MATH-GA2450 Complex Analysis Bound on Derivatives of Holomorphic Function Liouville's Theorem Fundamental Theorem of Algebra Orientation of Parameterized Curve Contour Integral of Oriented Curve

Deane Yang

Courant Institute of Mathematical Sciences New York University

November 5, 2024

Bound on Derivatives of a Holomorphic Function

• Let $f: O \to \mathbb{C}$ be holomorphic and $D(z_0, r) \subset O$ • Let $||f||_r = \sup\{|f(z)|: z \in \partial D(z_0, r)\}$ ▶ If $c(t) = z_0 + re^{it}$, then

ı.

$$\left| \frac{f^{(k)}(z_0)}{k!} \right| = \left| \frac{1}{2\pi i} \int_c \frac{f(z)}{(z - z_0)^{k+1}} dz \right|$$
$$= \frac{1}{2\pi} \left| \int_{t=0}^{t=2\pi} \frac{f(c(t))}{r^{k+1} e^{i(k+1)t}} ire^{it} dt \right|$$
$$\leq \frac{1}{2\pi} \int_{t=0}^{t=2\pi} \frac{|f(c(t))|}{r^k} dt$$
$$\leq \frac{\|f\|_r}{r^k}$$

イロン イロン イヨン イヨン 三日

Liouville's Theorem: A Bounded Entire Function is Constant

- \blacktriangleright An entire function is a function that is holomorphic on all of $\mathbb C$
- Examples
 - Any polynomial $p(z) = a_0 + a_1 z + \cdots + a_n z^n$
 - $e^{p(z)}$ for any polynomial p
 - \blacktriangleright sin(z), cos(z)
- A function f is bounded if there exists C > 0 such that $|f(z)| \le C$ for all z in the domain of f
- Liouville's Theorem. Any bounded entire function is a constant function
- ▶ **Proof.** For each $z_0 \in \mathbb{C}$,
 - If f is bounded by C, then for any r > 0, $||f||_r \le C$
 - Therefore, for any r > 0,

$$|f'(z_0)| \leq \frac{\|f\|_r}{r^k} \leq \frac{C}{r^k}$$

which implies $f'(z_0) = 0$

Since this holds for every $z_0 \in \mathbb{C}$, f is constant

Fundamental Theorem of Algebra

- Corollary. Any nonconstant polynomial has at least one complex root
- Fact. A nonconstant polynomial is unbounded
 - ▶ If |z| > 1, then for any $k \ge 1$, $|z|^k > |z|$ and therefore

$$egin{aligned} |f(z)| &= \left| egin{aligned} &a_n z^n \left(rac{b_0}{z^n} + \cdots + rac{b_{n-1}}{z} + 1
ight)
ight| \ &\leq |a_n||z|^n \left(1 - rac{|b_0| + \cdots + |b_{n-1}|}{|z|}
ight) \end{aligned}$$

Therefore, if

$$|z| > R > 2(|b_0| + \cdots + |b_{n-1}|),$$

then

$$|f(z)| > \frac{|a_n|}{2}R^n$$

Proof of Fundamental Theorem of Algebra

• **Proof.** Let
$$f(z) = a_0 + a_1 z + \cdots + a_n z^n$$
 and

$$g(z)=\frac{1}{f(z)}$$

• If n > 0, then there exists R > 0 such that

$$|z| > R \implies |f(z)| > 1$$

▶ If *f* has no roots, there exists c > 0 such that if $|z| \le R$, then

|f(z)| > c

Therefore,

$$|g(z)| \leq \max\left(1, \frac{1}{c}\right)$$

- It follows that g is a bounded entire function and therefore constant
- This implies that f is constant

Orientation of a Curve

A curve *c* is always a continuous parameterized curve

 $c:[a,b]\to\mathbb{C}$

Two nonconstant parameterized curves

$$c_1: [a_1, b_1] \to \mathbb{C}$$
 and $c_2: [a_2, b_2] \to \mathbb{C}$

parameterize the same curve if there exists a monotone function

$$u:[a_1,b_1] o [a_2,b_2]$$
 such that $u(a_1)=a_2,\ u(b_1)=b_2,$ and, for each $t\in [a_1,b_1],$ $c_1(t)=c_2(u(t))$

- If f is increasing then the two curves have the same orientation
- If f is decreasing then the two curves have opposite orientations

Reverse Orientation of Curve

• Given a curve
$$c:[a,b]
ightarrow \mathbb{C}$$
, the curve

$$(-c): [b,a] o \mathbb{C}$$

 $t \mapsto c(t)$

parameterizes the same curve but with the opposite orientation

▶ If *f* is holomorphic on an open set containing *c*, then

$$\int_{-c} f(z) dz = \int_{t=b}^{t=a} f(c(t))c'(t) dt$$
$$= -\int_{t=a}^{t=b} f(c(t))c'(t) dt$$
$$= -\int_{c} f(z) dz$$

(日)

Contour Integral of Oriented Curves

If c₁ : [a₁, b₁] → C and c₂ : [a₂, b₂] → C parameterize the same curve and have the same orientation, then for any holomorphic f,

$$\int_{c_2} f(z) dz = \int_{u=a_2}^{u=b_2} f(c_2(u))c'_2(u) du$$

= $\int_{t=a_1}^{t=b_1} f(c_2(u(t)))c'_2(u(t))u'(t) dt$
= $\int_{t=a_1}^{t=b_1} f(c_1(t))c'_1(t) dt$
= $\int_{c_1} f(z) dz$

A similar calculation shows that if c₁ and c₂ have opposite orientations, then

$$\int_{c_2} f(z) dz = - \int_{c_1} f(z) dz$$