MATH-GA2120 Linear Algebra II
 Linear Transformation of Ball is Ellipsoid Operator Norm of Linear Map
 Frobenius Norm of Linear Map
 Condition Number of Linear Map

Deane Yang

Courant Institute of Mathematical Sciences
New York University
April 29, 2024

Image of Unit Ball

- The closed unit ball centered at the origin in \mathbb{R}^{n} is

$$
B=\left\{x \in \mathbb{R}^{n}: x \cdot x \leq 1\right\}
$$

- Consider the image of B under a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- If A is diagonal, then if $y=A x \in A B$,

$$
A y=A\left[\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{n}
\end{array}\right]=\left[\begin{array}{cccc}
d^{1} & 0 & \cdots & 0 \\
0 & d^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d^{n}
\end{array}\right]\left[\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{n}
\end{array}\right]=\left[\begin{array}{c}
d^{1} x^{1} \\
d^{2} x^{2} \\
\vdots \\
d^{n} x^{n}
\end{array}\right]
$$

- Therefore, $y \in A B$ if and only if

$$
1 \geq\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}=\left(\frac{y^{1}}{d^{1}}\right)^{2}+\cdots+\left(\frac{y^{n}}{d^{n}}\right)^{2}
$$

Ellipse

- If

$$
y=\left[\begin{array}{l}
y^{1} \\
y^{2}
\end{array}\right]=\left[\begin{array}{cc}
d^{1} & 0 \\
0 & d^{2}
\end{array}\right]\left[\begin{array}{l}
x^{1} \\
x^{2}
\end{array}\right]=A x
$$

then

$$
x \in B \Longleftrightarrow \frac{\left(y^{1}\right)^{2}}{\left(d^{1}\right)^{2}}+\frac{\left(y^{2}\right)^{2}}{\left(d^{2}\right)^{2}} \leq 1
$$

3-Dimensional Ellipsoid

$$
\frac{\left(y^{1}\right)^{2}}{\left(d^{1}\right)^{2}}+\frac{\left(y^{2}\right)^{2}}{\left(d^{2}\right)^{2}}+\frac{\left(y^{3}\right)^{2}}{\left(d^{3}\right)^{2}} \leq 1
$$

n-Dimensional Ellipsoid in \mathbb{R}^{n}

- Given $d^{1}, \ldots, d^{n} \neq 0$,

$$
E=\left\{\left(y^{1}, \ldots, y^{n}\right) \in \mathbb{R}^{n}: \frac{\left(y^{1}\right)^{2}}{\left(d^{1}\right)^{2}}+\cdots+\frac{\left(y^{n}\right)^{2}}{\left(d^{n}\right)^{2}} \leq 1\right\}
$$

is called an n-dimensional ellipsoid

- If A is a diagonal matrix with nonzero diagonal entries d^{1}, \ldots, d^{n}, then

$$
\begin{aligned}
A B & =E \\
& =\left\{y \in \mathbb{R}^{n}:\left(A^{-1} y, A^{-1} y\right) \leq 1\right\}
\end{aligned}
$$

Ellipsoids in Inner Product Space

- A subset E of an n-dimensional real inner product space is an n-dimensional ellipsoid if there is a unitary basis $\left(u_{1}, \ldots, u_{n}\right)$ and nonzero scalars d_{1}, \ldots, d_{n} such that

$$
E=\left\{y^{1} u_{1}+\cdots+y^{n} u_{n}: \frac{\left(y^{1}\right)^{2}}{\left(d^{1}\right)^{2}}+\cdots+\frac{\left(y^{n}\right)^{2}}{\left(d^{n}\right)^{2}} \leq 1\right\}
$$

- A subset E of an n-dimensional realinner product space is an k-dimensional ellipsoid if there is a unitary set $\left(u_{1}, \ldots, u_{k}\right)$ and nonzero scalars d_{1}, \ldots, d_{k} such that

$$
E=\left\{y^{1} u_{1}+\cdots+y^{n} u_{k}: \frac{\left(y^{1}\right)^{2}}{\left(d^{1}\right)^{2}}+\cdots+\frac{\left(y^{k}\right)^{2}}{\left(d^{k}\right)^{2}} \leq 1\right\}
$$

Unitary Transformation of Ball is Ball

- If X and Y are inner product spaces with the same dimension, a map $U: X \rightarrow Y$ is a unitary transformation, if, for any $v \in X$,

$$
(U(x), U(x))_{Y}=(x, x)_{X}
$$

- Therefore, if

$$
B_{X}=\{x \in X:(x, x)=1\}
$$

then

$$
U\left(B_{X}\right) \subset B_{Y}
$$

- On the other hand, if $y \in B_{Y}$, then $\left.U^{*}(y)\right) \in B_{X}$ and $U\left(U^{*}(x)\right)=x$, which implies

$$
B_{Y} \subset U\left(B_{X}\right)
$$

- It follows that $U\left(B_{X}\right)=B_{Y}$

Singular Value Decomposition

- Let X and Y be real inner product spaces such that $\operatorname{dim}(X)=m$ and $\operatorname{dim}(Y)=n$
- $L: X \rightarrow Y$ be a linear transformation
- The singular value decomposition of L can be described as follows:
- There exists a unitary basis $\left(e_{1}, \ldots, e_{m}\right)$ of X and a unitary basis $\left(f_{1}, \ldots, f_{n}\right)$ of Y such that if $r=\operatorname{rank}(L)$, then

$$
L\left(e_{k}\right)= \begin{cases}s_{k} f_{k} & \text { if } 1 \leq k \leq r \\ 0 & \text { if } r+1 \leq k \leq m\end{cases}
$$

where s_{1}, \ldots, s_{n} are the singular values of L

- In particular, $\left(e_{1}, \ldots, e_{r}\right)$ is a unitary basis of $(\operatorname{ker}(L))^{\perp}$ and $\left(f_{1}, \ldots, f_{r}\right)$ is a unitary basis of image (L)

Linear Transformation of Ball is an Ellipsoid (Part 1)

- The unit ball is

$$
B=\left\{x^{1} e_{1}+\cdots+x^{n} e_{n}:\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2} \leq 1\right\}
$$

- If $x \in B$, then

$$
\begin{aligned}
L(x) & =x^{1} L\left(e_{1}\right)+\cdots+x^{n} L\left(e_{n}\right) \\
& =s_{1} x^{1} f_{1}+\cdots+s_{r} x^{r} f_{r} \\
& =y^{1} f_{1}+\cdots+y^{r} f_{r},
\end{aligned}
$$

where

$$
\frac{\left(y^{1}\right)^{2}}{\left(s_{1}\right)^{2}}+\cdots+\frac{\left(y^{r}\right)^{2}}{\left(s_{r}\right)^{2}}=\left(x^{1}\right)^{2}+\cdots+\left(x^{r}\right)^{2} \leq 1
$$

Linear Transformation of Ball is an Ellipsoid (Part 2)

- The set

$$
\begin{aligned}
E= & \left\{y^{1} f_{1}+\cdots+y^{r} f_{r}: \frac{\left(y^{1}\right)^{2}}{\left(s_{1}\right)^{2}}+\cdots+\frac{\left(y^{n}\right)^{2}}{\left(s_{r}\right)^{2}}\right. \\
& \left.=\left(x^{1}\right)^{2}+\cdots+\left(x^{r}\right)^{2} \leq 1\right\} \subset \operatorname{image}(L)
\end{aligned}
$$

is an r-dimensional ellipsoid in Y such that

$$
L\left(B_{X}\right) \subset E
$$

Linear Transformation of Ball is an Ellipsoid (Part 3)

- Conversely, if $y=y^{1} f_{1}+\cdots+y^{r} f_{r} \in E$, then

$$
L(x)=y
$$

where

$$
x=\left(\frac{y^{1}}{s_{1}}\right) e_{1}+\cdots+\left(\frac{y^{r}}{s_{r}}\right) e_{n} \in B
$$

- It follows that $E \subset L(B)$
- Therefore, $E=L(B)$

Operator Norm of Linear Map

- Let X and Y be inner product spaces and $L: X \rightarrow Y$ be a linear map
- The operator norm of L is defined to be

$$
\|L\|=\sup \left\{|L(x)|: x \in B_{X}\right\}
$$

- Let $s_{1} \leq s_{2} \leq \cdots \leq s_{r}$ be the singular values of L
- For any $x=x^{1} e_{1}+\cdots+x^{m} e_{m} \in B$,

$$
\begin{aligned}
(L(x), L(x)) & =\left(x^{1} s_{1} f_{1}+\cdots+x^{r} s_{r} f_{r}, x^{1} s_{1} f_{1}+\cdots+x^{r} s_{r} f_{r}\right) \\
& =\left(s_{1}\right)^{2}\left(x^{1}\right)^{2}+\cdots+\left(s_{r}\right)^{2}\left(x^{r}\right)^{2} \\
& \leq\left(s_{r}\right)^{2}\left(\left(x^{1}\right)^{2}+\cdots+\left(x^{r}\right)^{2}\right) \\
& \leq\left(s_{r}\right)^{2}
\end{aligned}
$$

- Moreover,

$$
\left(L\left(e_{r}\right), L\left(e_{r}\right)\right)=\left(s_{r} f_{r}, s_{r} f_{r}\right)=\left(s_{r}\right)^{2}
$$

- Therefore, $\|L\|$ is equal to the largest singular value of L

Change of Basis Formula

- Let $L: X \rightarrow X$ be a linear endomorphism (codomain is domain)
- Given a basis $E\left(e_{1}, \ldots, e_{m}\right)$ of X, there is a matrix M such that

$$
L\left(e_{k}\right)=M_{k}^{j} e_{j} \text {, i.e., } L(E)=E M
$$

- If $F=\left(f_{1}, \ldots, f_{m}\right)$ is another basis such that

$$
f_{k}=A_{k}^{j} e_{j}, \text { i.e., } F=E A,
$$

then

$$
L(F)=L(E A)=L(E) A=E M A=F A^{-1} M A
$$

Trace of a Linear Endomorphism

- If $L(E)=E M$, then the trace of L is defined to be

$$
\operatorname{trace}(L)=M_{1}^{1}+\cdots+M_{m}^{m}
$$

- If $L(F)=E N$, then $N=A^{-1} M A$, i.e.,

$$
N_{k}^{l}=\left(A^{-1}\right)_{i}^{l} M_{j}^{i} A_{k}^{j}
$$

- Therefore,

$$
\begin{aligned}
N_{1}^{1}+\cdots+N_{m}^{m} & =N_{k}^{k} \\
& =\left(A^{-1}\right)_{i}^{k} M_{j}^{i} A_{k}^{j} \\
& =A_{k}^{j}\left(A^{-1}\right)_{i}^{k} M_{j}^{i} \\
& =\delta_{i}^{j} M_{j}^{i} \\
& =M_{j}^{j} \\
& =M_{1}^{1}+\cdots+M_{m}^{m}
\end{aligned}
$$

- The definition of trace (L) does not depend on the basis used

Frobenius Norm of a Linear Transformation

- Let X and Y be real inner product spaces
- Let $L: X \rightarrow Y$ be a linear map
- Recall that the adjoint of L is the map $L^{*}: Y \rightarrow X$ such that for any $x \in X$ and $y \in Y$,

$$
(L(x), y)=\left(x, L^{*}(y)\right)
$$

- The Frobenius norm or Hilbert-Schmidt norm of L is defined to be $\|L\|_{2}$, where

$$
\|L\|_{2}^{2}=\operatorname{trace}\left(L^{*} L\right)
$$

Frobenius Norm With Respect to Basis

- Let $\left(e_{1}, \ldots, e_{m}\right)$ be a unitary basis of X and $\left(f_{1}, \ldots, f_{n}\right)$ be a unitary basis of Y such that

$$
L\left(e_{k}\right)= \begin{cases}s_{k} f_{k} & \text { if } 1 \leq k \leq r \\ 0 & \text { if } r+1 \leq k \leq m\end{cases}
$$

- The adjoint of L is given by

$$
L^{*}\left(f_{k}\right)= \begin{cases}s_{k} e_{k} & \text { if } 1 \leq k \leq r \\ 0 & \text { if } r+1 \leq k \leq n\end{cases}
$$

- Therefore,

$$
L^{*} L\left(e_{k}\right)= \begin{cases}s_{k}^{2} e_{k} & \text { if } 1 \leq k \leq r \\ 0 & \text { if } r+1 \leq k \leq m\end{cases}
$$

- It follows that

$$
\|L\|_{2}^{2}=\operatorname{trace}\left(L^{*} L\right)=s_{1}^{2}+\cdots+s_{r}^{2}
$$

- Observe that the operator norm is always less than or equal to the Frobenius norm,

Solving a Linear System with Errors

- Let $L: X \rightarrow Y$ be a linear map between inner product spaces
- Suppose that, given $y \in Y$, we want to solve

$$
L(x)=y
$$

for x but the exact value of y is not known

- If the measured value of y is $y+\Delta y$ and

$$
x+\Delta x=L^{-1}(y+\Delta y)
$$

then

$$
\Delta x=L^{-1}(\Delta y)
$$

- The relative error of x can ye estimated in terms of the relative error of y :

$$
\frac{|\Delta x|}{|x|}=\frac{\left|L^{-1}(\Delta y)\right|}{|y|} \frac{|y|}{|x|}=\frac{\left|L^{-1}(\Delta y)\right|}{|y|} \frac{|L(x)|}{|x|} \leq\left\|L^{-1}\right\|\|L\| \frac{|\Delta y|}{|y|}
$$

Condition Number of Linear Map

- $\left\|L^{-1}\right\|\|L\|$ is the condition number of the linear map
- It shows how sensitive the error in x is to the error in y
- A linear map is ill-conditioned if the condition number is large
- The condition number can be changed by changing the inner product

Natural Isomorphism of Inner Product Space and Dual

- Let V be an inner product space
- There is a natural map

$$
\begin{aligned}
\delta: V & \rightarrow V^{*} \\
w & \mapsto \ell_{w}
\end{aligned}
$$

where for any $v \in V$,

$$
\left\langle\ell_{w}, v\right\rangle=(v, w)
$$

- w is in the kernel of this map if $\ell_{w}=0$, i.e., for any $v \in V$,

$$
0=\left\langle\ell_{w}, v\right\rangle=(v, w)
$$

This holds if and only if $w=0$

