, Q_0, R_0) &\simeq \frac{\text{small change in } A}{\text{small change in } Q} \\ &= \frac{A(P_0, Q_1, R_0) - A(P_0, Q_0, R_0)}{Q_1 - Q_0}\end{aligned}$$

- ▶ Total change in A estimated by adding partial changes

$$\begin{aligned}A(P_1, Q_1, R_1) - A(P_0, Q_0, R_0) &\\ &\simeq \frac{\partial A}{\partial P}(P_0, Q_0, R_0)(P_1 - P_0) + \frac{\partial A}{\partial Q}(P_0, Q_0, R_0)(Q_1 - Q_0) \\ &\quad + \frac{\partial A}{\partial R}(P_0, Q_0, R_0)(R_1 - R_0)\end{aligned}$$

Calculating Partial Derivatives

- ▶ Shorthand: $A_Q = \partial_Q A = \frac{\partial A}{\partial Q}$
- ▶ To calculate $\partial_Q A$, treat all other variables as constants and differentiate with respect to Q
- ▶ If $A(P, Q, R) = P^4 Q - 5Q^3 R^2 + e^{-PQR}$, then

$$\partial_P A = 4P^3 Q + e^{-PQR}(-QR) = 4P^3 Q - QRe^{-PQR}$$

$$\partial_Q A = P^4 - 15Q^2 R^2 - PRe^{-PQR}$$

$$\partial_R A = -10Q^3 R - PQe^{-PQR}$$

Higher Order Derivatives

If $P(A, B) = e^{AB^2 - A^2B}$,

$$P_A = (B^2 - 2AB)e^{AB^2 - A^2B}$$

$$P_B = (2AB - A^2)e^{AB^2 - A^2B}$$

$$\begin{aligned}P_{AA} &= (-2B)e^{AB^2 - A^2B} + (B^2 - 2AB)(B^2 - 2AB)e^{AB^2 - A^2B} \\&= (-2B + (B^2 - 2AB)^2)e^{AB^2 - A^2B}\end{aligned}$$

$$\begin{aligned}P_{AB} &= (-2A)e^{AB^2 - A^2B} + (B^2 - 2AB)(2AB - A^2)e^{AB^2 - A^2B} \\&= (-2A + (B^2 - 2AB)(2AB - A^2))e^{AB^2 - A^2B}\end{aligned}$$

$$\begin{aligned}P_{BA} &= (-2A)e^{AB^2 - A^2B} + (2AB - A^2)(B^2 - 2AB)e^{AB^2 - A^2B} \\&= (-2A + (2AB - A^2)(B^2 - 2AB))e^{AB^2 - A^2B}\end{aligned}$$

$$P_{BB} = (2AB - A^2)^2 e^{AB^2 - A^2B}$$

Mixed Partial Commute

- ▶ If a function, its partial derivatives, and its second partial derivatives are all continuous, then it does not matter which order the second partials are calculated
- ▶ Given a function $Q(B, C, D)$,

$$\partial_C(\partial_B Q) = \partial_B(\partial_C)B$$

$$(Q_C)_D = (Q_D)_C$$

$$(Q_B)_D = (Q_D)_B$$

- ▶ Example: $f(x, y) = xe^{xy}$

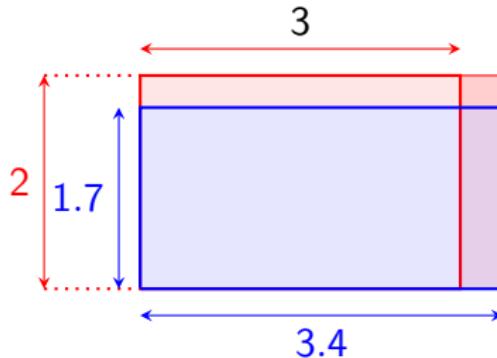
$$f_x = 1(e^{xy}) + x(ye^{xy}) = (1 + xy)e^{xy}$$

$$(f_x)_y = x(e^{xy}) + (1 + xy)(xe^{xy}) = (2x + x^2y)e^{xy}$$

$$f_y = x(xe^{xy}) = x^2e^{xy}$$

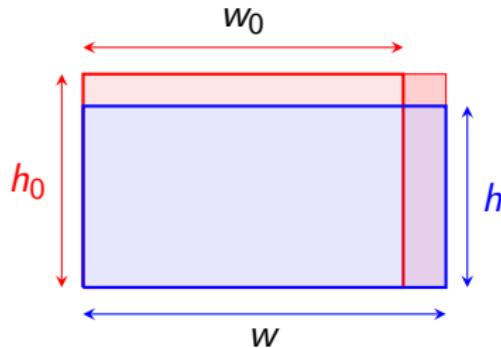
$$(f_y)_x = (2x)(e^{xy}) + x^2(ye^{xy}) = (2x + x^2y)e^{xy}$$

Estimate Area of a Box



- ▶ Estimate the area of a box with dimensions 3.4 by 1.7;
- ▶ Zeroth order estimate: $A = 3(2) = 6$
- ▶ First order estimate:
$$A = 6 - 3(0.3) + 2(0.4) = 6 - 0.9 + 0.8 = 5.9$$
- ▶ Exact answer: $3.4(1.7) = 5.78$

Estimate Area of a Box



- ▶ Estimate the area of a box with dimensions w by h
- ▶ Zeroth order estimate: $A_0 = w_0 h_0$
- ▶ First order estimate: $A_1 = A_0 + w_0(h - h_0) + h_0(w - w_0)$
- ▶ Exact answer:

$$\begin{aligned} A &= (w_0 + (w - w_0))(h_0 + (h - h_0)) \\ &= w_0 h_0 + w_0(h - h_0) + h_0(w - w_0) + (w - w_0)(h - h_0) \\ &= A_1 + (w - w_0)(h - h_0) \end{aligned}$$

Linear Approximation

- ▶ Suppose (x, y) is close to (x_0, y_0)
- ▶ Given a function $f(x, y)$,

$$f(x, y) \simeq f(x_0, y_0)$$

+ (change in f due to change in x)

+ (change in f due to change in y)

$$\simeq f(x_0, y_0) + (f_x(x_0, y_0))(x - x_0) + (f_y(x_0, y_0))(y - y_0)$$

- ▶ Right side, with (x_0, y_0) held fixed, is a linear function of (x, y)

$$L(x, y) = f(x_0, y_0) + (f_x(x_0, y_0))(x - x_0) + (f_y(x_0, y_0))(y - y_0)$$

- ▶ This is called the *linear approximation of f at (x_0, y_0)*
- ▶ Note similarity to

$$z = c + a(x - x_0) + b(y - y_0)$$

Example of Linear Approximation

- ▶ Suppose $f(x, y) = \sqrt{x^2 + y^2}$
- ▶ $f(3, 4) = 5$
- ▶ $f(3.1, 3.9) = ?$
- ▶ $f_x = \partial_x((x^2 + y^2)^{1/2}) = \frac{x}{\sqrt{x^2 + y^2}}$
 - ▶ $f_x(3, 4) = \frac{3}{5}$
- ▶ $f_y = \partial_y((x^2 + y^2)^{1/2}) = \frac{y}{\sqrt{x^2 + y^2}}$
 - ▶ $f_y(3, 4) = \frac{4}{5}$
- ▶ Therefore,

$$\begin{aligned}f(3.1, 3.9) &\simeq f(3, 4) + f_x(3, 4)(3.1 - 3) + f_y(3, 4)(3.9 - 4) \\&= 5 + \frac{3}{5}(0.1) + \frac{4}{5}(-0.1) \\&= 5 + 0.6 - 0.8 = 4.8\end{aligned}$$

Example of Linear Approximation

- ▶ Suppose

$$f(1, 2) = 2, \quad f_x(1, 2) = 3, \quad f_y(1, 2) = 5$$

- ▶ Estimate $f(0.8, 2.1)$
- ▶ The zeroth order approximation is

$$f(0.8, 2.1) \simeq f(1, 2) = 2$$

- ▶ The first order (or linear) approximation is

$$\begin{aligned}f(0.8, 2.1) &\simeq f(1, 2) + f_x(1, 2)(0.8 - 1) + f_y(1, 2)(2.1 - 2) \\&= 2 + 3(-0.2) + 5(0.1) \\&= 2 - 0.6 + 0.5 \\&= 1.9\end{aligned}$$

Another Example of Linear Approximation

- ▶ Suppose we want to estimate $Q(-0.1, 1.12)$, where

$$Q(A, B) = B e^{2AB}$$

- ▶ $(-0.1, 1.12)$ is close to $(0, 1)$ and $Q(0, 1) = 1$
- ▶ Partials of Q are $Q_A = 2B^2 e^{AB}$ and $Q_B = e^A + 2BAe^{AB}$
- ▶ Therefore,

$$Q(0, 1) = 1$$

$$Q_A(0, 1) = 2$$

$$Q_B(0, 1) = 1$$

$$\begin{aligned}Q(-0.1, 1.12) &\simeq Q(0, 1) + Q_A(0, 1)(-0.1 - 0) \\&\quad + Q_B(0, 1)(1.12 - 1) \\&= 1 - 2(0.1) + 0.12 \\&= 0.92\end{aligned}$$