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Parallelopiped spanned by 3 Vectors in 3-space

~a

~b

~c

~a× ~b

I Three vectors ~a, ~b, ~c are linearly independent, if ~c does not
lie in the plane containing ~a and ~b

I Three linearly independent vectors span a parallelopiped

I An ordered triple of linearly independent vectors, (~a, ~b, ~c), has
positive orientation, if it obeys the righthand rule.

I (~a, ~b, ~c) has positive orientation if and only if

~c · (~a× ~b) > 0.



Volume of a Parallelopiped
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h = ~c · ~u
~u

~a× ~b

I Volume = (area of base)(height)

I Area of base = |~a× ~b|
I Height = |c~u(~c)| = |~c · ~u|, where

~u =
~a× ~b

|~a× ~b|



Unoriented Volume of a Parallelopiped
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The unoriented volume V of the parallelopiped is equal to

|V | = (area of base)(height)

= |~a× ~b||~c · ~u|

= |~a× ~b|

∣∣∣∣∣~c · ~a× ~b

|~a× ~b|

∣∣∣∣∣
= |(~a× ~b) · ~c |



Oriented Volume of a Parallelopiped

I Define the oriented volume of a parallelopiped to be

V = (~a× ~b) · ~c .

I If (~a, ~b, ~c) has positive orientation, then V > 0

I If (~a, ~b, ~c) has negative orientation, then V < 0



Lines in 2-space
A line in the xy -plane can be described using equations in at least
3 different ways.
I Graph,

y = mx + b,

where m is the slope and b is the y -intercept
I This does not include vertical lines

I Linear equation
Ax + By = C

I A vertical line is given by x = C
I Linear parameterization: Given any point (x0, y0) on the line

and nonzero vector ~v = 〈v1, v2〉 parallel to the line, then, for
any scalar t,

(x(t), y(t)) = (x0, y0) + t~v ,

lies on the line. Conversely, for any point (x1, y1) on the line,
there is a scalar t1 such that

(x1, y1) = (x0, y0) + t~v ,



Lines in 2-space
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−x + 4y = 4

(x(t), y(t)) = (0, 1) + t〈4, 1〉
P(t) = P0 + t~a

x = −2

(x(t), y(t)) = (−2, 3) + t〈0,−2〉

Q(t) = Q0 + t~b



Two Distinct Points Uniquely Determine a Line
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I Linear equation: The slope is m = −2
3 and P1 = (−2, 0) is a

solution to y = mx + b. Therefore, the equation is

y = −2

3
x − 4

3
or 2x + 3y = −4

I Linear parameterization: Since

P0 = (−5, 2), P1 = (−2, 0), ~a = P1 − P0 = 〈3,−2〉,
the linear parameterization

P(t) = P0 + t~a

becomes

(x(t), y(t)) = (−5, 2) + t〈3,−2〉 = (−5 + 3t, 2− 2t)



Two Distinct Points Uniquely Determine a Line

I Given two different points P0 = (x0, y0) and P1 = (x1, y1),
there is a unique line containing them.

I Linear equation:
I If x0 = x1, then the line is vertical and given by x = x0
I Otherwise, you can solve for m and b such that the points P0

and P1 are solutions to the equation y = mx + b

I A linear parameterization:
I P(t) = P0 + t(P1 − P0) = P0 + t~v , where ~v = P1 − P0

I P(0) = P0, P(1) = P1



Equations of a Plane in 3-space

A plane in 3-space can be described using equations in at least 3
ways:

I Graph:
z = ax + by + c

I This does not include vertical planes

I Linear equation
Ax + By + Cz = D

I A vertical plane always has an equation of the form

Ax + By = D



Linear Parameterization of a Plane in 3-space

x

y

z

•
P0 = (4, 4, 1)

~w ~v

I Let P0 = (x0, y0, z0) be a point on a plane
I Let ~v and ~w be nonzero non-parallel vectors
I Given any pair of parameters (s, t),

P0 + s~v + t ~w

lies on the plane
I Conversely, given any point P1 on the plane, there exists

(s1, t1) such that

P1 = P0 + s1~v + t1~w



Three Non-collinear Points Uniquely Determine a Plane
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•
P0 = (4, 4, 1)

P1 = (0, 4, 2)P2 = (4, 0, 3)

~w = P2 − P0 ~v = P1 − P0

I Linear equation: Later
I Linear parameterization:

P(s, t) = P0 + s(P1 − P0) + t(P2 − P0)

= P0 + s~v + t ~w

(x(s, t), y(s, t), z(s, t)) = (4, 4, 1) + s(−4~i + ~k) + t(−4~j + 2~k)

= (4− 4s, 4− 4t, 1 + s + 2t)



Normal Vector to a Plane
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I A vector ~v is said to be parallel to a plane, if any line parallel
to ~v either lies entirely in the plane or never intersects the
plane

I A vector ~a is normal to a plane, if, for any vector ~v that is
parallel to the plane, ~a · ~v = 0

I A vector ~a is normal to a plane if, for any two points Q0 and
Q1 in the plane, ~a · (Q1 − Q0) = 0



Equation of Plane from Its Normal
I Suppose ~a is a vector normal to and Q0 is a point in a plane A
I A point Q lies in A if and only if Q −Q0 is a vector normal to

~a
Q ∈ A ⇐⇒ ~a · (Q − Q0) = 0.

I Example: Suppose A is a plane containing the point (1,−1, 0)
and the vector 2~i + ~k is normal to A. A point Q = (x , y , z)
lies in A if and only if

0 = ~a · (Q − Q0)

= (2~i + k) · ((x , y , z)− (1,−1, 0))

= (2~i + k) · ((x − 1)~i + (y + 1)~j + z~k)

= 2(x − 1) + z

= 2x + z − 2

I The plane A is the set of solutions to

2x + z = 2



Normal Vector From Equation of Plane
I Any plane is given by an equation of the form

Ax + By + Cz = D

I Therefore, given any two points P0 − (x0, y0, z0) and
P1 = (x1, y1, z1) in the plane,

Ax1 + By1 + Cz1 = D

Ax0 + By0 + Cz0 = D

I Subtracting the two equations above, we get

A(x1 − x0) + B(y1 − y0) + C (z − z0) = 0

I If we set ~n = A~i + B~j + C~k , then this becomes

~n · (P1 − P0) = 0

I Since this holds for any two points in the plane, it follows that
~n is a normal vector to the plane



Upshot: Normal Vector of Plane = Cofficients of Equation

I If a plane is given by an equation Px + Qy + Rz = S , then
~n = P~iQ~j + R~k is normal to the plane

I If the normal vector of a plane Σ is ~n = ~in1 + ~jn2 + ~kn3, then,
for any constant D, the plane given by

n1x + n2y + n3z = D

is parallel to Σ. There is a unique value of D such that this
plane is equal to Σ.

I Example: A normal vector of the plane given by

−x + 2y + 5z = 17

is ~n = −~i + 2~j + 5~k and a unit normal vector of

~u =
~n

|~n|
=
−~i + 2~j + 5~k√

30
.



Equation of Plane Given Three Non-Collinear Points

I Suppose P0,P1,P2 are three non-collinear points in 3-space

I A linear parameterization of the plane containing all three
points is

P(t) = P0 + s(P1 − P0) + t(P2 − P0) = P0 + s~v + t ~w

I Then the vectors ~v = P1 − P0 and ~w = P2 − P0 are not
parallel

I Therefore, ~v × ~w 6= ~0,

I If ~n = ~v × ~w 6= ~0, then it is normal to the plane. Therefore,
an equation of the plane is

0 = (~v × ~w) · (P − P0)



Example

I Consider three points A = (1, 1, 1), B = (−2, 0, 1),
C = (2, 3, 1)

I Let Σ be a plane containing A,B,C

I Let ~a = C − B = 〈4, 3, 0〉 and ~b = A− C = 〈−1,−2, 0〉.
I A normal to Σ is

~n = ~a× ~b = (4~i + 3~j)× (−~i − 2~j) = (−8 + 3)~k = −5~k

I Therefore, an equation for Σ is of the form

0x + 0y − 5z = D

I Since (1, 1, 1) lies in Σ, it follows that D = −5 and an
equation of the plane is

−5z = −5 or, equivalently, z = 1

I There is only one possible plane D containing A, B, C



Another Example
I Let P = (4,−8, 16), Q = (4, 0, 8), and R = (4,−6, 14)

I Let ~v = R − P = 2~j − 2~k and ~w = Q − R = 8~j − 8~k

I A normal to a plane containing P,Q,R is

~n = ~v × ~w = (2~j − 2~k)× (8~j − 8~k) = 0

I Note that ~v and ~w point in the same direction

I Therefore, P,Q,R lie along a line, and there are infinitely
many planes containing them

I Suppose ~n is a nonzero vector normal to ~v and therefore also
to ~w , such as ~n = ~i

I A plane normal to ~n therefore has an equation of the form

x = D

I If D = 4, then P,Q,R all lie in the plane

I Any other choice of ~n normal to ~v and ~w also works

I Another possible choice is ~n = ~j + ~k



Geometric Description of Line in 3-Space
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I Given two distinct points in 3-space, there is a unique line
containing them

I The intersection of two non-parallel planes is a line



Description of Line in 3-Space Using Equations
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I Linear parameterization: For each t ∈ R,

(x(t), y(t), z(t)) = (x0, y0, z0) + t〈v1, v2, v3〉

I The set of all points Q such that

~n1 · (Q − P) = 0 and ~n2 · (Q − P) = 0

I The set of solutions (x , y , z) to

a1x + b1y + c1z = d1 and a2x + b2y + c2z = d2



Example: Paramterization

I In general, given two distinct points P and Q, the
parameterized line

(x , y , z)(t) = P + t(Q − P)

satisfies (x , y , z)(0) = P and (x , y , z)(1) = Q and therefore is
a line that contains both P and Q

I A parameterized line that contains (1, 1, 0) and (0,−1, 1)

(x , y , z)(t) = (1, 1, 0) + t((0,−1, 1)− (1, 1, 0))

= (1, 1, 0) + t〈−1,−2, 1〉
= (1− t, 1− 2t, t)



Example: Intersection of Two Planes
I Start with two points, P = (1, 1, 0) and Q = (0,−1, 1)
I A plane contains the line through P and Q if its normal is

orthogonal to

~v = Q − P = (0,−1, 1)− (1, 1, 0) = 〈−1,−2, 1〉

I Two possible normals are

~n1 = ∠1, 0, 1〉 and ~n2 = 〈0, 1, 2〉

I The first plane has the equation

0 = ~n1 · ((x , y , z)−P) = 〈1, 0, 1〉 · 〈x − 1, y − 1, z〉 = x − 1 + z

I The second plane has the equation

0 = ~n2 · ((x , y , z)−P) = 〈0, 1, 2〉 · 〈x−1, y −1, z〉 = y −1 + 2z

I Therefore, the line is the intersection of the two planes and
therefore the set of solutions to

x + z = 1 and y + 2z = 1


