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3-Dimensional Euclidean Vector Space
I Let V be R3 viewed as a vector space with with the standard

orientation, where the following are valid operations:
I Scaling: Given s ∈ R and v = (v1, v2, v3) ∈ V, the vector

obtained by scaling v by a factor s is

sv = (sv1, sv2, sv3)

I Vector addition: The sum of the vectors

v1 = (v1
1 , v

2
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1 ) and v2 = (v1
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2 ),

is
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I The dot product of v1, v2 ∈ V

v1 · v2 = v1
1 v

1
2 + v2

1 v
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1 v
3
2

I The length of a vector v is

|v | =
√
v · v
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Euclidean 3-Space
I Let E denote R3 viewed as a set of points where the following

are valid operations:
I Difference of two points: Given points x0, x1 ∈ E, there is

vector v ∈ V that starts at p0 and ends at p1, where

v = x1 − x0 = (x1
1 − x1

0 , x
2
1 − x2

0 , x
3
1 − x3

0 )

I Point-vector addition: Given a point x0 and a vector v ∈ V,
there is a point x1 such that x1 − x0 = v ,

x1 = x0 + v = (x1
0 + v1, x2

0 + v2, x3
0 + v3)

I The distance between two points x0, x1 ∈ E is

d(x0, x1) = |x1 − x0|

I For each x ∈ E, there is a natural isomorphism

TxE = V,

where TxE is the space of all possible velocity vectors of
curves passing through x
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Surface in E

I S ⊂ E is a parameterized surface if there exists an open
U ⊂ R2 and a smooth embedding Φ : U → E such that
S = Φ(U) ⊂ E

I S ⊂ E is a surface if for each p ∈ S , there exists an open
O ⊂ E such that S ∩ O is a parameterized surface

I A parameterization of S ∩ O is called a local
parameterization
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Surface as Level Set

I If O ⊂ E is open and f : O → R is smooth, then for each
h ∈ R,

f −1(h) = {x ∈ O : f (x) = h}

is called a level set

I If for each x ∈ f −1(h), df (x) 6= 0, then f −1(h) is a surface

I S is a surface if and only if for each p ∈ S , there is an open
O ⊂ E such that S ∩ O is a level set
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Examples
I If D ⊂ R2 is open, the graph of f : D → R,

S = {(x , y , f (x , y)) : (x , y) ∈ D}
is a surface

I The set

S = {(x , y , z) ∈ E : x2 + y2 + z2 = 1}
is a surface

I The boundary of a 3-dimensional rectangle

R = [a1, b1]× [a2, b2]× [a3, b3]

is not a surface
I The following subset of the boundary of R is a surface

S = ({a1, b1} × (a2, b2)× (a3, b3))

∪ ((a1, b1)× {a2, b2} × (a3, b3))

∪ ((a1, b1)× (a2, b2)× {a3, b3})
is a surface
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Tangent Space of Surface

I For each x0 ∈ S , let x : U → S ⊂ E be a parameterization of
S in a neighborhood of x0 such that x(0) = x0

I The pushforward of x at each u ∈ U is a linear map

xu : TuU → Tx(u)E

I Since the map x : U → S is an embedding, the pushforward is
injective

I Recall that xu(TuU) is the space of all possible velocity
vectors of curves passing through x(u)

I The tangent space of S at x(u) is

Tx(u)S = xu(TuU) ⊂ Tx(u)E
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Tangent and Cotangent Bundle
I The tangent bundle of a surface S is

T∗S =
∐
x∈S

TxS

I A vector field is a map

v : S → T∗S

such that for each x ∈ S , v(x) ∈ TxS

I The cotangent bundle of a surface S is

T ∗S =
∐
x∈S

T ∗x S

I A differential 1-form is a map

θ : S → T ∗S

such that for each x ∈ S , θ(x) ∈ T ∗x S
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Differential 2-Form on a Surface

I The exterior 2-tensor bundle of S is

Λ2T ∗S =
∐
x∈S

Λ2T ∗x S

I A differential 2-form on a surface S is a map

Θ : S → Λ2T ∗S ,

such that

Θ(x) ∈ Λ2T ∗x S
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Pullback of Differential Forms

I Let S and S ′ be surfaces and F : S → S ′ be a smooth map

I Recall that given a linear map

Fx : TxS → TF (x)S
′,

its dual map is the pullback

F x : T ∗F (x)S
′ → T ∗x S

I The pullback of a differential form Θ on S ′ is the differential
form F ∗Θ on S , where for each x ∈ S ,

(F ∗Θ)(x) = F x(Θ(F (x)))

I If θ is a 1-form, then for each v ∈ TxS ,

〈v , (F ∗θ)(x)〉 = 〈Fxv , θ(F (x))〉
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Orientation of a Surface

I Any basis (e1, e2) of TxS defines an orientation of TxS

I A parameterization x : U ⊂ E of S defines an orientation on
TxS , for each x ∈ S , by using the basis (∂1x(u), ∂2x(u)),
where x = x(u)

I If ν ∈ TxE is not tangent to S at x , then it uniquely
determines an orientation

I A basis (e1, e2) of TxS is positively oriented if (ν, e1, e2) is a
positively oriented basis of E, using the standard orientation
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Rectangular Surface

I Let R ⊂ R2 be a rectangle and R̊ = R\∂R be its interior

I A smooth map
x : R → E

is a rectangular parameterization of S if x(R) = S and the
map

x |R̊ : R̊ → E

is an embedding

I A surface is rectangular if it has a rectangular
parameterization
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Orthonormal Frame
I An orthonormal frame is a basis (e1, e2, e3) of V such that

ej · ek = δjk

I An orthonormal frame can be written as a row matrix of
vectors or a matrix whose columns are the three vectors in the
frame,

E = (e1, e2, e3)

=
[
e1 e2 e3

]
=

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3


=
[
∂1 ∂2 ∂3

] e1
1 e1

2 e1
3

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3


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Orthonormal Coframe
I The dual coframe is the dual basis of V∗,

E ∗ = (ω1, ω2, ω3)

=

ω1

ω2

ω3


=

ω1
1 dx

1 + ω1
2 dx

2 + ω1
3 dx

3

ω2
1 dx

1 + ω2
2 dx

2 + ω2
3 dx

3

ω3
1 dx

1 + ω3
2 dx

2 + ω3
3 dx

3


=

ω1
1 ω1

2 ω1
3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3

dx1

dx2

dx3

 ,
where

〈ωj , ek〉 = δjk
I Using matrix notation,

〈E ∗,E 〉 = I
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Parameterized Surface in Coordinates

I Let U ⊂ R2 be open and

x : U → E

be a parameterized surface

I Denote u = (u1, u2) ∈ U and x = (x1, x2, x3), where each

xk : U → R

is a scalar function

I By the definition of a parameterized surface, if u ∈ U,
v = (v1, v2) ∈ TuU, then the pushforwrd map

xu : TuU → Tx(u)E

is injective
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Coordinate Vector Fields and 1-Forms

I The coordinate vector fields are the columns of the matrix

[
∂1x ∂2x

]
=

∂1x
1 ∂2x

2

∂1x
2 ∂2x

2

∂1x
3 ∂2x

3


are linearly independent

I The coordinate 1-forms are

dx =

dx1

dx2

dx3

 =

du1∂1x
1 + du2∂2x

1

du1∂1x
2 + du2∂2x

2

du1∂1x
1 + du3∂2x

3

 =

∂1x
1 ∂2x

2

∂1x
2 ∂2x

2

∂1x
3 ∂2x

3

[du1

du2

]
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Orthonormal Moving Frame on Surface

I An orthonormal moving frame on a parameterized surface
x : U → S consists of 3 vector-valued maps

ek : U → V, k = 1, 2, 3,

such that for each u ∈ U,

ej(u) · ek(u) = δjk

I We can write the moving frame as a row matrix of vector
fields or a matrix whose columns are the vector fields,

E =
[
e1 e2 e3

]
=

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3


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Orthonormal Moving Dual Coframe

I The orthonormal moving dual coframe consists of a
column matrix of 1-forms,

E ∗ =

ω1

ω2

ω3


such that for each u ∈ U,

〈ωj(u), ek(u)〉 = δjk ,

i.e.,
〈E ∗,E 〉 = I
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Orthonormal Coframe Using Dot Product

I Consider the 1-forms

θk = ek · dx = e1
k dx

1 + e2
k dx

2 + e3
k dx

3

I They satisfy

〈ej , θk〉 = 〈e1
j ∂1 + e2

j ∂2 + e3
j ∂3, e

1
k dx

1 + e2
k dx

2 + e3
k dx

3〉
= e1

j e
1
k + e2

j e
2
k + e3

j e
3
k

= ej · ek
= δjk

I Therefore, (θ1, θ2, θ3) is the dual coframe of (e1, e2, e3)

I It follows that

(ω1, ω2, ω3) = (e1 · dx , e2 · dx , e3 · dx)
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dx : V→ V Is the Identity Map

I For each u ∈ U, the differential of the function xk : U → E is
the pullback of the differential of the coordinate function
xk : E→ R

I On E, the map

x = (x1, x2, x3) : E→ E

is the identity map

I If v ∈ V, then

〈v , dx〉 =

〈v , dx1〉
〈v , dx2〉
〈v , dx3〉

 =

〈v1∂1 + v2∂2 + v3∂3, dx
1〉

〈v1∂1 + v2∂2 + v3∂3, dx
2〉

〈v1∂1 + v2∂2 + v3∂3, dx
3〉

 =

v1

v2

v3

 = v

I In other words, the differential of the identity map x : E→ R
is the identity map

dx : V→ V
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dx With Respect to Orthonormal Frame
I On the other hand, at each x(u) ∈ S , the frame

E (u) = (e1(u), e2(u), e3(u)) and its dual frame
E ∗(u) = (ω1(u), ω2(u), ω3(u)) satisfies

EE ∗ =
[
e1 e2 e3

] ω1

ω2

ω3

 = ekω
k

defines a map V→ V, where if v = ejv
j ,

〈v ,EE ∗〉 = 〈ejv j , ekωk〉
= v jek〈ej , ωk

= v jekδ
k
j

= vkek

= v

I In other words, for each u ∈ U, the map EE ∗ : V→ is just
the identity map and therefore

dx = EE ∗ = ekω
k
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Connection 1-Forms on E
I Consider the 1-forms

ωj
k = ej · dek = e1

j de
1
k + e2

j e
2
k + e3

j de
3
k

I Then since EET = EE−1 = E−1E = ETE = I ,

ejω
j
k = ej(e

1
j de

1
k + e2

j e
2
k + e3

j de
3
k )

=

e1
1 e1

2 e1
3

e2
1 e2

2 e2
3

e3
1 e3

2 e3
3

e1
1 e2

1 e3
1

e1
2 e2

2 e3
2

e1
3 e2

3 e3
3

de1
k

de2
k

de3
k


= EET dek

= dek

I Therefore,
dek = ejω

j
k , i.e., dE = EΓ,

where

Γ =

ω1
1 ω1

2 ω1
3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3


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Matrix of Connection 1-Forms is Skew-Symmetric

I Since

0 = ej · ek = e1
j e

1
k + e2

j e
2
k + e3

j e
3
k ,

it follows that

0 = d(ej · ek)

= d(e1
j e

1
k + e2

j e
2
k + e3

j e
3
k )

= de1
j e

1
k + e1

j de
1
k + de2

j e
2
k + e2

j de
2
k + de3

j e
3
k + e3

j de
3
k

= dej · ek + ej · dek
= ωj

k + ωk
j

I Therefore,
ΓT = −ΓT
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Geometric Interpretation of Connection 1-Forms

I If v ∈ TxS , then

〈v , ω2
1〉 = 〈v , e2 · de1〉

= e2 · 〈v , de1〉

measures as x moves in the direction v , how quickly e1 is
turning towards e2 in TxS

I If v ∈ TxS , then

〈v , ω1
3〉 = 〈v , e1 · de3〉

= e1 · 〈v , de3〉

measures as x moves in the direction v , how quickly e3 is
turning towards e1
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First Structure Equation

I On one hand,

d(dx) =

d(dx1)
d(dx2)
d(dx3)

 =

0
0
0

 = 0

I On the other hand,

dx = d(ekω
k)

= dek ∧ ωk + ek dω
k

= ejω
j
k ∧ ω

k + ejdω
j

= ej(ω
j
k ∧ ω

k + dωj)

I Therefore, for each 1 ≤ j ≤ 3,

dωj + ωj
k ∧ ω

k = 0
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Second Structure Equation

I Since
dek = ejω

j
k ,

it follows that

0 = d(dek)

= d(ejω
j
k)

= dej ∧ ωj
k + ejdω

j
k

= eiω
i
j ∧ ω

j
k + ejdω

j
k

= ej(ω
j
i ∧ ω

i
k + dωj

k)

I Therefore,
dωj

k + ωj
i ∧ ω

i
j = 0
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Adapted Orthonormal Moving Frame along a Surface

TySS

e2

e1

y

e3

I An adapted orthonormal moving frame on a parameterized
surface x : U → S is an orthonormal moving frame such that
for each x ∈ S ,

e1(x), e2(x) ∈ TxS

I This implies e3(x) is normal to S

I In general, there is no adapted moving frame defined on all of
a surface S
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