MATH-GA2120 Linear Algebra II
 Adjoint Map
 Fundamental Subspaces
 Isometries
 Unitary Maps
 Unitarily Equivalent Maps

Deane Yang

Courant Institute of Mathematical Sciences
New York University

March 2, 2024

Adjoint of a Linear Transformation and of a Matrix

- Let V, W be inner product spaces and $L: V \rightarrow W$ be a linear map
- The (Hermitian) adjoint of L is defined to be the map $L^{*}: W \rightarrow V$ such that for any $v \in V$ and $w \in W$,

$$
(L(v), w)=\left(v, L^{*}(w)\right)
$$

- If M is an m-by- n matrix, its (Hermitian) adjoint is defined to be the n-by- m matrix

$$
M^{*}=\bar{M}^{T}
$$

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be a unitary basis of V and $\left(f_{1}, \ldots, f_{m}\right)$ be a unitary basis of W
- If $L: V \rightarrow W$ is a linear map and M is the matrix such that for any $1 \leq i \leq n$,

$$
L\left(e_{i}\right)=f_{1} M_{i}^{1}+\cdots+f_{m} M_{i}^{m}=f_{a} M_{i}^{a} m
$$

then it is easy to verify that for any vectors

$$
v=e_{1} a^{1}+\cdots+e_{n} a^{n} \text { and } w=f_{1} b^{1}+\cdots+f_{m} b^{m_{\bar{\prime}}}
$$

Basic Properties of Adjoint Map

- If $L, L_{1}, L_{2}: V \rightarrow W$ are linear maps and $c \in \mathbb{F}$, then

$$
\begin{aligned}
\left(L_{1}+L_{2}\right)^{*} & =L_{1}^{*}+L_{2}^{*} \\
(c L)^{*} & =\bar{c} L^{*} \\
\left(L_{1} \circ L_{2}\right)^{*} & =L_{2}^{*} \circ L_{1}^{*} \\
\left(L^{*}\right)^{*} & =L \\
(w, L(v)) & =\left(L^{*}(w), v\right)
\end{aligned}
$$

Fundamental Subspaces of Adjoint Map

- Let $L: V \rightarrow W$ be a map between inner produt spaces
- Then

$$
\begin{align*}
\operatorname{ker}\left(L^{*}\right) & =(\operatorname{image}(L))^{\perp} \tag{1}\\
\operatorname{ker}(L) & =\left(\operatorname{image}\left(L^{*}\right)\right)^{\perp} \tag{2}\\
\operatorname{image}(L) & =\left(\operatorname{ker}\left(L^{*}\right)\right)^{\perp} \tag{3}\\
\operatorname{image}\left(L^{*}\right) & =(\operatorname{ker}(L))^{\perp} \tag{4}
\end{align*}
$$

- That
- For any subspace $S,\left(S^{\perp}\right)^{\perp}=S$
- For any linear map $A,\left(A^{*}\right)^{*}=A$
imply that (2),(3),(4) follow directly from (1)

Proof that $\operatorname{ker}\left(L^{*}\right)=(\operatorname{image}(L))^{\perp}$

$$
\begin{aligned}
w \in \operatorname{ker}\left(L^{*}\right) & \Longleftrightarrow L^{*}(w)=0 \\
& \Longleftrightarrow \forall v \in V,\left(v, L^{*}(w)\right)=0 \\
& \Longleftrightarrow \forall v \in V,(L(v), w)=0 \\
& \Longleftrightarrow w \in(\operatorname{image}(L))^{\perp}
\end{aligned}
$$

Geometric Description of a Linear Map and its Adjoint

- Recall that if E is a subspace of V, then

$$
V=E \oplus E^{\perp}
$$

- Therefore,

$$
V=(\operatorname{ker}(L)) \oplus(\operatorname{ker}(L))^{\perp}
$$

- It is easy to show that the restriction of L to $(\operatorname{ker}(L))^{\perp}$,

$$
L:(\operatorname{ker}(L))^{\perp} \rightarrow \operatorname{image}(L)
$$

is bijective

- Equivalently, by (4),

$$
L: \operatorname{image}\left(L^{*}\right) \rightarrow \operatorname{image}(L)
$$

is bijective

- Therefore,

$$
\operatorname{rank}(L)=\operatorname{dim}(\operatorname{image}(L))=\operatorname{dim}\left(\operatorname{image}\left(L^{*}\right)\right)=\operatorname{rank}\left(L^{*}\right)
$$

Isometries

- (Corrected Version) A map (not assumed to be linear) $L: V \rightarrow W$, where V and W are normed vector spaces, is an isometry if for any $v_{1}, v_{2} \in V$,

$$
\left|L\left(v_{2}-v_{1}\right)\right|=\left|v_{2}-v_{1}\right|
$$

- Theorem: If V and W are inner product spaces and $L: V \rightarrow W$ is an isometry, then L is linear and satisfies for any $v_{1}, v_{2} \in V$,

$$
\left(L\left(v_{1}\right), L\left(v_{2}\right)\right)=\left(v_{1}, v_{2}\right)
$$

- Lemma: $L: V \rightarrow W$ is an isometry if and only if $L^{*} \circ L=I_{V}$
- Therefore, L^{*} is a left inverse

Unitary Maps

- If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then an isometry $L: V \rightarrow W$ is called a unitary map
- A map L is unitary if and only if $L^{*} \circ L=I_{V}$
- A unitary map L is invertible, and its inverse is L^{*}
- A matrix $M \in \operatorname{gl}(n, \mathbb{F})$ is unitary if

$$
M^{*} M=I
$$

- A unitary matrix M is invertible, and its inverse is M^{*}

Basic Properties of Isometries and Unitary Maps

- If $\operatorname{dim}(V) \leq \operatorname{dim}(W), L: V \rightarrow W$ is an isometry, and $\left(v_{1}, \ldots, v_{n}\right)$ is an orthonormal basis, then $\left(L\left(v_{1}\right), \ldots, L\left(v_{n}\right)\right)$ is an orthonormal set in W
- If $\operatorname{dim}(V)=\operatorname{dim}(W), L: V \rightarrow W$ is unitary, and $\left(v_{1}, \ldots, v_{n}\right)$ is an orthonormal basis, then $\left(L\left(v_{1}\right), \ldots, L\left(v_{n}\right)\right)$ is an orthonormal basis of W
- If L is unitary, then $L^{-1}=L^{*}$ is unitary
- If $L_{1}: V \rightarrow W$ and $L_{2}: W \rightarrow X$ are unitary, then so is $L_{2} \circ L_{1}: V \rightarrow X$

Examples of Unitary Matrices

- An n-by- n matrix is unitary if and only if its columns form a unitary basis of \mathbb{F}^{n}
- A real 2-by-2 matrix is a unitary matrix with positive determinant if and only if it is of the form

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- For any $\theta^{1}, \theta^{2} \in \mathbb{R}$

$$
\left[\begin{array}{cc}
e^{i \theta^{1}} & 0 \\
0 & e^{i \theta^{2}}
\end{array}\right]
$$

More Properties of Unitary Matrices

- Let U be a unitary matrix
- $\operatorname{det}\left(U^{*}\right)=\overline{\operatorname{det}(U)}$
- Because $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ and $\operatorname{det}(\bar{A})=\overline{\operatorname{det}(A)}$
- If λ is an eigenvalue of U, then $|\lambda|=1$
- Because if λ is an eigenvalue of U with eigenvector v, then

$$
|v|=|U v|=|\lambda v|=|\lambda||v|,
$$

which implies $|\lambda|=1$

Unitarily Equivalent Matrices

- $M_{1}, M_{2} \in \operatorname{gl}(n, \mathbb{F})$ are unitarily equivalent if there exists a unitary matrix U such that

$$
M_{2}=U M_{1} U^{*}
$$

- Since $U^{*}=U^{-1}$, unitarily equivalent implies similar
- Fact: A matrix M is unitarily equivialent to a diagonal matrix if and only if there is a unitary basis of eigenvectors
- If $A=U D U^{*}$, then the standard basis $\left(e_{1}, \ldots, e_{n}\right)$ are eigenvectors of D
- For each $1 \leq k \leq n$, let $f_{k}=U\left(e_{k}\right)$
- For each $1 \leq j, k \leq n$,

$$
\left(f_{j}, f_{k}\right)=\left(U\left(e_{j}\right), U\left(e_{k}\right)\right)=\left(e_{j}, e_{k}\right)=\delta_{j k}
$$

- Moreover, if $D e_{k}=\lambda_{k} e_{k}$, then

$$
M f_{k}=U D U^{*} U e_{k}=U D e_{k}=U\left(\lambda_{k} e_{k}\right)=\lambda_{k} U e_{k}=\lambda_{k} f_{k}
$$

- Therefore, $\left(f_{1}, \ldots, f_{n}\right)$ is a unitary basis of eigenvectors
- Converse is even easier

