MATH-GA2120 Linear Algebra II
 Polar Decomposition
 Moore-Penrose Pseudoinverse

Deane Yang

Courant Institute of Mathematical Sciences
New York University

April 25, 2024

Polar Decomposition of Linear Map

- Let X and Y be inner product spaces such that $\operatorname{dim}(X)=\operatorname{dim}(Y)$
- Consider a linear map

$$
L: X \rightarrow Y
$$

- Then there exists a unitary map $U: X \rightarrow Y$ such that

$$
L=U|L|
$$

- Proof: By the singular value decomposition of L,

$$
L=W \Sigma V^{*}=\left(W V^{*}\right) V \Sigma V^{*}=U|L|
$$

System of Linear Equations

- Consider a system of n equations with m unknowns,

$$
\begin{gathered}
a_{1}^{1} x^{1}+\cdots+a_{m}^{1} x^{m}=y^{1} \\
\vdots: \\
a_{1}^{n} x^{1}+\cdots+a_{m}^{n} x^{m}=y^{n}
\end{gathered}
$$

- Usually, there is no solution
- And, even if there is a solution, it is usually not unique
- Basic examples
- 1 equation in 1 unknown

$$
3 x=1
$$

- 1 equation in 2 unknowns

$$
x+y=1
$$

- 2 equations in 2 unknowns

$$
\begin{aligned}
& x+y=1 \\
& x+y=2
\end{aligned}
$$

Matrix Equation

- Given $A \in \mathcal{M}_{n \times m}(\mathbb{C})$ and $y \in \mathbb{C}^{n}$, we want to solve for $x \in \mathbb{C}^{m}$ such that

$$
A x=y
$$

- The matrix A defines a map $A: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$
- There is a solution if and only if $y \in$ image A
- If a solution exists, then it is unique if and only if $\operatorname{ker} A=\{0\}$
- It is possible that $y \notin$ image A, because A and y are from inexact measurements
- Instead, we look for best possible approximation

Quasi-Solution with Least Error

- Given $x \in \mathbb{C}^{m}$, define the error to be

$$
\epsilon=L(x)-y \in \mathbb{C}^{n}
$$

- Goal: Solve for x that minimizes the magnitude of the error, $\|\epsilon\|$
- An $x \in X$ that minimizes $\|\epsilon\|$ is called a quasi-solution
- If $y \in$ image L, then a quasi-solution is a solution
- A quasi-solution need not be unique

Geometric Perspective

- If $A x$ is closest to y, then
- $y-A x$ is orthogonal to image A
- Recall that $(\text { image } A)^{\perp}=\operatorname{ker} A^{*}$
- Therefore, A is closest to y if

$$
\left.A^{*}(y-A x)\right)=0
$$

or, equivalently,

$$
A^{*} A x=A^{*} y
$$

Example

- Consider the system of equations

$$
\begin{array}{r}
x+y+z=3 \\
x+y=3 \\
z=3
\end{array}
$$

- Equivalently,

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]
$$

- There is no solution

Quasi-Solution

- Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- (x, y, z) is a quasi-solution if

$$
\begin{gathered}
A^{*} A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=A^{*}\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \\
\Longrightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \\
\Longrightarrow\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right]
\end{gathered}
$$

Quasi-Solution Via Row Reduction

- (x, y, z) is a quasi-solution if

$$
\begin{aligned}
{\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
6 \\
6 \\
0
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right] \\
\Longrightarrow x+y & =2 \\
z & =2
\end{aligned}
$$

Quasi-Solution Error

$$
\left[\begin{array}{c}
x \\
2-x \\
2
\end{array}\right] \text { is a quasi-solution to }\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]
$$

- The error of the quasi-solution

$$
\epsilon=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
2-x \\
2
\end{array}\right]-\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right]-\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]
$$

Error Comparison

- The error for any other (x, y, z) is

$$
\begin{aligned}
\epsilon & =\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]-\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
x+y+z-3 \\
x+y-3 \\
z-3
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]+\left[\begin{array}{c}
x+y+z-4 \\
x+y-2 \\
z-2
\end{array}\right]
\end{aligned}
$$

- The error magnitude squared is

$$
\epsilon^{2}=\left\|\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]\right\|^{2}+\left\|\left[\begin{array}{c}
x+y+z-4 \\
x+y-2 \\
z-2
\end{array}\right]\right\|^{2} \geq\left\|\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]\right\|^{2}
$$

Quasi-Solutions of $L(x)=y$

- $L(x)$ is closest to y if

$$
L^{*} L(x)=L^{*}(y)
$$

- For any $y \in Y$, there is always a quasi-solution x, because

$$
\operatorname{image}\left(L^{*} L\right)=\text { image } L^{*}
$$

- Recall that $\operatorname{ker}\left(L^{*} L\right)=\operatorname{ker} L$
- Therefore, since $L^{*} L$ is self-adjoint,

$$
\operatorname{image}\left(L^{*} L\right)=\left(\operatorname{ker} L^{*} L\right)^{\perp}=(\operatorname{ker} L)^{\perp}=\operatorname{image} L^{*}
$$

- If $v \in \operatorname{ker} L^{*} L=\operatorname{ker} L$, then $x+v$ is also a solution
- The quasi-solution is unique only if $\operatorname{ker} L=\{0\}$
- Because the domain and range of $L^{*} L$ have the same dimension
- If $\operatorname{dim} X>\operatorname{dim} Y$, this is not possible, because

$$
\operatorname{dim} \operatorname{ker} L=\operatorname{dim} X-\operatorname{dim}(\text { image } L) \geq \operatorname{dim} X-\operatorname{dim} Y>0
$$

Error Comparison

- A quasi-solution of the equation $L(x)=y$ satisfies

$$
L^{*} L(x)=L^{*}(y)
$$

and therefore $L^{*}(L(x)-y)=0$

- The error of the quasi-solution x is

$$
\epsilon=L(x)-y
$$

- The error of any $x^{\prime} \in X$ is

$$
\epsilon^{\prime}=L\left(x^{\prime}\right)-y=L\left(x^{\prime}-x\right)+L(x)-y=L\left(x^{\prime}-x\right)+\epsilon
$$

- On the other hand,

$$
\begin{aligned}
\left\langle L\left(x^{\prime}-x\right), \epsilon\right\rangle & =\left\langle x^{\prime}-x, L^{*}(\epsilon)\right\rangle \\
& =\left\langle x^{\prime}-x, L^{*} L(x)-L^{*}(y)\right\rangle \\
& =0
\end{aligned}
$$

- Therefore, $\left\|\epsilon^{\prime}\right\|^{2}=\|\epsilon\|^{2}+\left\|L\left(x^{\prime}-x\right)\right\|^{2}$

Quasi-Solution when $L^{*} L: X \rightarrow X$ is Invertible

- If x is a quasi-solution, then

$$
L^{*} L(x)=L^{*}(y)
$$

- If the map $L^{*} L: X \rightarrow X$ is invertible, then the unique quasi-solution is

$$
x=\left(L^{*} L\right)^{-1} L^{*}(y)
$$

Solution with Minimal Magnitude

- Suppose $x \in X$ is a solution (not just a quasi-solution) of

$$
A x=y
$$

- If $v \in \operatorname{ker} A$, then $x+v$ is also a solution,

$$
A(x+v)=y
$$

- There is a unique solution x with minimal magnitude

Minimal Magnitude Solution Via Orthogonal Projection

- For any $x^{\prime} \in X$, there is a unique way to decompose x^{\prime} into a sum

$$
x^{\prime}=x+\left(x^{\prime}-x\right)
$$

where $x \in(\operatorname{ker} A)^{\perp}$ and $x-x^{\prime} \in \operatorname{ker} A$

- If x^{\prime} is a solution to

$$
A x^{\prime}=y
$$

then

$$
A x=A\left(x-x^{\prime}\right)+A x^{\prime}=y
$$

- If $x_{1}, x_{2} \in(\operatorname{ker} A)^{\perp}$ are both solutions, then

$$
x_{1}-x_{2} \in(\operatorname{ker} A)^{\perp} \text { and } x_{1}-x_{2} \in \operatorname{ker} A
$$

because

$$
A\left(x_{1}-x_{2}\right)=A x_{1}-A x_{2}=y-y=0
$$

Therefore, $x_{1}-x_{2}=0$

Quasi-Solution with Minimal Magnitude

- A quasi-solution to

$$
A x=y
$$

is a solution of

$$
A^{*} A x=A^{*} y
$$

- There is a unique quasi-solution $x \in\left(\operatorname{ker} A^{*} A\right)^{\perp}=(\operatorname{ker} A)^{\perp}$

Example

- The quasi-solutions of the equation

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]
$$

are

$$
\left[\begin{array}{c}
x \\
2-x \\
2
\end{array}\right], x \in \mathbb{C}
$$

- The magnitude squared of each quasi-solution is

$$
\left\|\left[\begin{array}{c}
x \\
2-x \\
2
\end{array}\right]\right\|^{2}=x^{2}+(2-x)^{2}+4=2\left((x-1)^{2}+3\right)
$$

- The magnitude is minimized when $x=1$ and therefore the Moore-Penrose quasi-solution is $(1,1,2)$

Moore-Penrose Quasi-Inverse Operator

- Let X and Y be inner product spaces and $L: X \rightarrow Y$ be a linear map
- There is a map $L^{+}: Y \rightarrow X$ such that for any $y \in Y$, $x=L^{+}(y)$ is the unique quasi-solution with minimal magnitude of the equation

$$
L(x)=y
$$

- The map L^{+}is called the Moore-Penrose quasi-inverse of L

Moore-Penrose Quasi-Inverse Operator

- The map

$$
\left.L\right|_{(\operatorname{ker} L)^{\perp}}:(\operatorname{ker} L)^{\perp} \rightarrow \text { image } L
$$

is an isomorphism.

- Let

$$
\pi: Y \rightarrow \text { image } L
$$

be orthogonal projection

- The Moore-Penrose quasi-inverse operator is the map

$$
L^{+}: Y \rightarrow X
$$

given by

$$
L^{+}(y)=\left(\left.L\right|_{(\operatorname{ker} L)^{\perp}}\right)^{-1}(\pi(y)) \in(\operatorname{ker} L)^{\perp} \subset X
$$

Quasi-Inverse of Diagonal Matrix

- Let $\Sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the diagonal matrix such that for each $1 \leq k \leq m$,

$$
\Sigma\left(\epsilon_{k}\right)= \begin{cases}s_{k} \epsilon_{k} & \text { if } 1 \leq k \leq r \\ 0 & \text { if } r+1 \leq k \leq m\end{cases}
$$

- Therefore,

$$
\Sigma\left(\epsilon_{1} v^{1}+\cdots+\epsilon_{m} v^{m}\right)=\epsilon_{1} s_{1} v^{1}+\cdots+\epsilon_{r} s_{r} v^{r}
$$

- The quasi-inverse of Σ satisfies the following:

$$
\Sigma^{+}\left(\epsilon_{1} v^{1}+\cdots+\epsilon_{m} v^{m}\right)=\epsilon_{1} s_{1}^{-1} v^{1}+\cdots+\epsilon_{r} s_{r} v^{r}
$$

- In particular,

$$
\begin{aligned}
\Sigma^{+}\left(\Sigma\left(\epsilon_{1} v^{1}+\cdots+\epsilon_{m} v^{m}\right)\right) & =\Sigma^{+}\left(\epsilon_{1} s_{1} v^{1}+\cdots+\epsilon_{r} s_{r} v^{r}\right) \\
& =\epsilon_{1} v^{1}+\cdots+\epsilon_{r} v^{r} \\
& =\pi_{r}(v)
\end{aligned}
$$

where $\pi_{r}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is orthogonal projection onto the subspace spanned by $\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)$

Quasi-Inverse Via Singular Value Decomposition

- Let the singular value decomposition of $L: X \rightarrow Y$ be

$$
L=W \Sigma V^{*},
$$

- For each $1 \leq k \leq m$, let $e_{k}=V\left(\epsilon_{k}\right)$
- For each $1 \leq j \leq n$, let $f_{j}=W\left(\epsilon_{j}\right)$
- Then for any $x=e_{1} x^{1}+\cdots+e_{m} x^{m} \in X$,

$$
L(x)=L\left(e_{1} x^{1}+\cdots+e_{m} x^{m}\right)=f_{1} s_{1} x^{1}+\cdots+f_{r} s_{r} x^{r}
$$

- Therefore, for any $y=f_{1} y^{1}+\cdots+f_{n} y^{n} \in Y$,

$$
L^{+}(y)=L^{+}\left(f_{1} y^{1}+\cdots+f_{n} y^{n}\right)=e_{1} s_{1}^{-1} y^{1}+\cdots+e_{r} s_{r}^{-1} y^{r}
$$

- In other words,

$$
L^{+}=W \Sigma^{+} V^{*}
$$

