

MATH-UA 123 Calculus 3: Quadric Surfaces

Deane Yang

Courant Institute of Mathematical Sciences
New York University

September 22, 2021

START RECORDING LIVE TRANSCRIPT

Quadric Surfaces

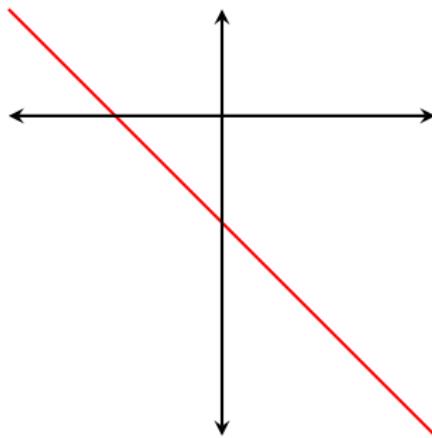
- ▶ A quadric surface is a surface in 3-space given by a quadratic polynomial

$$ax^2 + 2bxy + cy^2 + dy^2 + 2eyz + fz^2 + gx + hy + pz = q$$

- ▶ First, review quadratic curves in the plane

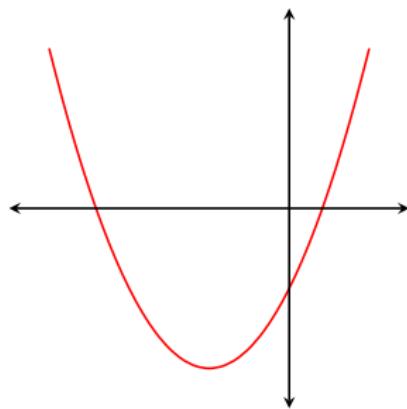
$$ax^2 + by^2 + cx + dy = e$$

Line

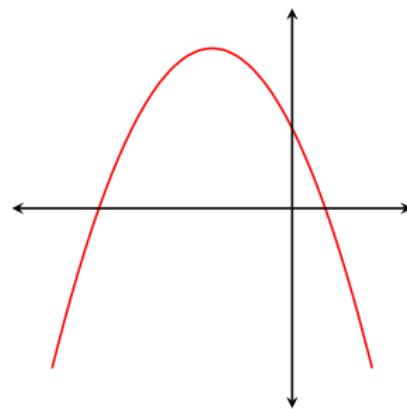


$$ax + by = c$$

Parabolas

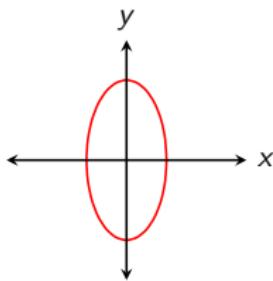


- ▶ $y = ax^2 + bx + c$, where $a > 0$



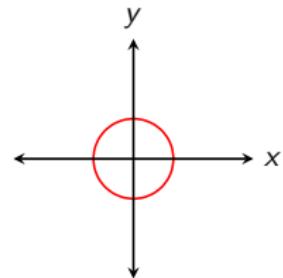
- ▶ $y = ax^2 + bx + c$, where $a < 0$

Ellipses and Circles



Ellipse where major and minor axes are the x and y axes:

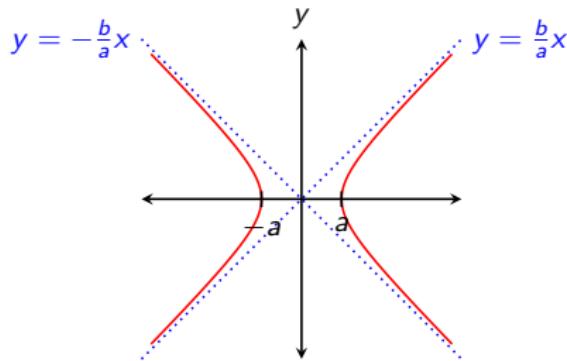
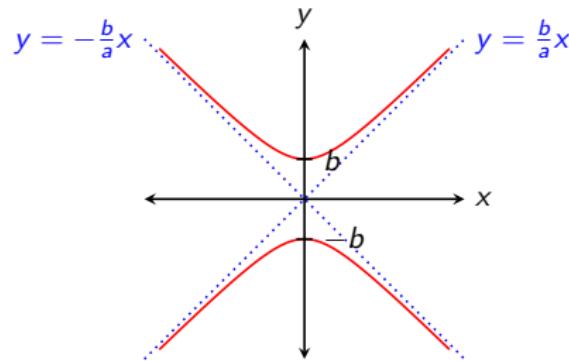
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$



If $a = b$, then a circle of radius a centered at the origin

$$x^2 + y^2 = a^2$$

Hyperbolas



►
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

► Asymptotes: $y = \pm \frac{b}{a}x$

► Vertices: $(\pm a, 0)$

►
$$\frac{x^2}{a^2} = 1 + \frac{y^2}{b^2}$$

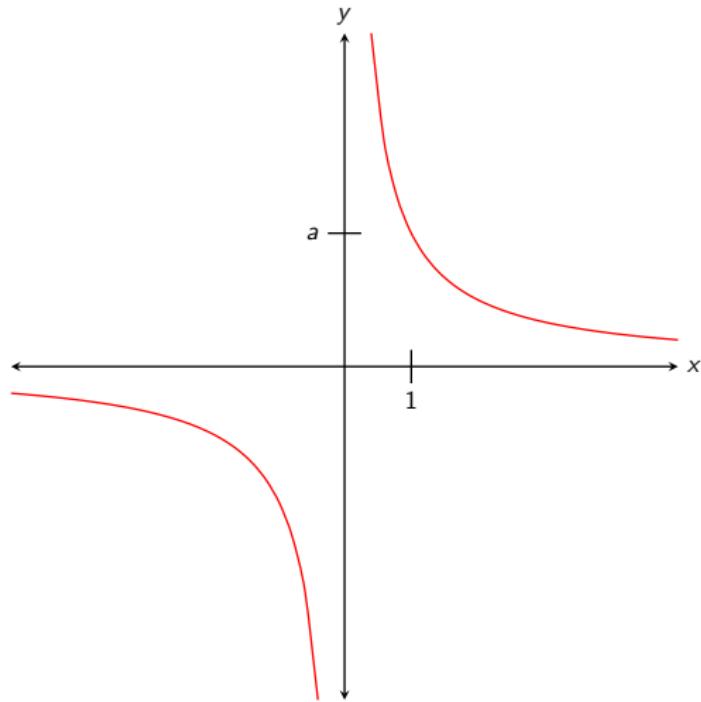
►
$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

► Asymptotes: $y = \pm \frac{b}{a}x$

► Vertices: $(0, \pm b)$

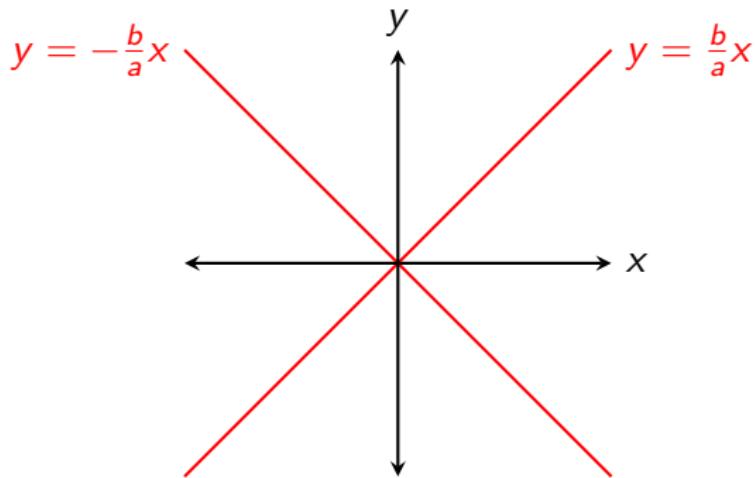
►
$$\frac{y^2}{b^2} = 1 + \frac{x^2}{a^2}$$

Hyperbolas



$$y = \frac{a}{x} \text{ or } xy = a$$

Crossing Lines

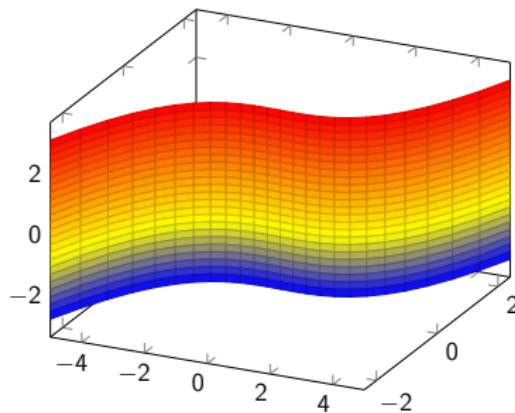


- ▶ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
- ▶ $\left(\frac{x}{a} - \frac{y}{b}\right) \left(\frac{x}{a} + \frac{y}{b}\right) = 0$
- ▶ Union of the lines $y = \pm \frac{a}{b}x$

Traces of a Surface

- ▶ A trace is the intersection of the surface with a plane
- ▶ It is usually either a curve or a point
- ▶ Drawing the traces for different planes usually gives a good picture of the surface
- ▶ Usually use planes parallel to one of the coordinate planes
 - ▶ $z = c$ for different values of c
 - ▶ $y = c$ for different values of c
 - ▶ $x = c$ for different values of c

Cylinders



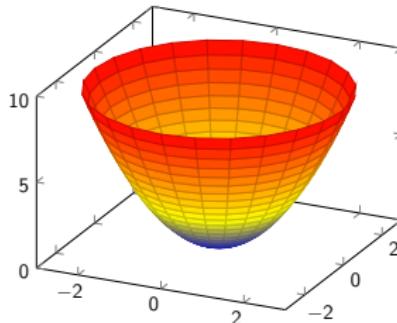
- ▶ The surface

$$S = \{(x, y, z) : f(x, y) = c\}$$

consists of the union of vertical lines that pass through the curve $f(x, y) = c$ in the xy -plane

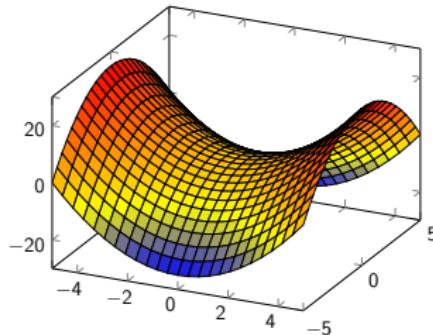
- ▶ S is an example of a ruled surface (a surface that is a union of lines)

Elliptic Paraboloids



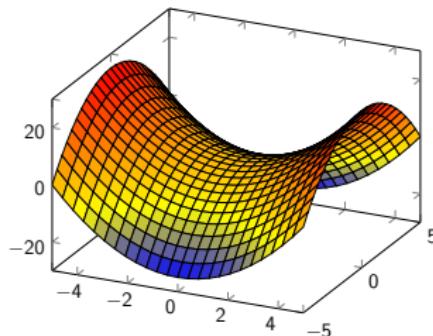
- ▶ Graph: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
- ▶ Trace of $z = c$ is the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = c$
- ▶ If $c < 0$, there is no trace, so surface lies above xy -plane
- ▶ If $c = 0$, the trace is only the point $(0, 0)$, so surface touches xy -plane only at the origin
- ▶ If $c > 0$, the trace is an ellipse, and as c increases, the ellipse increases in size

Hyperbolic Paraboloid



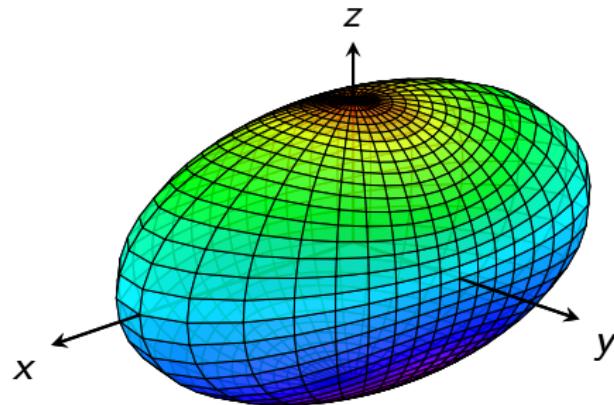
- ▶ Graph: $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$
- ▶ Trace of $z = c$ is the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = c$
- ▶ If $c = 0$, the trace is the intersection of two lines
- ▶ If $c > 0$, the trace is a hyperbola with asymptotes $y = \pm \frac{b}{a}x$ and containing the points $(\pm a\sqrt{c}, 0)$
- ▶ If $c < 0$, the trace is a hyperbola with asymptotes $y = \pm \frac{b}{a}x$ and containing the points $(0, \pm b\sqrt{|c|})$

Hyperbolic Paraboloid



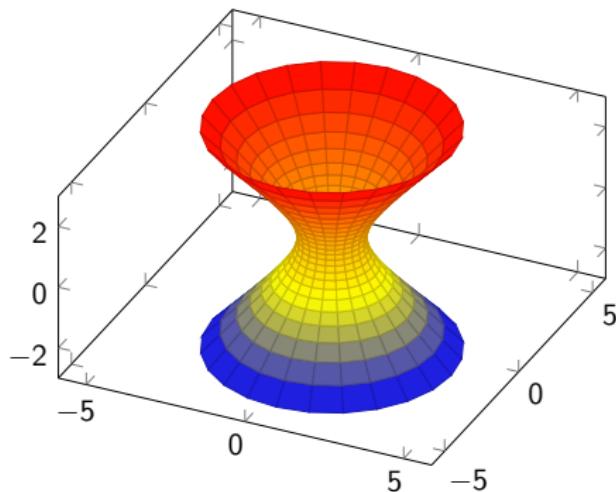
- ▶ Trace of $y = c$ is the curve $z = \frac{x^2}{a^2} - \frac{c^2}{b^2}$, which is an upright parabola. When $c = 0$, the bottom of the parabola touches the origin. As c^2 increases, the parabola moves downward
- ▶ Trace of $x = c$ is the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$, which is an upside down parabola. When $c = 0$, the top of the parabola touches the origin. As c^2 increases, the parabola moves upward
- ▶ The surface is saddle-shaped

Ellipsoid



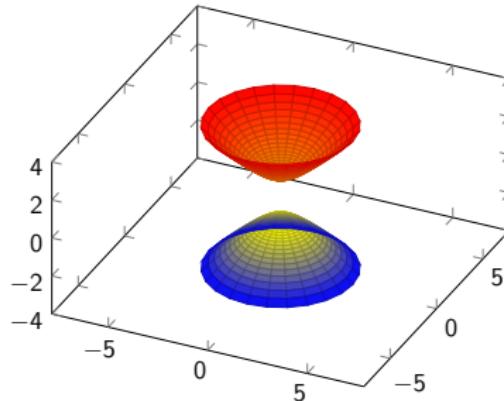
- ▶ $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- ▶ Contains the points $(\pm a, 0, 0)$, $(0, \pm b, 0)$, $(0, 0, \pm c)$
- ▶ If $a = b = c$, then it is a sphere of radius a
- ▶ Traces are all ellipses:
 - ▶ The trace of $z = h$ is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}$
 - ▶ The trace of $y = h$ is $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1 - \frac{h^2}{b^2}$
 - ▶ The trace of $x = h$ is $\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \frac{h^2}{a^2}$

1-sheeted Hyperboloid



- ▶ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
- ▶ Trace of $z = h$ is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2}$, which is an ellipse
- ▶ Ellipse is smallest when $h = 0$ and increases in size as h grows in magnitude
- ▶ Traces of xz -plane and yz -plane are hyperbolas

2-sheeted Hyperboloid



- ▶ $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$
- ▶ Trace of $z = h$ is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 + \frac{h^2}{c^2}$
 - ▶ If $-c < h < c$, then the trace is empty
 - ▶ If $h = c$ or $h = -c$, then the trace is a single point
 - ▶ If $h > c$ or $h < -c$, then the trace is an ellipse,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1$$

- ▶ Traces of xz -plane and yz -plane are hyperbolas