

MATH-UA 123 Calculus 3: Parallelepipeds, Lines, Planes

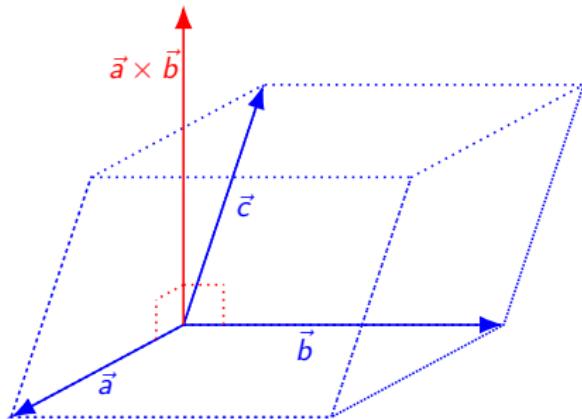
Deane Yang

Courant Institute of Mathematical Sciences
New York University

September 20, 2021

START RECORDING LIVE TRANSCRIPT

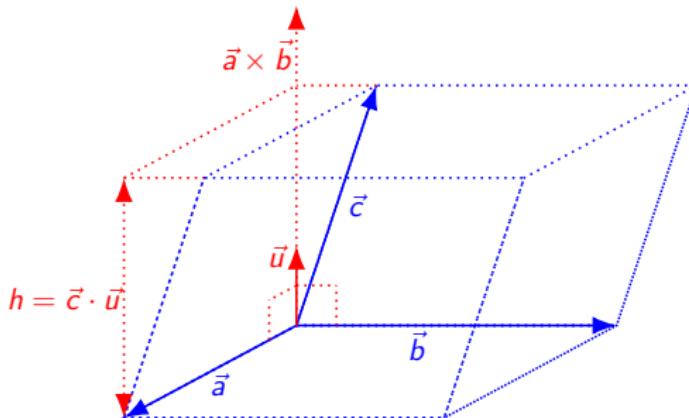
Parallelopiped spanned by 3 Vectors in 3-space



- ▶ Three vectors $\vec{a}, \vec{b}, \vec{c}$ are **linearly independent**, if \vec{c} does not lie in the plane containing \vec{a} and \vec{b}
- ▶ Three linearly independent vectors span a parallelopiped
- ▶ An ordered triple of linearly independent vectors, $(\vec{a}, \vec{b}, \vec{c})$, has positive orientation, if it obeys the righthand rule.
- ▶ $(\vec{a}, \vec{b}, \vec{c})$ has positive orientation if and only if

$$\vec{c} \cdot (\vec{a} \times \vec{b}) > 0.$$

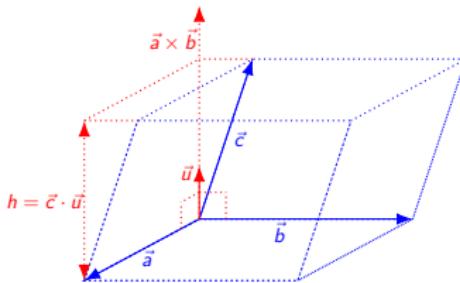
Volume of a Parallellopiped



- ▶ Volume = (area of base)(height)
- ▶ Area of base = $|\vec{a} \times \vec{b}|$
- ▶ Height = $|c_{\vec{u}}(\vec{c})| = |\vec{c} \cdot \vec{u}|$, where

$$\vec{u} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$$

Unoriented Volume of a Parallellopiped



The unoriented volume V of the parallellopiped is equal to

$$\begin{aligned}|V| &= (\text{area of base})(\text{height}) \\&= |\vec{a} \times \vec{b}| |\vec{c} \cdot \vec{u}| \\&= |\vec{a} \times \vec{b}| \left| \vec{c} \cdot \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \right| \\&= |(\vec{a} \times \vec{b}) \cdot \vec{c}|\end{aligned}$$

Oriented Volume of a Parallellopiped

- ▶ Define the oriented volume of a parallellopiped to be

$$V = (\vec{a} \times \vec{b}) \cdot \vec{c}.$$

- ▶ If $(\vec{a}, \vec{b}, \vec{c})$ has positive orientation, then $V > 0$
- ▶ If $(\vec{a}, \vec{b}, \vec{c})$ has negative orientation, then $V < 0$

Lines in 2-space

A line in the xy -plane can be described using equations in at least 3 different ways.

- ▶ Graph,

$$y = mx + b,$$

where m is the slope and b is the y -intercept

- ▶ This does not include vertical lines

- ▶ Linear equation

$$Ax + By = C$$

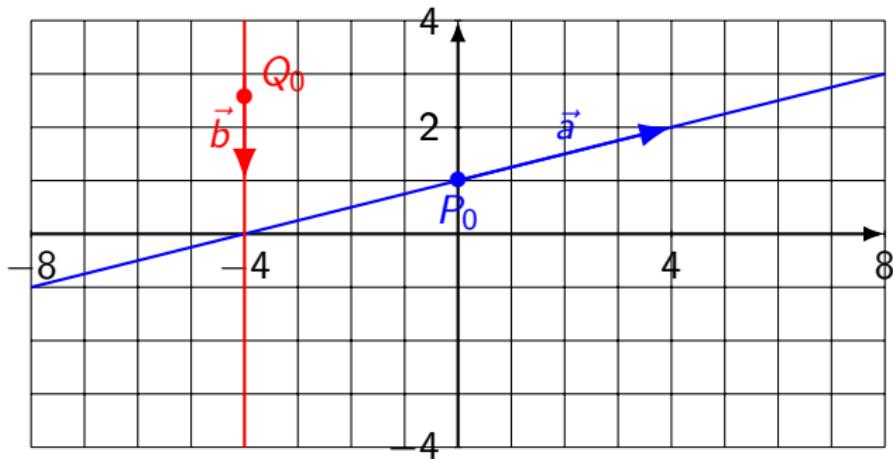
- ▶ A vertical line is given by $x = C$
- ▶ Linear parameterization: Given any point (x_0, y_0) on the line and nonzero vector $\vec{v} = \langle v_1, v_2 \rangle$ parallel to the line, then, for any scalar t ,

$$(x(t), y(t)) = (x_0, y_0) + t\vec{v},$$

lies on the line. Conversely, for any point (x_1, y_1) on the line, there is a scalar t_1 such that

$$(x_1, y_1) = (x_0, y_0) + t\vec{v},$$

Lines in 2-space



$$y = \frac{1}{4}x + 1$$

$$-x + 4y = 4$$

$$x = -2$$

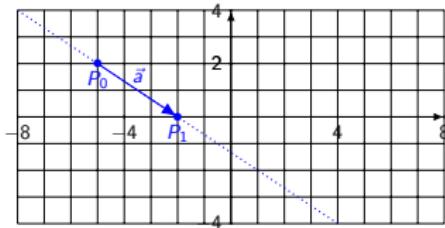
$$(x(t), y(t)) = (0, 1) + t\langle 4, 1 \rangle$$

$$(x(t), y(t)) = (-2, 3) + t\langle 0, -2 \rangle$$

$$P(t) = P_0 + t\vec{a}$$

$$Q(t) = Q_0 + t\vec{b}$$

Two Distinct Points Uniquely Determine a Line



- Linear equation: The slope is $m = -\frac{2}{3}$ and $P_1 = (-2, 0)$ is a solution to $y = mx + b$. Therefore, the equation is

$$y = -\frac{2}{3}x - \frac{4}{3} \text{ or } 2x + 3y = -4$$

- Linear parameterization: Since

$$P_0 = (-5, 2), P_1 = (-2, 0), \vec{a} = P_1 - P_0 = \langle 3, -2 \rangle,$$

the linear parameterization

$$P(t) = P_0 + t\vec{a}$$

becomes

$$(x(t), y(t)) = (-5, 2) + t\langle 3, -2 \rangle = (-5 + 3t, 2 - 2t)$$

Two Distinct Points Uniquely Determine a Line

- ▶ Given two different points $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$, there is a unique line containing them.
- ▶ Linear equation:
 - ▶ If $x_0 = x_1$, then the line is vertical and given by $x = x_0$
 - ▶ Otherwise, you can solve for m and b such that the points P_0 and P_1 are solutions to the equation $y = mx + b$
- ▶ A linear parameterization:
 - ▶ $P(t) = P_0 + t(P_1 - P_0) = P_0 + t\vec{v}$, where $\vec{v} = P_1 - P_0$
 - ▶ $P(0) = P_0$, $P(1) = P_1$

Equations of a Plane in 3-space

A plane in 3-space can be described using equations in at least 3 ways:

- ▶ Graph:

$$z = ax + by + c$$

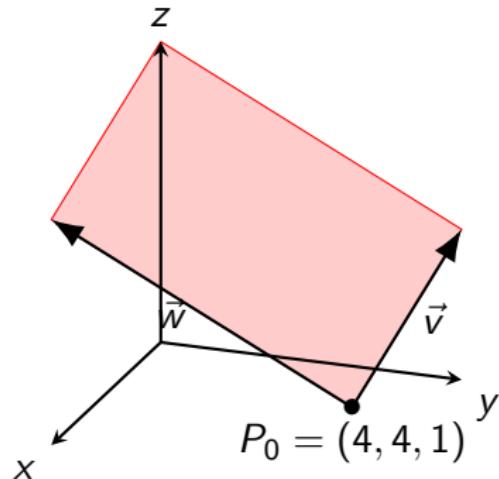
- ▶ This does not include vertical planes
- ▶ Linear equation

$$Ax + By + Cz = D$$

- ▶ A vertical plane always has an equation of the form

$$Ax + By = D$$

Linear Parameterization of a Plane in 3-space



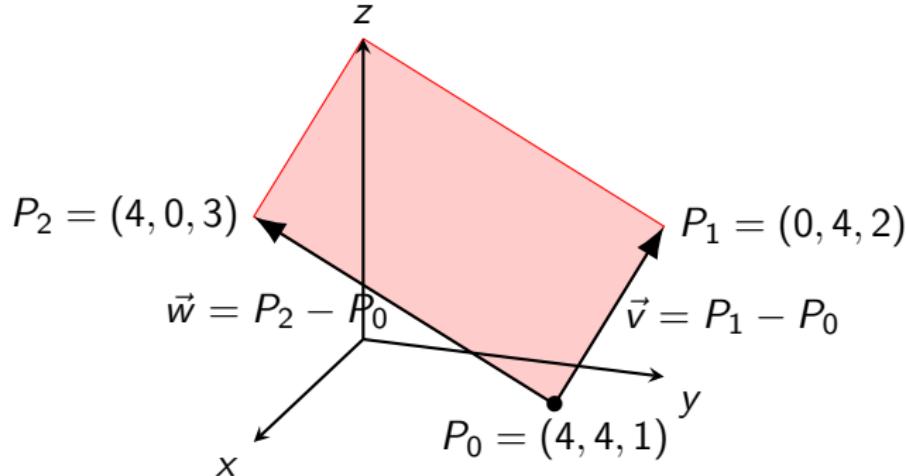
- ▶ Let $P_0 = (x_0, y_0, z_0)$ be a point on a plane
- ▶ Let \vec{v} and \vec{w} be nonzero non-parallel vectors
- ▶ Given any pair of parameters (s, t) ,

$$P_0 + s\vec{v} + t\vec{w}$$

lies on the plane

- ▶ Conversely, given any point P_1 on the plane, there exists (s_1, t_1) such that

Three Non-collinear Points Uniquely Determine a Plane

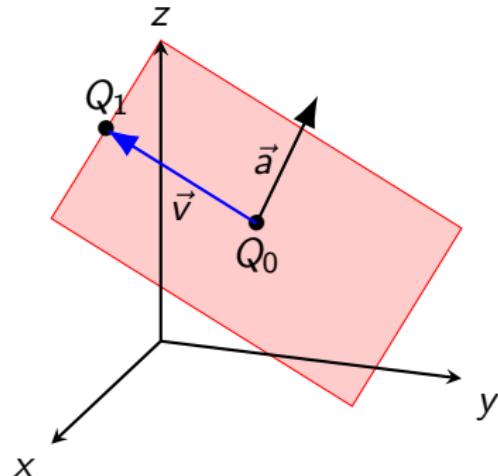


- ▶ Linear equation: Later
- ▶ Linear parameterization:

$$\begin{aligned}P(s, t) &= P_0 + s(P_1 - P_0) + t(P_2 - P_0) \\&= P_0 + s\vec{v} + t\vec{w}\end{aligned}$$

$$\begin{aligned}(x(s, t), y(s, t), z(s, t)) &= (4, 4, 1) + s(-4\vec{i} + \vec{k}) + t(-4\vec{j} + 2\vec{k}) \\&= (4 - 4s, 4 - 4t, 1 + s + 2t)\end{aligned}$$

Normal Vector to a Plane



- ▶ A vector \vec{v} is said to be parallel to a plane, if any line parallel to \vec{v} either lies entirely in the plane or never intersects the plane
- ▶ A vector \vec{a} is normal to a plane, if, for any vector \vec{v} that is parallel to the plane, $\vec{a} \cdot \vec{v} = 0$
- ▶ A vector \vec{a} is normal to a plane if, for any two points Q_0 and Q_1 in the plane, $\vec{a} \cdot (Q_1 - Q_0) = 0$

Equation of Plane from Its Normal

- ▶ Suppose \vec{a} is a vector normal to and Q_0 is a point in a plane A
- ▶ A point Q lies in A if and only if $Q - Q_0$ is a vector normal to \vec{a}

$$Q \in A \iff \vec{a} \cdot (Q - Q_0) = 0.$$

- ▶ Example: Suppose A is a plane containing the point $(1, -1, 0)$ and the vector $2\vec{i} + \vec{k}$ is normal to A . A point $Q = (x, y, z)$ lies in A if and only if

$$\begin{aligned} 0 &= \vec{a} \cdot (Q - Q_0) \\ &= (2\vec{i} + \vec{k}) \cdot ((x, y, z) - (1, -1, 0)) \\ &= (2\vec{i} + \vec{k}) \cdot ((x - 1)\vec{i} + (y + 1)\vec{j} + z\vec{k}) \\ &= 2(x - 1) + z \\ &= 2x + z - 2 \end{aligned}$$

- ▶ The plane A is the set of solutions to

$$2x + z = 2$$

Normal Vector From Equation of Plane

- ▶ Any plane is given by an equation of the form

$$Ax + By + Cz = D$$

- ▶ Therefore, given any two points $P_0 = (x_0, y_0, z_0)$ and $P_1 = (x_1, y_1, z_1)$ in the plane,

$$Ax_1 + By_1 + Cz_1 = D$$

$$Ax_0 + By_0 + Cz_0 = D$$

- ▶ Subtracting the two equations above, we get

$$A(x_1 - x_0) + B(y_1 - y_0) + C(z - z_0) = 0$$

- ▶ If we set $\vec{n} = A\vec{i} + B\vec{j} + C\vec{k}$, then this becomes

$$\vec{n} \cdot (P_1 - P_0) = 0$$

- ▶ Since this holds for any two points in the plane, it follows that \vec{n} is a normal vector to the plane

Upshot: Normal Vector of Plane = Coefficients of Equation

- ▶ If a plane is given by an equation $Px + Qy + Rz = S$, then $\vec{n} = P\vec{i} + Q\vec{j} + R\vec{k}$ is normal to the plane
- ▶ If the normal vector of a plane Σ is $\vec{n} = \vec{i}n_1 + \vec{j}n_2 + \vec{k}n_3$, then, for any constant D , the plane given by

$$n_1x + n_2y + n_3z = D$$

is parallel to Σ . There is a unique value of D such that this plane is equal to Σ .

- ▶ Example: A normal vector of the plane given by

$$-x + 2y + 5z = 17$$

is $\vec{n} = -\vec{i} + 2\vec{j} + 5\vec{k}$ and a unit normal vector of

$$\vec{u} = \frac{\vec{n}}{|\vec{n}|} = \frac{-\vec{i} + 2\vec{j} + 5\vec{k}}{\sqrt{30}}.$$

Equation of Plane Given Three Non-Collinear Points

- ▶ Suppose P_0, P_1, P_2 are three non-collinear points in 3-space
- ▶ A linear parameterization of the plane containing all three points is

$$P(t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0) = P_0 + s\vec{v} + t\vec{w}$$

- ▶ Then the vectors $\vec{v} = P_1 - P_0$ and $\vec{w} = P_2 - P_0$ are not parallel
- ▶ Therefore, $\vec{v} \times \vec{w} \neq \vec{0}$,
- ▶ If $\vec{n} = \vec{v} \times \vec{w} \neq \vec{0}$, then it is normal to the plane. Therefore, an equation of the plane is

$$0 = (\vec{v} \times \vec{w}) \cdot (P - P_0)$$

Example

- ▶ Consider three points $A = (1, 1, 1)$, $B = (-2, 0, 1)$, $C = (2, 3, 1)$
- ▶ Let Σ be a plane containing A, B, C
- ▶ Let $\vec{a} = C - B = \langle 4, 3, 0 \rangle$ and $\vec{b} = A - C = \langle -1, -2, 0 \rangle$.
- ▶ A normal to Σ is
$$\vec{n} = \vec{a} \times \vec{b} = (4\vec{i} + 3\vec{j}) \times (-\vec{i} - 2\vec{j}) = (-8 + 3)\vec{k} = -5\vec{k}$$
- ▶ Therefore, an equation for Σ is of the form

$$0x + 0y - 5z = D$$

- ▶ Since $(1, 1, 1)$ lies in Σ , it follows that $D = -5$ and an equation of the plane is

$$-5z = -5 \text{ or, equivalently, } z = 1$$

- ▶ There is only one possible plane D containing A, B, C

Another Example

- ▶ Let $P = (4, -8, 16)$, $Q = (4, 0, 8)$, and $R = (4, -6, 14)$
- ▶ Let $\vec{v} = R - P = 2\vec{j} - 2\vec{k}$ and $\vec{w} = Q - R = 8\vec{j} - 8\vec{k}$
- ▶ A normal to a plane containing P, Q, R is

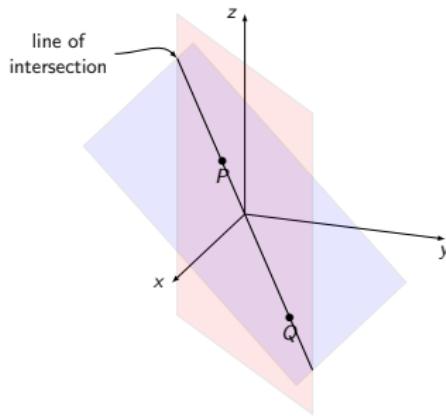
$$\vec{n} = \vec{v} \times \vec{w} = (2\vec{j} - 2\vec{k}) \times (8\vec{j} - 8\vec{k}) = 0$$

- ▶ Note that \vec{v} and \vec{w} point in the same direction
- ▶ Therefore, P, Q, R lie along a line, and there are infinitely many planes containing them
- ▶ Suppose \vec{n} is a nonzero vector normal to \vec{v} and therefore also to \vec{w} , such as $\vec{n} = \vec{i}$
- ▶ A plane normal to \vec{n} therefore has an equation of the form

$$x = D$$

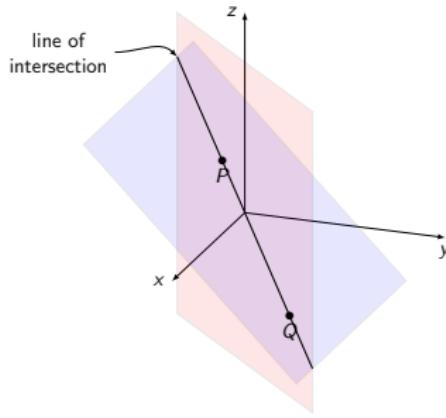
- ▶ If $D = 4$, then P, Q, R all lie in the plane
- ▶ Any other choice of \vec{n} normal to \vec{v} and \vec{w} also works
- ▶ Another possible choice is $\vec{n} = \vec{j} + \vec{k}$

Geometric Description of Line in 3-Space



- ▶ Given two distinct points in 3-space, there is a unique line containing them
- ▶ The intersection of two non-parallel planes is a line

Description of Line in 3-Space Using Equations



- ▶ Linear parameterization: For each $t \in \mathbb{R}$,

$$(x(t), y(t), z(t)) = (x_0, y_0, z_0) + t\langle v_1, v_2, v_3 \rangle$$

- ▶ The set of all points Q such that

$$\vec{n}_1 \cdot (Q - P) = 0 \text{ and } \vec{n}_2 \cdot (Q - P) = 0$$

- ▶ The set of solutions (x, y, z) to

$$a_1x + b_1y + c_1z = d_1 \text{ and } a_2x + b_2y + c_2z = d_2$$

Example: Parameterization

- ▶ In general, given two distinct points P and Q , the parameterized line

$$(x, y, z)(t) = P + t(Q - P)$$

satisfies $(x, y, z)(0) = P$ and $(x, y, z)(1) = Q$ and therefore is a line that contains both P and Q

- ▶ A parameterized line that contains $(1, 1, 0)$ and $(0, -1, 1)$

$$\begin{aligned}(x, y, z)(t) &= (1, 1, 0) + t((0, -1, 1) - (1, 1, 0)) \\ &= (1, 1, 0) + t\langle -1, -2, 1 \rangle \\ &= (1 - t, 1 - 2t, t)\end{aligned}$$

Example: Intersection of Two Planes

- ▶ Start with two points, $P = (1, 1, 0)$ and $Q = (0, -1, 1)$
- ▶ A plane contains the line through P and Q if its normal is orthogonal to

$$\vec{v} = Q - P = (0, -1, 1) - (1, 1, 0) = \langle -1, -2, 1 \rangle$$

- ▶ Two possible normals are

$$\vec{n}_1 = \langle 1, 0, 1 \rangle \text{ and } \vec{n}_2 = \langle 0, 1, 2 \rangle$$

- ▶ The first plane has the equation

$$0 = \vec{n}_1 \cdot ((x, y, z) - P) = \langle 1, 0, 1 \rangle \cdot \langle x - 1, y - 1, z \rangle = x - 1 + z$$

- ▶ The second plane has the equation

$$0 = \vec{n}_2 \cdot ((x, y, z) - P) = \langle 0, 1, 2 \rangle \cdot \langle x - 1, y - 1, z \rangle = y - 1 + 2z$$

- ▶ Therefore, the line is the intersection of the two planes and therefore the set of solutions to

$$x + z = 1 \text{ and } y + 2z = 1$$