MATH-GA2450 Complex Analysis Winding Number of Oriented Closed Curve Homologous Closed Curves Chains Homologous Forms of Cauchy's Theorem and Cauchy Integral Formula

Deane Yang

Courant Institute of Mathematical Sciences New York University

November 12 2024

1 / 11

 Ω

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{A} \oplus \mathbf{B} \opl$

Winding Numbers of Homotopic Closed Curves Are Equal

▶ If c_0 : [a, b] \rightarrow O and c_1 : [a, b] \rightarrow O are homotopic closed curves in O and $z_0 \notin O$, then

$$
W(c_0,z_0)=W(c_1,z_0)\\
$$

- ▶ This follows directly from the homotopic form of Cauchy's theorem
- ▶ Corollary: If $c : [a, b] \rightarrow O$ is a closed curve null homotopic in O, then for any $z_0 \notin O$,

$$
W(\boldsymbol{c},z_0)=0
$$

▶ Contrapositive: If $c : [a, b] \rightarrow O$ is a closed curve and there exists $z_0 \notin O$ such that

$$
W(c,z_0)\neq 0,
$$

then c is not null homotopic in O

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆ Q Q <mark>Q</mark>

Winding Number Is an Integer (Part 1)

▶ Let $c : [a, b] \rightarrow \mathbb{C}$ be a closed curve and $z_0 \notin c$

▶ There exists $r : [a, b] \rightarrow (0, \infty)$ and $\theta : [a, b] \rightarrow \mathbb{R}$ such that

$$
c(t)=z_0+r(t)e^{i\theta(t)},
$$

where $r(b) = r(a)$ and $e^{i\theta(b)} = e^{i\theta(a)}$

▶ There exists $k \in \mathbb{Z}$ such that $\theta(b) - \theta(a) = 2\pi k$

Winding Number Is an Integer (Part 2)

 \blacktriangleright The winding number of c around z_0 is

$$
W(c, z_0) = \frac{1}{2\pi i} \int_c \frac{dz}{z - z_0}
$$

= $\frac{1}{2\pi i} \int_{t=a}^{t=b} \frac{c'(t)}{c(t) - z_0} dt$
= $\frac{1}{2\pi i} \int_{t=a}^{t=b} \frac{r'e^{i\theta} + ire^{i\theta}}{re^{i\theta}} dt$
= $\frac{1}{2\pi i} \int_{t=a}^{t=b} \frac{r'}{r} + i\theta' dt$
= $\frac{1}{2\pi i} (\log(r(b)) - \log(r(a)) + i(\theta(b) - \theta(a)))$
= k,

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 O 4 / 11

Homologous Curves

- ▶ Goal: Distinguish between an open set with holes from one without holes
- \blacktriangleright Let $U \subset \mathbb{C}$ be open
- \blacktriangleright Let $z_0 \in \mathbb{C} \backslash U$
- \triangleright Idea: z_0 lies in a hole of U if there exists a closed curve c in U that goes around z_0

▶ I.e., $W(c, z_0) = 0$

A closed curve $c : [a, b] \rightarrow U$ is **null homologous** in U if for any $z_0 \notin U$,

$$
W(c,z_0)=0\\
$$

▶ Two closed curves

$$
c_1:[a_1,b_1]\to U,\ c_2:[a_2,b_2]\to U
$$

are **homologous** if for any $z_0 \notin U$,

$$
W(c_1, z_0) = W(c_2, z_0)
$$

Homotopic \implies Homologous

- ▶ If $c_1, c_2 \subset U$ are closed curves that are homotopic in U, then they are homologous in U
	- ▶ This follows by the observation above that two closed curves have the same winding number around a point that does not lie on either curve
- \blacktriangleright Equivalently, if c is a closed curve that is null homotopic in U, then it is homologous to 0 in U
- \triangleright Converse is not true: If c is a closed curve that is null homologous in U , it is not necessarily null homotopic

[Pochhammer Contour](https://en.wikipedia.org/wiki/Pochhammer_contour)

 \blacktriangleright Null homologous in $\mathbb{C}\backslash\{z_i, z_j\}$, because

$$
W(\gamma, z_i) = W(\gamma, z_j) = 0
$$

- ▶ Not null homotopic
	- \blacktriangleright Intuition: Any homotopy from c to a point must pass through z_1 or z_2
	- ▶ Rigorous proof not so easy

Chains

A chain in $U \in \mathbb{C}$ is the union of a finite set of oriented curves

 C_1, \ldots, C_N

in U , where the same curve can appear more than once

 \blacktriangleright A chain is denoted

$$
c=c_1+\cdots+c_N
$$

If there are m_1 copies of c_1 , m_2 copies of c_2 , ..., m_n copies of c_n , then the corresponding chain can be written as

$$
m_1c_1+\cdots+m_nc_n
$$

▶ If $m < 0$, then $mc = (-m)(-c)$ ▶ If $m, n \in \mathbb{Z}$, then

$$
mc + nc = (m + n)c
$$

A chain is closed if all of th[e c](#page-6-0)urves are cl[os](#page-8-0)[e](#page-6-0)[d](#page-7-0)

8 / 11

Contour Integral and Winding Number of Chain

▶ The contour integral of a holomorphic function $f: U \to \mathbb{C}$ on a chain

$$
c = m_1c_1 + \cdots + m_nc_n
$$

is defined to be

$$
\int_{c} f(z) dz = m_1 \int_{c_1} f(z) dz + \cdots + m_n \int_{c_n} f(z) dz
$$

▶ If $z_0 \notin c$, then

$$
W(c, z_0) = \int_c \frac{dz}{z - z_0}
$$

= $m_1 \int_{c_1} \frac{dz}{z - z_0} + \dots + m_n \int_{c_n} \frac{dz}{z - z_0}$
= $m_1 W(c_1, z_0) + \dots + m_n W(c_n, z_0)$

A chain $c \subset U$ is **homologous to** 0 in U if for any $z_0 \notin U$,

$$
W(c,z_0)=0\\
$$

9 / 11

メロトメ 御 トメ 差 トメ 差 トー 差し

Homologous Form of Cauchy's Theorem

▶ Theorem. If $U \subset \mathbb{C}$ is open and $c \subset U$ is a closed chain homologous to 0 in U, then for any holomorphic $f: U \to \mathbb{C}$.

$$
\int_{c} f(z) dz = 0
$$

▶ Corollary. If c_1 , c_2 are homologous closed chains in U, then for any holomorphic $f: U \to \mathbb{C}$,

 $\ddot{}$

$$
\int_{c_1} f(z) dz = \int_{c_2} f(z) dz
$$

• Proof of Corollary. If c_1 , c_2 homologous in U, then the closed chain $c = c_2 - c_1$ is homologous to 0 in U and therefore, by the theorem above,

$$
0=\int_{c}f(z)\,dz=\int_{c_2}f(z)\,dz-\int_{c_1}f(z)\,dz
$$

Homologous Form of Cauchy Integral Formula

▶ Theorem. If $U \subset \mathbb{C}$ is open and $c \subset U$ is a closed chain homologous to 0 in U, then for any $z_0 \notin U$ and holomorphic $f: U \to \mathbb{C}$.

$$
\frac{1}{2\pi i}\int_c \frac{f(z)}{z-z_0}\,dz = W(c,z_0)f(z_0)
$$

- ▶ Proofs of the homogous forms of Cauchy's Theorem and Cauchy integral formula are given in book
- \blacktriangleright If the chain consists of disjoint closed curves, then it follows from Green's theorem