Vectors and Points $\overline{V} = \langle V_{1} V_{2} \rangle$ $(x_{i_{j}}y_{i_{j}})$ $(X_{\nu},V_{\nu}) - (X_{\nu},Y_{\nu}) = \langle V_{\nu},V_{\nu} \rangle$ $\left|\langle V_{1}, V_{2} \rangle\right|^{2} = V_{1}^{2} + V_{2}^{2}$ $d\left(\left(x_{i},y_{i}\right),\left(x_{j},y_{i}\right)\right)$ $(X_{2}-X_{1})^{2} + (Y_{2}-Y_{1})^{2}$ Similar formulas for 3-space element

Notahion? If S is a set !! (i.e., callection of things) a & S means a is an element of St IFT is aset, TCS is a subset means everything in Tof S' diagrams is in S Venn diagrams (\top) Basic property of length |SV| = |S| |V|In particular if $\vec{v} \neq 0$ and $\vec{u} = \vec{v}$

2 vectors V, V, are parallel if either they point in same direction or they point in opposite directions $= \frac{V_{1}}{|V_{1}|} = \pm \frac{V_{2}}{|V_{2}|} \left(\begin{array}{c} \text{Ascump}}{V_{1}, V_{2} \neq 0} \right)$ Work with

anste between 2 vectors

Work with angles indirectly ato a-to $|\vec{a}+\vec{b}| = |\vec{a}-\vec{b}| \iff \vec{O} = \frac{\pi}{2}$ 「ふ」」く「ネ+も」 => の < の < 平 |à-t| > |à+t) ⇒ 포<0≤π As O goes from O to to, \[\overline{a} + \overline{b} | ^2 - |\overline{a} - \overline{b} starts possitive, decreases to O at Z and then decreases to negative values Strictly decreasing function It measures "the angle O

 $|\vec{a}+\vec{b}|^2 - |\vec{a}-\vec{b}|^2$ $= (a_1 + b_1)^2 + (a_2 + b_2)^2$ $-[(a_1-b_1)^2+(a_2-b_2)^2]$ $= a_1^2 + 2a_1b_1 + b_1^2 + a_2^2 + 2a_2b_2 + b_2^2$ $-\left[a_{1}^{2}-2a_{1}b_{1}+b_{2}^{2}+a_{2}^{2}-2a_{2}b_{2}+b_{3}\right]$ $= 4\left(a_1b_1 + a_2b_2\right)$ a, b, + a, b, is a way to measure The angle O measure The angle O So this is called the dot product $\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle$ $= a_1 b_1 + a_2 b_2$ (vector) · (vector) = scalar

<1,2>.<3,-4> = 1(3) + (2)(-4) = 3 - 8'

Already Know: If 12, 5 70, then à. to = 0 = angle O bofween Them is 7, 京、ようの => のくるくき ふもくの シ エイロミロ

Same holds in 3-space $\langle a_{1}, a_{2}, a_{3} \rangle \cdot \langle b_{1}, b_{2}, b_{3} \rangle$ $= a_1b_1 + a_2b_2 + a_3b_2$ Same properties hold

The dot " now, has a new specific meaning $\overrightarrow{V} \cdot \overrightarrow{W} = det product$ using formulas given above, Please do not use it in the traditional sense of scalar multiplication (3+4) (S-1) - Use this any nore (3+4)(5-1) $\leftarrow OK$

Properties of dot product $\int \vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2$ $= |\vec{a}|^2 \ge 0$ and $=0 \Leftrightarrow \vec{a} = \vec{0}$ $(-\vec{a})\cdot\vec{a} = -|\vec{a}|^2$ 3) Remember à t = 0, This does NOT imply à = 0 Je just means that a 16 $Q = \frac{T}{7}$ 4) Algebraic properties 7 Commutative a) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ a, b₁ + a, b₂ = b₁a₁ + b₂a₂). b) $(c\overline{a}) \cdot \overline{b} = c(\overline{a} \cdot \overline{b})$ or denary multiplication

 $\vec{a} \cdot \vec{a} = |\vec{a}|^2$ $\langle 3, 4 \rangle \cdot \langle 3, 4 \rangle = 3^{2} + 4^{2}$ = 9+16 = 25 <3,4)/5 /4 5 /4 = 52 \dot{a} , $\dot{a} = 0$ means $a_1^2 + a_2^2 = 0$ f_{hos} means $a_1 = a_2 = 0$ $(ca) \cdot b = c(a \cdot b)$ [bilinear $\overline{a} \cdot (c\overline{b}) = c(\overline{a} \cdot \overline{b})$ but nove $(2\vec{v})\cdot(2\vec{w}) = 4\vec{v}\cdot\vec{w}$ Factor scalars out of dot product carefully.

4c) Distributivity $(\vec{a}_1 + \vec{a}_2) \cdot \vec{b} = \vec{a}_1 \cdot \vec{b} + \vec{a}_2 \cdot \vec{b}$ a·(t,+t,)= a·t,+a.t, Fe xamples ,) Find a nonzero vector orthogonal to <13,175 $v = \langle a, b \rangle$ is orthogonal ち くほれかげ マ、くほ、ワショ〇

al3+b17 = 0 choose a,6 so that this holds a=17, b=-13 works

a=1, $b=\frac{-13}{17}$ works z) < 1, 1>, < -1, 3>Is angle between these vectors actute or obtase $\left(0 < \frac{\pi}{2} \right)$ $\left(0 > \frac{\pi}{2} \right)$ $\langle 1,1\rangle \cdot \langle -l,3\rangle$ = -1+3=2 >0 $\Rightarrow angle is < \frac{\pi}{2}$ $\Rightarrow angle is acute$ ccatb

6 $\left[\frac{1}{b}-\frac{1}{a}\right] < \left[\frac{1}{a}\right] + \left[\frac{1}{b}\right]$ Orthogonal projection ____ & b いろ Blue vector parallel to à c parallel to à c, t - c are orthogonal Ø (生)

(द de orthogona paralle is shadow of f on <u>с</u> a line through è is called the orthogonal projection of to onto line through à projection di Horough Novation c=pi(t) 了, hogonal prof

So $(f - p_{a}(b)) \cdot p_{a}(b) = 0$ Properties 0= angle between à, 5 1) $\theta < \frac{\pi}{2} \implies \overline{a} , P_{\overline{a}}(\overline{b})$ same direction 2) 0> = a, pa (b) opposite $3) Q = \frac{\pi}{2} \rightarrow p_{2}(t) = \overline{\partial}$ 4) $Q = 0 \implies p_{\vec{a}}(\vec{b}) = \vec{b}$ s) $|P_{\overline{a}}(t)| \leq |t|$ $\vec{O} = \langle 0, 0, 0 \rangle$

Scalar projection b Pr (b) $\vec{u} = \frac{\vec{a}}{|\vec{a}|}$ has same direction as Pà (t) has same or opposible directors as in So there is a scalar factor $C_{a}(t)$ such $P_{\vec{a}}(\vec{b}) = \left(C_{\vec{a}}(\vec{b}) \right) \vec{u}$ Ci (b) called scalar projection If angle () between $\overline{a}, \overline{b} \xrightarrow{i} \frac{2\pi}{2}$ then $c_{\overline{a}}(\overline{b}) > 0$ Jf の>型, Ci(ち)<0

 $P_{z}(t) = c_{z}(t) \vec{u}$ Since 0<#, ca(t)>0 $\Rightarrow c_{i}(b) = |P_{i}(b)|$ $|t_{0}| = |ength of adjacent side}$ $|t_{0}| = |ength of hypotentice$ $coo O = \frac{longth of adjacent side}{longth of Mypotentice}$ $coo O = \frac{C_{0}(t_{0})}{|t_{0}|} \Rightarrow C_{0}(t_{0})$

Scalar projection using dot product t- Pt (b) (ี (ฮ) Since u _ to-pa(to) $O = \vec{u} \cdot (\vec{b} - p_{\vec{a}}(\vec{b}))$ $= \vec{u} \cdot \vec{b} - \vec{u} \cdot p_{\vec{a}}(\vec{b})$ $= \vec{u} \cdot \vec{b} - \vec{u} \cdot (c_{\vec{a}}(\vec{b})\vec{u})$ $= \ddot{u} \cdot \dot{b} - (C_a(b)) \ddot{u} \cdot \dot{u}$ $= \vec{u} \cdot \vec{b} - (c_{\vec{a}}(\vec{b})) |\vec{u}|^{2}$ = $\vec{u} \cdot \vec{b} - c_{\vec{a}}(\vec{b})$

$$\vec{a} \cdot \vec{b} = (|\vec{a}|\vec{u}) \cdot \vec{b}$$
$$= |\vec{a}|(\vec{u} \cdot \vec{b})$$
$$= |\vec{a}||\vec{b}| \cos \theta$$

 $c_{i}(t) = t_{i}$ $= \overrightarrow{b} \cdot \left(\frac{\overrightarrow{a}}{|\overrightarrow{a}|} \right) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}$ $P_{\vec{a}}(\vec{b}) = C_{\vec{a}}(\vec{b})\vec{u}$ = (\cancel{b}, \cancel{u}) = (b.a)a To compute projections, it's best i) Find $\vec{u} = \frac{\vec{a}}{|\vec{a}|}$ 2) Use formulas

Properties of orthogonal projection 1) a/Linear $\tilde{P}_{a}(\vec{b}_{1}+\vec{b}_{2}) = \tilde{P}_{a}(\vec{b}_{1}) + \tilde{P}_{a}(\vec{b}_{2})$ $((\vec{b}, +\vec{b},), \vec{u})\vec{u}$ $(\vec{t}_1\cdot\vec{u}'+\vec{t}_2\cdot\vec{u})\vec{u}$ (\vec{b}, \vec{u}) $\vec{u} + (\vec{b}, \vec{u})$ \vec{u} $P_{a}(t_{1}) + P_{a}(t_{2})$ • 6) $P_{\vec{a}}(t\vec{b}) = t P_{\vec{a}}(\vec{b})$

Special vectors ショー くりの うみ マニイバルシニ リ、ディャンジ Also write $\vec{l} = \vec{e}_1 = \langle l, 0 \rangle$ $\vec{f} = \vec{e}_{n} = \langle 0, 1 \rangle$ $|\vec{x}| = |\vec{x}| = |\vec{h}| =$

 $\overrightarrow{V} = \langle V_{1}, V_{2} \rangle = V_{1} \overrightarrow{A} + V_{2} \overrightarrow{f}$ $= \vec{\lambda} V_1 + \vec{j} V_2$ Orientation (order matters) Suppose à to ave nonzero non parallel Vectors in 2-space a counter clackwise < clockwise $(\overline{a}, \overline{b})$ has possibline orientation if counterclock wise angle 0is $0 \le 0 \le 4$

and negative orientation othewise Here (a, to) has negative orientation but (t, à) has positive orientation Next time orientation of an ordered triple of vectors in 3-space

 $\frac{1}{c}$