MATH-GA2450 Complex Analysis Maximum Modulus Principle Schwarz Lemma

Deane Yang

Courant Institute of Mathematical Sciences New York University

December 5, 2024

 $1/10$

 2990

イロメ イ部 メイミメイミメン 差し

Local Maximum Modulus Principle

▶ Theorem. If f is holomorphic on an open $O \subset \mathbb{C}$ and $z_0 \in U$ is a maxumum point of $|f(z)|$, i.e, for all $z \in U$,

 $|f(z)| \geq |f(z_0)|$,

then there exists $R > 0$ such that f is constant on $D(z_0, R) \subset O$

Proof (Part 1)

- ▶ There exists $R > 0$ such that $D(z_0, R) \subset O$
- ▶ For each $0 < r < R$,

$$
|f(z_0)| = \left| \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f(z)}{z - z_0} \, dx \right|
$$

$$
\leq \frac{1}{2\pi} \int_{t=0}^{t=2\pi} |f(z_0 + re^{it})| \, dt
$$

$$
\leq \frac{1}{2\pi} \int_{t=0}^{t=2\pi} |f(z_0)| \, dt
$$

$$
= |f(z_0)|
$$

 \blacktriangleright It follows that

$$
\int_{t=0}^{t=2\pi} |f(z_0)| - |f(z_0 + re^{i\theta})| dt = 0
$$

 \triangleright Since the integrand is nonnegative, it is always zero, i.e., for any $0 < r < R$ and $0 \le t \le 2\pi$

$$
|f(z_0+re^{i\theta})|=|f(z_0)|+e^{i\theta}+\cdots
$$

Proof (Part 2)

▶ Therefore, for any $z \in D(z_0, R)$,

$$
|f(z)|=|f(z_0)|
$$

If $f = u + iv$, this implies that $u^2 + v^2$ is constant

 \blacktriangleright Differentiating this, we get

$$
uu_x + vv_x = 0 \text{ and } uu_y + vv_y = 0
$$

▶ By Cauchy-Riemann equations,

$$
uu_x - vu_y = 0 \text{ and } uu_y + vu_x = 0
$$

 \blacktriangleright This implies

$$
(u2 + v2)ux = 0
$$
 and
$$
(u2 + v2)uy = 0
$$

Proof (Part 3)

Since $u^2 + v^2$ is constant, either $u^2 + v^2 = 0$ which implies $u = 0$ or

$$
u_x=u_y=0
$$

5 / 10

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q <mark>Q</mark>

and therefore u is constant

- \blacktriangleright Similarly, v is constant
- \blacktriangleright Therefore, f is constant on $D(z_0, R)$

Global Maximum Modulus Principle

- ▶ Let $U \subset \mathbb{C}$ be a connected open set
- ▶ Let $f: \overline{U} \to \mathbb{C}$ be a continuous function that is holomorphic on U
- ▶ If there exists $z_0 \in \overline{U}$ such that for all $z \in U$.

 $|f(z)| \leq |f(z_0)|$,

then $z_0 \in \partial U$

▶ Proof.

- ▶ If not, then $z_0 \in U$
- \blacktriangleright By the local maximum modulus principle, there exists $R > 0$ such that f is constant on $D(z_0, R)$
- \triangleright Since U is connected, this implies that f is constant on U

Schwarz Lemma (Part 1)

 \blacktriangleright Let $D = D(0,1)$ ▶ Theorem. If $f: D \to D$ is analytic and $f(0) = 0$, then ▶ $|f(z)| \leq |z|$ for all $z \in D$ ▶ If there exists $z_0 \in D \setminus \{0\}$ such that $|f(z_0)| = |z_0|$, then there exists $\phi \in \mathbb{R}$, such that

$$
f(z)=e^{i\phi}z,
$$

i.e., f is a rotation

▶ Theorem. If $f: D \to D$ is analytic and $f(0) = 0$, then

\n- $$
|f'(0)| \leq 1
$$
\n- If $|f'(0)| = 1$, then there exists $\phi \in \mathbb{R}$ such that
\n

$$
f(z)=e^{i\phi}z
$$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇ 7 / 10

Proof (Part 1) \blacktriangleright Since $f(0) = 0$,

$$
f(z) = \sum_{k=1}^{\infty} a_k z^k
$$

= $z \sum_{k=0}^{\infty} a_{k+1} z^k$
= $zg(z)$,

where g is holomorphic on D

▶ Since $|f(z)| < 1$ on D, if $0 < r < 1$, then

$$
|z|=r \implies |g(z)|=\frac{|f(z)|}{|z|}<\frac{1}{r}
$$

▶ By the maximum modulus principle, if $z \in \overline{D(0,r)}$,

$$
|g(z)| \leq \frac{1}{r}
$$

 Ω 8 / 10

Proof (Part 2)

▶ It follows that if $z \in D$, then

$$
|g(z)| \leq \lim_{r \to 1} \frac{1}{r} = 1
$$

and therefore

$$
|f(z)|=|g(z)||z|\leq |z|
$$

▶ If there exists $z_0 \in D \setminus \{0\}$ such that

 $|f(z_0)| = |z_0|,$

then for any $z \in D$,

$$
|g(z)|\leq 1=|g(z_0)|
$$

 \triangleright By the maximum modulus principle, g is constant and therefore

$$
f(z) = e^{i\theta} z
$$

Proof (Part 3)

 \blacktriangleright It also follows that

$$
|f'(0)| = |a_1| = |g(0)| \leq 1
$$

▶ If $|f'(0)| = 1$, then, since for all $z \in D$, $|g(z)| \le 1 = |g(0)|$, it follows by the maximum modulus principle that g is constant and therefore

$$
f(z)=a_1z
$$

10 / 10

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇