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Adjoint of a Linear Transformation and of a Matrix
I Let V ,W be inner product spaces and L : V →W be a linear

map
I The (Hermitian) adjoint of L is defined to be the map

L∗ : W → V such that for any v ∈ V and w ∈W ,

(L(v),w) = (v , L∗(w))

I If M is an m-by-n matrix, its (Hermitian) adjoint is defined
to be the n-by-m matrix

M∗ = M
T

I Let (e1, . . . , en) be a unitary basis of V and (f1, . . . , fm) be a
unitary basis of W

I If L : V →W is a linear map and M is the matrix such that
for any 1 ≤ i ≤ n,

L(ei ) = f1M
1
i + · · ·+ fmM

m
i = faM

a
i m

then it is easy to verify that for any vectors

v = e1a
1 + · · ·+ ena

n and w = f1b
1 + · · ·+ fmb

m,

that

(L(v),w)) = (L(ea),w) = (fMa, fb) = (ea, eM∗b) = (v , L∗(w))
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Basic Properties of Adjoint Map

I If L, L1, L2 : V →W are linear maps and c ∈ F, then

(L1 + L2)∗ = L∗1 + L∗2

(cL)∗ = c̄L∗

(L1 ◦ L2)∗ = L∗2 ◦ L∗1
(L∗)∗ = L

(w , L(v)) = (L∗(w), v)
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Fundamental Subspaces of Adjoint Map

I Let L : V →W be a map between inner produt spaces

I Then

ker(L∗) = (image(L))⊥ (1)

ker(L) = (image(L∗))⊥ (2)

image(L) = (ker(L∗))⊥ (3)

image(L∗) = (ker(L))⊥ (4)

I That
I For any subspace S , (S⊥)⊥ = S
I For any linear map A, (A∗)∗ = A

imply that (2),(3),(4) follow directly from (1)
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Proof that ker(L∗) = (image(L))⊥

w ∈ ker(L∗) ⇐⇒ L∗(w) = 0

⇐⇒ ∀v ∈ V , (v , L∗(w)) = 0

⇐⇒ ∀v ∈ V , (L(v),w) = 0

⇐⇒ w ∈ (image(L))⊥
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Geometric Description of a Linear Map and its Adjoint
I Recall that if E is a subspace of V , then

V = E ⊕ E⊥

I Therefore,
V = (ker(L))⊕ (ker(L))⊥

I It is easy to show that the restriction of L to (ker(L))⊥,

L : (ker(L))⊥ → image(L)

is bijective
I Equivalently, by (4),

L : image(L∗)→ image(L)

is bijective
I Therefore,

rank(L) = dim(image(L)) = dim(image(L∗)) = rank(L∗)
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Isometries

I (Corrected Version) A map (not assumed to be linear)
L : V →W , where V and W are normed vector spaces, is an
isometry if for any v1, v2 ∈ V ,

|L(v2 − v1)| = |v2 − v1|

I Theorem: If V and W are inner product spaces and
L : V →W is an isometry, then L is linear and satisfies for
any v1, v2 ∈ V ,

(L(v1), L(v2)) = (v1, v2)

I Lemma: L : V →W is an isometry if and only if L∗ ◦ L = IV
I Therefore, L∗ is a left inverse
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Unitary Maps

I If dim(V ) = dim(W ), then an isometry L : V →W is called a
unitary map

I A map L is unitary if and only if L∗ ◦ L = IV
I A unitary map L is invertible, and its inverse is L∗

I A matrix M ∈ gl(n,F) is unitary if

M∗M = I

I A unitary matrix M is invertible, and its inverse is M∗
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Basic Properties of Isometries and Unitary Maps

I If dim(V ) ≤ dim(W ), L : V →W is an isometry, and
(v1, . . . , vn) is an orthonormal basis, then (L(v1), . . . , L(vn)) is
an orthonormal set in W

I If dim(V ) = dim(W ), L : V →W is unitary, and (v1, . . . , vn)
is an orthonormal basis, then (L(v1), . . . , L(vn)) is an
orthonormal basis of W

I If L is unitary, then L−1 = L∗ is unitary

I If L1 : V →W and L2 : W → X are unitary, then so is
L2 ◦ L1 : V → X
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Examples of Unitary Matrices

I An n-by-n matrix is unitary if and only if its columns form a
unitary basis of Fn

I A real 2-by-2 matrix is a unitary matrix with positive
determinant if and only if it is of the form[

cos θ − sin θ
sin θ cos θ

]
I For any θ1, θ2 ∈ R [

e iθ
1

0

0 e iθ
2

]
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More Properties of Unitary Matrices

I Let U be a unitary matrix

I det(U∗) = det(U)
I Because det(AT ) = det(A) and det(A) = det(A)

I If λ is an eigenvalue of U, then |λ| = 1
I Because if λ is an eigenvalue of U with eigenvector v , then

|v | = |Uv | = |λv | = |λ||v |,

which implies |λ| = 1
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Unitarily Equivalent Matrices
I M1,M2 ∈ gl(n,F) are unitarily equivalent if there exists a

unitary matrix U such that

M2 = UM1U
∗

I Since U∗ = U−1, unitarily equivalent implies similar
I Fact: A matrix M is unitarily equivialent to a diagonal matrix

if and only if there is a unitary basis of eigenvectors
I If A = UDU∗, then the standard basis (e1, . . . , en) are

eigenvectors of D
I For each 1 ≤ k ≤ n, let fk = U(ek)
I For each 1 ≤ j , k ≤ n,

(fj , fk) = (U(ej),U(ek)) = (ej , ek) = δjk

I Moreover, if Dek = λkek , then

Mfk = UDU∗Uek = UDek = U(λkek) = λkUek = λk fk

I Therefore, (f1, . . . , fn) is a unitary basis of eigenvectors
I Converse is even easier
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