MATH-GA2450 Complex Analysis Winding Number of Oriented Closed Curve Homologous Closed Curves Chains Homologous Forms of Cauchy's Theorem and Cauchy Integral Formula

Deane Yang

Courant Institute of Mathematical Sciences New York University

November 12 2024

Winding Numbers of Homotopic Closed Curves Are Equal

If c₀ : [a, b] → O and c₁ : [a, b] → O are homotopic closed curves in O and z₀ ∉ O, then

$$W(c_0,z_0)=W(c_1,z_0)$$

- This follows directly from the homotopic form of Cauchy's theorem
- Corollary: If c : [a, b] → O is a closed curve null homotopic in O, then for any z₀ ∉ O,

$$W(c,z_0)=0$$

Contrapositive: If c : [a, b] → O is a closed curve and there exists z₀ ∉ O such that

$$W(c, z_0) \neq 0,$$

then c is not null homotopic in O

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Winding Number Is an Integer (Part 1)

• Let $c: [a, b] \to \mathbb{C}$ be a closed curve and $z_0 \notin c$

▶ There exists $r : [a, b] \to (0, \infty)$ and $\theta : [a, b] \to \mathbb{R}$ such that

$$c(t)=z_0+r(t)e^{i\theta(t)},$$

where r(b) = r(a) and $e^{i\theta(b)} = e^{i\theta(a)}$

• There exists $k \in \mathbb{Z}$ such that $\theta(b) - \theta(a) = 2\pi k$

Winding Number Is an Integer (Part 2)

• The winding number of c around z_0 is

$$W(c, z_0) = \frac{1}{2\pi i} \int_c^{t=b} \frac{dz}{z - z_0}$$

= $\frac{1}{2\pi i} \int_{t=a}^{t=b} \frac{c'(t)}{c(t) - z_0} dt$
= $\frac{1}{2\pi i} \int_{t=a}^{t=b} \frac{r'e^{i\theta} + ire^{i\theta}}{re^{i\theta}} dt$
= $\frac{1}{2\pi i} \int_{t=a}^{t=b} \frac{r'}{r} + i\theta' dt$
= $\frac{1}{2\pi i} (\log(r(b)) - \log(r(a)) + i(\theta(b) - \theta(a)))$
= k ,

Homologous Curves

- Goal: Distinguish between an open set with holes from one without holes
- Let $U \subset \mathbb{C}$ be open
- Let $z_0 \in \mathbb{C} \setminus U$
- Idea: z₀ lies in a hole of U if there exists a closed curve c in U that goes around z₀

▶ I.e., $W(c, z_0) = 0$

A closed curve c : [a, b] → U is null homologous in U if for any z₀ ∉ U,

$$W(c,z_0)=0$$

Two closed curves

$$c_1:[a_1,b_1]\rightarrow U,\ c_2:[a_2,b_2]\rightarrow U$$

are **homologous** if for any $z_0 \notin U$,

$$W(c_1, z_0) = W(c_2, z_0)$$

5 / 11

Homotopic \implies Homologous

- If c₁, c₂ ⊂ U are closed curves that are homotopic in U, then they are homologous in U
 - This follows by the observation above that two closed curves have the same winding number around a point that does not lie on either curve
- Equivalently, if c is a closed curve that is null homotopic in U, then it is homologous to 0 in U
- Converse is not true: If c is a closed curve that is null homologous in U, it is not necessarily null homotopic

Pochhammer Contour

▶ Null homologous in $\mathbb{C} \setminus \{z_i, z_j\}$, because

$$W(\gamma, z_i) = W(\gamma, z_j) = 0$$

- Not null homotopic
 - Intuition: Any homotopy from c to a point must pass through z₁ or z₂
 - Rigorous proof not so easy

Chains

▶ A chain in $U \in \mathbb{C}$ is the union of a finite set of oriented curves

 c_1, \ldots, c_N

in U, where the same curve can appear more than once

A chain is denoted

$$c = c_1 + \cdots + c_N$$

If there are m₁ copies of c₁, m₂ copies of c₂, ..., m_n copies of c_n, then the corresponding chain can be written as

$$m_1c_1+\cdots+m_nc_n$$

If m < 0, then mc = (−m)(−c)
If m, n ∈ Z, then

$$mc + nc = (m + n)c$$

Contour Integral and Winding Number of Chain

The contour integral of a holomorphic function f : U → C on a chain

$$c = m_1c_1 + \cdots + m_nc_n$$

is defined to be

$$\int_c f(z) dz = m_1 \int_{c_1} f(z) dz + \cdots + m_n \int_{c_n} f(z) dz$$

▶ If $z_0 \notin c$, then

$$W(c, z_0) = \int_c \frac{dz}{z - z_0}$$

= $m_1 \int_{c_1} \frac{dz}{z - z_0} + \dots + m_n \int_{c_n} \frac{dz}{z - z_0}$
= $m_1 W(c_1, z_0) + \dots + m_n W(c_n, z_0)$

A chain $c \subset U$ is **homologous to** 0 in U if for any $z_0 \notin U$,

$$W(c,z_0)=0$$

9/11

イロン 不得 とうほう イロン 二日

Homologous Form of Cauchy's Theorem

Theorem. If U ⊂ C is open and c ⊂ U is a closed chain homologous to 0 in U, then for any holomorphic f : U → C,

$$\int_c f(z)\,dz=0$$

▶ **Corollary.** If c_1, c_2 are homologous closed chains in U, then for any holomorphic $f : U \to \mathbb{C}$,

$$\int_{c_1} f(z) \, dz = \int_{c_2} f(z) \, dz$$

▶ **Proof of Corollary.** If c_1, c_2 homologous in *U*, then the closed chain $c = c_2 - c_1$ is homologous to 0 in *U* and therefore, by the theorem above,

$$0 = \int_{c} f(z) dz = \int_{c_{2}} f(z) dz - \int_{c_{1}} f(z) dz$$

Homologous Form of Cauchy Integral Formula

Theorem. If U ⊂ C is open and c ⊂ U is a closed chain homologous to 0 in U, then for any z₀ ∉ U and holomorphic f : U → C,

$$\frac{1}{2\pi i} \int_{c} \frac{f(z)}{z - z_0} \, dz = W(c, z_0) f(z_0)$$

- Proofs of the homogous forms of Cauchy's Theorem and Cauchy integral formula are given in book
- If the chain consists of disjoint closed curves, then it follows from Green's theorem