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3-Dimensional Euclidean Vector Space

» Let V be R3 viewed as a vector space with with the standard
orientation, where the following are valid operations:

» Scaling: Given s € R and v = (v, v? v3) € V, the vector
obtained by scaling v by a factor s is

sv = (svl,sv? sv?)
» Vector addition: The sum of the vectors

vi = (vll, v12, v13) and v, = (v21, v22, v23),

vt = v vy )
» The dot product of v4,v, € V

1.1 2 2 3.3
Vi-Vo=ViVy + ViV + ViV,

» The length of a vector v is
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Euclidean 3-Space

» Let E denote R3 viewed as a set of points where the following
are valid operations:
» Difference of two points: Given points xg, x; € E, there is

vector v € V that starts at pg and ends at p;, where
1 1.2 2 .3 3
v=x1—x0o = (X) — X, X{ — X0, X5 — X))

» Point-vector addition: Given a point xg and a vector v € V,
there is a point x; such that x; — xp = v,

x1=x0+v=0qg+vxZ+vixg+v3)
» The distance between two points xp,x; € E is
d(x0,x1) = |x1 — x0|
» For each x € E, there is a natural isomorphism
TYE=YV,

where T, is the space of all possible velocity vectors of

curves passing through x
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Surface in E

» S C E is a parameterized surface if there exists an open
U c R? and a smooth embedding ® : U — E such that
S=¢(U)CE

» S C E is a surface if for each p € S, there exists an open
O C E such that SN O is a parameterized surface

» A parameterization of SN O is called a local
parameterization
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Surface as Level Set

» If O C Eisopen and f: O — R is smooth, then for each
heR,
fi(h)={xc0 : f(x)=h}
is called a level set
> If for each x € f~1(h), df(x) # 0, then f~1(h) is a surface

» S is a surface if and only if for each p € S, there is an open
O C E such that SN O is a level set
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Examples
» If D C R? is open, the graph of f : D — R,
S={(xy.f(x,y)) : (x,y) € D}

is a surface
» The set

S={(x,y,2) €RE : x> +y*+22=1}
is a surface
» The boundary of a 3-dimensional rectangle
R = [a, b'] x [a%, b?] x [a3, b7]
is not a surface
» The following subset of the boundary of R is a surface
S = ({al, b'} x (a°, b?) x (a°, b%))
U ((at, bt) x {a%, b*} x (a3, b))
U ((at, bt) x (a%, b?) x {a°, b*})

is a surface
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Tangent Space of Surface

>

>

For each xp € S, let x: U — S C E be a parameterization of
S in a neighborhood of xp such that x(0) = xo

The pushforward of x at each u € U is a linear map

Xy TyU — TyE
Since the map x : U — S is an embedding, the pushforward is
injective

Recall that x,(T,U) is the space of all possible velocity
vectors of curves passing through x(u)

The tangent space of S at x(u) is

TX(U)S = XU(TUU) - TX(U)E
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Tangent and Cotangent Bundle

» The tangent bundle of a surface S is

T.S=][ TS

xeS
> A vector field is a map
v:5S—>T.S5

such that for each x € S, v(x) € T,S
» The cotangent bundle of a surface S is

Ts=]]T:s
x€S

> A differential 1-form is a map
0:S—T*S

such that for each x € S, 0(x) € T;S
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Differential 2-Form on a Surface

» The exterior 2-tensor bundle of S is

NT*S =[] NT;S

XES

» A differential 2-form on a surface S is a map
©:S = AN°T*S,
such that

O(x) € A2T}S
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Pullback of Differential Forms

» Let S and S’ be surfaces and F : S — S’ be a smooth map

» Recall that given a linear map
Fe: TS — TF(X)SI,
its dual map is the pullback
F* T,’_f(X)S’ — TS

» The pullback of a differential form © on S’ is the differential
form F*© on S, where for each x € S,

(F*©)(x) = F*(6(F(x)))
» If 0 is a 1-form, then for each v € T, S,
(v, (F70)(x)) = (Fxv,0(F(x)))
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Orientation of a Surface

» Any basis (e1, e2) of TS defines an orientation of T, S

» A parameterization x : U C [E of S defines an orientation on
TS, for each x € S, by using the basis (01x(u), d2x(u)),
where x = x(u)

» If v € TLE is not tangent to S at x, then it uniquely
determines an orientation

» A basis (e1, e) of TS is positively oriented if (v, e1, e2) is a
positively oriented basis of [E, using the standard orientation
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Rectangular Surface

> Let R C R? be a rectangle and R = R\AR be its interior

» A smooth map
x:R—>E

is a rectangular parameterization of S if x(R) = S and the
map

o

x|g:R—=E
is an embedding

» A surface is rectangular if it has a rectangular
parameterization
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Orthonormal Frame
» An orthonormal frame is a basis (e1, e, €3) of V such that

ej-ek :5jk

» An orthonormal frame can be written as a row matrix of
vectors or a matrix whose columns are the three vectors in the

frame,
E:(61;627e3)
:[el [Sp) 63]
e & e
— e & o
e &
1 .1 1
9 %Y
= [81 15)) (93] e & &3
e &
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Orthonormal Coframe
» The dual coframe is the dual basis of V*,
E* — (wl’w27w3)
o

w3

[wl dx! + wl dx? + wi dx3
= |w? dx! + w3 dx? + w? dx3
w3 dxt + w3 dx? 4 w3 dx®

rl o1 1 1
wi wy; w3l [dx

= |w? w3 W2 |dx?],
Wi Wl Wi [dx®
where .
<wj7 ek> = &;(
» Using matrix notation,
(E*E) =1
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Parameterized Surface in Coordinates

» Let U C R? be open and
x:U—E

be a parameterized surface

» Denote u = (u!,u?) € U and x = (x}, x2,x3), where each
k.
x“:U—=R

is a scalar function

» By the definition of a parameterized surface, if u € U,
v = (v1,v?) € T,U, then the pushforwrd map

Xy TyU— Tx(u)E

is injective
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Coordinate Vector Fields and 1-Forms

» The coordinate vector fields are the columns of the matrix

(91X1 82X2
[81x a2x] = [01x? Oox?
81X3 82X3
are linearly independent
» The coordinate 1-forms are
dx! dutO1xt + duPdrxt Oixl Orx? du
dx = |dx?| = | duldix? + duPdax?| = |01x2  9ax? [duZ}
dx3 duto1xt + duPdhx3 O1x3 Oox3
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Orthonormal Moving Frame on Surface

» An orthonormal moving frame on a parameterized surface
x : U — S consists of 3 vector-valued maps

(S U—>V, k= 172737
such that for each u € U,
ej(u) - ex(u) = dj

» We can write the moving frame as a row matrix of vector
fields or a matrix whose columns are the vector fields,

e & e

— — @2 @2 @2
E=[a & e]=|e& & &
3 o3 o3

& &
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Orthonormal Moving Dual Coframe

» The orthonormal moving dual coframe consists of a
column matrix of 1-forms,

E*¥ = |w?

such that for each u € U,

(w (u), ex(u)) = &,

(E* E) = |
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Orthonormal Coframe Using Dot Product
» Consider the 1-forms
0K = ey - dx = e} dx' + e} dx® + e} dx®
» They satisfy

(ej,0%) = (e}@l + ej2(92 + e1383, e} dx! + ef dx® + e} dx®)
= ejle,l + ejze,% + efef
= ej - ek
» Therefore, (0%, 62,6%) is the dual coframe of (e1, e, €3)

» It follows that

(wlﬂwszs) - (el ' dX; € - an €3 - dX)
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dx : V — V Is the Identity Map

>

For each u € U, the differential of the function x* : U — E is
the pullback of the differential of the coordinate function
xK:E—-R
On E, the map

X = (xl,xz,x3) E—E

is the identity map

If v eV, then
(v, dx?) (V101 + v20s 4 v303, dxt) vl
(v,dx) = |{v,dx?)| = | (V101 + V20 + v303,dx?) | = |V?| =v
(v, dx3) (V101 + v20s 4 v303, dx3) v3

In other words, the differential of the identity map x: E — R
is the identity map

dx: V>V
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dx With Respect to Orthonormal Frame

» On the other hand, at each x(u) € S, the frame
E(u) = (e1(u), e2(u), e3(u)) and its dual frame
E*(u) = (w'(u),w?(u),w3(u)) satisfies

EE* = [el € e3] W?| = epwk
defines a map V — V, where if v = ¢/,
(v, EE*) = (ejV/, epw®)
= Vex(ej,w"
= vjek(Sj-‘
= vke,
=v
» In other words, for each u € U, the map EE* : V — is just
the identity map and therefore

dx = EE* = ekwk 21/26



Connection 1-Forms on E
» Consider the 1-forms

w{( =g - dey = ejl dep + ej2 e + ef‘ de}
» Thensince EET = EE1=El1E=ETE=1,

(ol gl 2.2 3 13
ejwy, = ej(ej dey + € ej; + € dey)

el e ell [el e €] [de}
= |e? e2 e2| |el e 3| |de?
el & €| |3 e e |de}
= EET dey
= dek

» Therefore,

where

1 1 1
SR

wi wy; w3
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Matrix of Connection 1-Forms is Skew-Symmetric

» Since

_ _ 11, 2.2 .33
O0=¢-ex =ee, +ee +ee,

it follows that
0= d(ej . ek)
= d(ejle,% + ej?e,% + ej"e,‘z')
= dej1 er + ejl def + dej2 ef + efde,% + defef + ef’de,f
= dej - ex + € - dey
j k

» Therefore,
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Geometric Interpretation of Connection 1-Forms

> If ve T,S, then
(v,wi) = (v, & - der)
= e - (v, der)

measures as x moves in the direction v, how quickly e; is
turning towards e, in TS

> If v e T,S, then

<v,w%> = (v, e - de3)
= e - (v, des)

measures as x moves in the direction v, how quickly es3 is
turning towards e;
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First Structure Equation

» On one hand,
d(dx*)
d(dx) = {d(dx%] = [

d(dx3)

0
0| =0
0
» On the other hand,

dx = d(exw")

= dey Awk + €k duw*
= Eytdi A wk —F-eytiauj
= ej(w{( Awk + du)

» Therefore, for each 1 < j < 3,
dw + wh Awk =0
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Second Structure Equation

» Since .
dek = ejwf(,
it follows that
0= d(dek)
= d(ejw])

= dej A wf( + ejdw{(
= e,-wJ’: A wf( + ejdw{(
= ¢j(w! Awj + dur)

» Therefore, ' ' .
dwj +wi Awl =0
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Adapted Orthonormal Moving Frame along a Surface

» An adapted orthonormal moving frame on a parameterized
surface x : U — S is an orthonormal moving frame such that
for each x € S,

e1(x), ex(x) € TS
» This implies e3(x) is normal to S

» In general, there is no adapted moving frame defined on all of
a surface S
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