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Limit of a Function

» Suppose f(x,y) is a function with domain D and (xp, o) € D
>

lim f(x,y)=1L,
(X>y)_>(X0>y0) ( y)

means the following: If (x1,y1), (x2, ¥x), ... is any sequence of
points such that

lim (xk,yk) = (X07y0)v
k—o00

then

lim f(xk,yk) =1
k—o00



Informal Rules on Limits

» Consider

lim f(x,
(x,y)=(x0,%0) bey)

> Assume f is defined by a single formula

» First, try substituting (xp, yo) into the formula for f

> If f(xo0, ¥0) has a valid value, then the limit is f(xo, yo)
> If f(xo,¥0) is equal to an undefined expression such as

nonzero - .
T /negative, or log(nonpositive),

then the limit is undefined
> If f(xo, o) is equal to an indeterminate expression such as

0,
0 oo

then you have to investigate further



Examples of Limits

2 2
> lim Y

(xy)—(1,0) X2 — y2

2 2

> ( )Iir?l N 22 % is undefined

X,_y — ot -

2 2

> is indeterminate

im =
(x,y)—(0,0) X= — ¥
» Need to investigate further



Detection of Undefined Limits

» Consider

lim f(x,
(x:y)=(x0.0) ()

» If there is a sequence (xk, yx) — (x0, yo) such that every
f(xk, yk) is undefined, then the limit is undefined

» If there is a sequence (xk, yk) — (X0, Y0) such that the
sequence f(xk, yk) has no limit, then the limit is undefined
then the limit is undefined

> If there is a sequence
(xk, Yk) — (X0, y0) such that f(xx,yx) — L

and another sequence
(%, k) — (%o, o) such that (%, %) — L,

and L # L, the the limit is undefined



Examples of Undefined Limits

» Consider lim ﬂ
(x,y)—(0,0) X2 — y?

> If (X, yk) = %. then (xi,yx) — (0,0), but

Xk + 2y, %“r
TR R

X
>;:‘,_. XN

» Therefore, the limit is undefined
2
. . X< — X
» Consider lim 27)2/
(x,y)—(0,0) X + y

> If (xk, y«) = (%,0), then (xi, yx) — (0,0) and

X2 —xyk -0
X¢+yi  E+0

=1—1

> If (xk, yx) = (0, %), then (xi, yx) — (0,0) and

x,%—xkyk ~0-0

= =0-—-0
xx+y? 041

» No limit because answers are inconsistent

is undefined for every k



Example of a Convergent Limit

> Consider
i 2x%y — 5xy?
(xy)—(0,0) x> +3y2
> Key observations:

» Denominator is never zero when (x,y) # (0,0)
> 24 3y2 > 52 4 2
> Ixl vl < Vx4 y?

» For each (x,y) # 0, the measurement error is

2x%y — Bxy? < 2|x|2]y| + 5|x||y|?
X2+ 3y2 21y
7(x% + y?)3/2 2, 2\1/2
S magr ST

> Since, lim(x,)—(0,0) V' X? + y? = 0, the limit is zero



Evaluation of a Limit

» Consider

lim  (single formula in x and y)
(X,Y)‘)(XO,YO)

» First, try plugging (x,y) = (xo, o) into the formula
> If it works, then the answer is the limit
» |f it is undefined, then the limit is undefined
P |f it is indeterminate, need to investigate further



Limit at (0,0) of a Rational Function

» Consider o
polynomial in x, y

(x,y)—(0,0) polynomial in x, y

» Plug (x,y) = (0,0) into the formula
» |f the denominator is nonzero, then the limit exists
» |f the denominator is zero and the numerator is nonzero, then
the limit does not exist
» Rules of thumb (Added in revised version of these slides):
» Let p be the lowest degre of terms in the numerator
P> Let p be the lowest degre of terms in the numerator
> If p < g, then the limit is undefined
» If p > g, then the limit is 0

» These conclusions need to be justified



First Attempt
» Consider the limit

f
lim (Xa y) ’ (1)
(x.y)=(0,0) &(x, ¥)
where f and g are polynomials
» First, plug the sequences
( _ (L 0 d =1{0 1
Xkayk) = PR an (Xk7)’k) = e
into (1) and consider
jim 0% (2)
k—o0 g(Xk)

» If (2) is undefined for either sequence, the (1) is undefined

» If the the limits of (2) are defined for both sequences but are
not equal, then the limit (1) is undefined

» If the the limits of (2) are defined for both sequences and are
equal, then proceed to next step



Second Attempt

> Let a and b be unspecified constants, to be chosen later and
plug the sequence
a b
(Xk,)/k) - (k) k>
into (2)

» You will get a formula that contains a and b only

> If it is possible to choose values for a and b such that the
formula is undefined, then the limit (1) does not exist

» This will usually happen if p < g

> If it is possible to choose values for a and b and get two
different values for the formula, then the limit (1) does not
exist

» This will usually happen if p=gq
» If the formula is a constant that depends on neither a nor b,
then proceed to next step



Third Attempt

» Verify that the denominator g(x, y) is never zero, no matter
what x and y are
> Key facts to use:

|A+ Bl < |A[+|B|, |AB| = |A]|B], |A],|B| = V A* + B

P> Use key facts to find a constant d > 0 such that the
denominator satisfies

g(x,¥)| = d(x* +y*)"2 if (x,y) # (0,0)
and a constant ¢ > 0 such that the numerator satisfies
lg(x,y)| < c(x* + y2)P/? for all (x,y)
» Therefore, since p < q,
2 2\p/2
(x)(0.0) ;g ﬁ = o Too) ccfg2 xz;q/ 2

C
= lim —(x2+yA)P9/2 9
(x.y)—(0,0) d( v




If none of the above works, move on to another problem



Continuity of a function

» A function f is continuous, if it never jumps suddenly in value
» A function f is continuous at a point (xp, yp) in its domain, if

lim  f(x,y) = f(x0, y0)
(x,¥)—(x0,%0)

» A continuous function has a continuous graph with no sudden
jumps

» The function f(x,y) = /1 — x2 4+ y? is continuous for all
(x,y) in the domain of f

» The function

f(x,y) = {\/m, if (x,y) # (0,0)

0, otherwise

is not



Continuous Extension of a Function

» The function ) )
2x“y — bxy
f =27 7

is defined and continuous for all (x,y) # (0, 0)

» However, since

lim f(x,y)= im
(x.y)—(0,) () (x.y)—(0,0) X2+ 3y2

the function

~Jfxy)  if(xy) #0
g(x’y)_{o if (x,y)=0

is defined and continuous for all (x, y)

2x2%y — Bxy? _

0,



Derivative of a Function

input —» f —— output

» The derivative of a function measures the senstivity of the
function to a small change in input

change in output

f'(input) ~
(input) change in input

A constant function has sensitivity zero
A linear function has constant sensitivity
The sensitivity of a nonlinear function depends on the iput
Given f(1) =3 and /(1) = —2, estimate 7(0.8)
Change in output ~ (sensitivity)(change in input)
=(-2)(-0.2)=04
(0.8) — (1) ~ (sensitivity)(change in input)
=(-2)(0.8—-1)=04
f(0.8) ~ (1) 4+ (f(0.8) — f(1)) =3+0.4=3.4



Partial Derivatives

Q —> A — A(P,Q,R)

» Sensitivity to a small change in one of the inputs, while
keeping the others unchanged

0A small change in A
—— (P Ro) ~
ao( 0, Qo, Ro)

small change in Q
_ A(Po, Q1, Ro) — A(Po, Qo, Ro)
Q1 — Qo

P Total change in A estimated by adding partial changes

A(Plv Q17 Rl) - A('D0> QOa RO)

0A 0A
o~ 87P(P0’ Qo; Ro)(P1 — Po) + 70

0A
+ 87R(P0’ Qo, Ro)(R1 — Ro)

(Po, Qo, Ro)(Q1 — Qo)



Calculating Partial Derivatives

» Shorthand: Ag = 0gA = gg

» To calculate JgA, treat all other variables as constants and
differentiate with respect to @

> If A(P,Q,R) = P*Q — 5Q@3R? + e POR | then
OpA = 4P3Q + e POR(—QR) = 4P3Q — QRe™FOR
DA = P* —15Q*R? — PRe~P@R
OrA = —10Q3R — PQe PR



Higher Order Derivatives

If P(A,B) =

(
(
(=
(=
(=
(=
(=
(=
= (

2_ A2
eAB —A B'

B2 — 2AB)e”B*~#B
2AB — A2) AB2—A2B

2B)e”B’~A°B | (B2 — 2AB)(B? — 2AB)e”B*~A°B
2B + (B? — 2AB)?)e”B* A8

2A)eAB*~AB | (B2 _ 2AB)(2AB — A%)eB* 4B
2A+ (B% — 2AB)(2AB — A2))e”B*~A°B
2A)e?B~AB | (2AB — A%)(B% — 2AB)e”B’~A’B
2A + (2AB — A%)(B2 — 2AB))e"B*~A’B

2AB — A2)2 AB2—A2B



Mixed Partial Commute

» If a function, its partial derivatives, and its second partial
derivatives are all continuous, then it does not matter which
order the second partials are calculated

» Given a function Q(B, C, D),

fr = 1(e¥) + x(ye?¥) = (1 + xy)e¥
(f)y = x(€Y) + (L+xy)(xe¥) = (2x + x°y)e?¥
f, = x(xe¥) = x?e¥

(f)x = (2x)(€¥) + x*(ye) = (2x + x*y)e?



Estimate Area of a Box

3.4

» Estimate the area of a box with dimensions 3.4 by 1.7;
» Zeroth order estimate: A=3(2) =6
> First order estimate:
A=6-3(0.3)+2(0.4) =6—-09+0.8=5.9
» Exact answer: 3.4(1.7) =5.78



Estimate Area of a Box

wo

P> Estimate the area of a box with dimensions w by h

» Zeroth order estimate: Ag = wphg

» First order estimate: A; = Ao + wo(h — ho) + ho(w — wp)
» Exact answer:

A= (wo + (w — wp))(ho + (h — ho))

= wohg + Wo(h - ho) + ho(W — Wo) + (W - Wo)(h — ho)
= A1 + (W — W())(h — ho)



Linear Approximation

» Suppose (x, y) is close to (xo, yo)
» Given a function f(x, y),

f(x,y) =~ f(x0, y0)
+ (change in f due to change in x)
+ (change in f due to change in y)

=~ f(x0, y0) + (F(x0, ¥0))(x — x0) + (,(x0, ¥0))(y — ¥0)
» Right side, with (xo, y0) held fixed, is a linear function of (x, y)
L(x,y) = f(x0, y0) + (f(x0, ¥0))(x — X0) + (£, (%0, ¥0)) (¥ — ¥0)

» This is called the linear approximation of f at (xo, yo)
» Note similarity to

z=c+ a(x—x0) + b(y — w)



Example of Linear Approximation
> Suppose f(x,y) = /x2 + y?
> f(3,4)=5

> £(3.1,3.9) =7

B

= 008 4 YN = ey
> (34)= ]

> =002+ = s
> 534 =¢

» Therefore,
f(3.1,3.9) ~ f(3,4) + £(3,4)(3.1 - 3) + £,(3,4)(3.9 — 4)
3 4
=5+ -(0.1 —(—=0.1
+2(01) + £(-01)
=54+06—-0.8=4.38



Example of Linear Approximation

» Suppose
f(1,2) =2, £(1,2) =3, £,(1,2) =5

» Estimate 1(0.8,2.1)

» The zeroth order approximation is
f(0.8,2.1) ~ f(1,2) =2
» The first order (or linear) approximation is

£(0.8,2.1) ~ £(1,2) + £(1,2)(0.8 — 1) + £,(1,2)(2.1 — 2)
=2+ 3(—0.2) +5(0.1)
—2-06+05
=19



Another Example of Linear Approximation
» Suppose we want to estimate Q(—0.1,1.12), where
Q(A, B) = Be*4B

» (—0.1,1.12) is close to (0,1) and Q(0,1) =1
» Partials of Q are Q4 = 2B%2e”B and Qg = e” + 2BAeAB
» Therefore,

Q(0,1)=1
QA(()? 1) =2
QB(O’ 1) =1

Q(—0.1,1.12) ~ Q(0,1) + Qa(0,1)(—0.1 — 0)
+ Qp(0,1)(1.12 - 1)
=1-2(0.1)+0.12
=0.92



