MATH-GA1002 Multivariable Analysis Change of Variables Formula for Integral Tangent Bundle Pushforward of Tangent Vector Cotangent Bundle Differential 1-Forms Pullback of Differential 1-Form

Deane Yang

Courant Institute of Mathematical Sciences New York University

April 27, 2024

Change of Variables Formula for Single and Double Integrals

The change of variable formula for a single integral is also known as substitution,

$$\int_{u=u(a)}^{u=u(b)} f(u) \, du = \int_{x=a}^{x=b} f(u(x))u'(x) \, dx.$$

The change of variable formula for a double integral is more complicated:

$$\int_{x=...}^{x=...} \int_{y=...}^{y=...} f(x, y) \, dy \, dx$$

= $\int_{u=...}^{u=...} \int_{v=...}^{v=...} f(x(u, v), y(u, v)) |\det J(u, v)| \, dv \, du,$

where

$$J(u,v) = \begin{bmatrix} \partial_{u}x & \partial_{v}x \\ \partial_{u}y & \partial_{v}y \end{bmatrix}$$

Change of Variables Formula for Multiple Integral

The change of variable formula for an *m*-dimensional integral is:

$$\int_{x^{1}=...}^{x^{1}=...} \cdots \int_{x^{m}=...}^{x^{m}=...} f(x^{1},...,x^{m}) dx^{m} \cdots dx^{1}$$

= $\int_{u^{1}=...}^{u^{1}=...} \cdots \int_{u^{m}=...}^{u^{m}=...} f(x^{1}(u),...,x^{m}(u)) |\det J(u)| du^{m} \cdots du^{1},$

where

$$J(u) = \begin{bmatrix} \partial_1 x^1 & \cdots & \partial_m x^1 \\ \vdots & & \vdots \\ \partial_1 x^m & \cdots & \partial_m x^m \end{bmatrix}$$

Inconsistency Between Single and Double Integrals

If f(x, y) is always positive on a rectangle R = [a, b] × [c, d], then

$$\int_{R} f = \int_{x=a}^{x=b} \int_{y=c}^{y=d} f(x, y) \, dy \, dx > 0$$

• If f(x) is always positive on an interval [a, b], then

$$\int_{x=a}^{x=b} f(x) \, dx = - \int_{x=b}^{x=a} f(x) \, dx$$

For a single integral, the direction of integration matters
We do this, so that the Fundamental Theorem of Calculus,

$$\int_{x=a}^{x=b} f'(x) \, dx = f(b) - f(a)$$

holds, even if a > b

Tangent Vectors

- Let $O \subset \mathbb{R}^m$ be open
- ► Recall that a tangent vector at x ∈ O is the velocity vector of a parameterized curve
- Let $T_x O$ be the space of all tangent vectors at x
- Given a tangent vector v ∈ T_xO, there is a smooth curve c : I → O such that

$$c(0) = x$$
 and $c'(0) = v$

- Recall also that a tangent vector defines a directional derivative of functions
- Given a tangent vector v ∈ ℝ^m at x ∈ O and a smooth function f : O → ℝ,

$$D_{v}f(x) = \left.\frac{d}{dt}\right|_{t=0} f(c(t))$$

5 / 21

Coordinate Tangent Vectors

• Given $x = (x^1, ..., x^m) \in O$ and $1 \le k \le m$, let $c_k : I \to O$ be the curve such that

$$c_k(t) = (c_k^1(t), \ldots, c_k^m(t)),$$

where for each $1 \leq j \leq m$,

$$c_k^j(t) = egin{cases} x^j & ext{if } j
eq k \ t & ext{if } j = k \end{cases}$$

For each 1 ≤ k ≤ m, let ∂_k ∈ T_xO be the velocity vector
Then c_k(0) = x and ∂_k = c'_k(0)

Tangent Space is a Vector Space

Let v ∈ T_xO and c : I → O be a curve such that c(0) = x and c'(0) = v
If c(t) = (c¹(t),..., c^m(t)), then v = c'(0) = ((c¹)'(0),..., (c^m)'(0)) ∈ ℝ^m
For any a ∈ ℝ, the curve ã : L > O given by

For any $a \in \mathbb{R}$, the curve $\tilde{c} : I \to O$ given by

$$\tilde{c}(t) = x + t(av)$$

has velocity $\tilde{c}'(0) = av$

► Given x ∈ O and v₁, v₂ ∈ T_xO, if c₁ and c₂ are the curves given by

$$c_1(t) = x + tv_1$$
 and $c_2(t) = x + tv_2$,

then the curve c: I
ightarrow O given by

$$c(t) = x + t(v_1 + v_2)$$

satisfies c(0) = x and $c'(0) = v_1 + v_2$

• T_pO satisfies all of the properties of a vector space

Tangent Bundle

• We will let
$$T_*O = \coprod_{x \in O} T_xO,$$

which is called the **tangent bundle** of O

Coordinate Tangent Vectors are a Basis of Tangent Space

Any v ∈ T_xO can be written with respect the coordinate tangent vectors (∂₁,...,∂_m) as

$$v = \partial_k a^k = a^1 \partial_1 + \dots + a^m \partial_m$$

I.e., there is a linear isomorphism

$$\mathbb{R}^m o T_X O$$

 $(a^1, \dots, a^m) \mapsto a^1 \partial_1 + \dots + a^m \partial_m$

(日) (四) (注) (注) (正)

Pushforward of a Tangent Vector

- Let $U \subset \mathbb{R}^k$ and $F : U \to O$ be a smooth map
- Let $t = (t^1, \ldots, t^k)$ denote the coordinates on U
- ▶ Recall that the **differential** of F at $t \in U$ is the linear map

$$\partial F(t) : T_t U o T_{F(t)} O$$

 $au \mapsto D_{ au} F(x) = \left. \frac{d}{dt} \right|_{t=0} F(c(t)),$

where c(0) = t and $c'(0) = \tau$

- The tangent vector ∂F(x)(τ) is called the **pushforward** of τ by F
- The pushforward map at x is also denoted

$$F_*: T_t U \to T_{F(t)} O$$

Cotangent Space and Bundle

For each
$$x \in O$$
, denote $T_x^* O = (T_x O)^*$

And denote

$$T^*O = \coprod_{x \in O} T^*_x O$$

Differentials of Functions

• Let $O \subset \mathbb{R}^m$ be open and $f : O \to \mathbb{R}$ be a smooth function

Recall that the differential of f at each $x \in O$ is a linear map

$$df(x): T_x O \to \mathbb{R},$$

where, for each $v \in T_X O$,

$$\langle df(x),v\rangle = D_v f(x) = \left. \frac{d}{dt} \right|_{t=0} f(c(t)),$$

where $c: I \to O$ is a smooth curve such that c(0) = x and c'(0) = v

Differentials of Coordinate Functions

- Let $(\partial_1, \ldots, \partial_m)$ denote the standard basis of \mathbb{R}^m
- For each $1 \le k \le m$, there is the coordinate function

$$x^k:\mathbb{R}^m o\mathbb{R}$$
 $(a^1,\ldots,a^m)\mapsto a^k$

• Let
$$v = \partial_k v^k \in T_x O$$

- Let $c: I \to O$ be a curve such that c'(0) = v
- ▶ Then, if $c = (c^1, ..., c^m)$, then for any $1 \le j \le m$, differential of x^j at $x \in O$ is $dx^j \in T_x^*O$, where

$$\langle d\mathsf{x}^j(\mathsf{x}),\mathsf{v}
angle = \left.rac{d}{dt}
ight|_{t=0}\mathsf{x}^j(c(t)) = (c^j)'(0) = \mathsf{v}^j$$

In particular,

$$\langle dx^j, \partial_k \rangle = \delta^j_k$$

► Therefore, (dx¹,..., dx^m) is the basis of T^{*}_xO that is dual to the standard basis (∂₁,..., ∂_m) of T_xO

Differential of Function With Respect to Coordinates

Recall that if f : O → ℝ is a smooth function, then its differential is given by

$$df = \partial_k f \, dx^k,$$

where for each $x \in O$, $df(x) \in T_xO$

- For any $v = \partial_k v^k \in T_x O$, let $c : I \to O$ be a curve such that c(0) = x and c'(0) = v
- Then, by the chain rule,

$$df(x), v \rangle = D_v f(x)$$

$$= \frac{d}{dt} \Big|_{t=0} f(c(t))$$

$$= \partial_k f(c(0))(c^k)'(0)$$

$$= \partial_k f(x)v^k$$

$$= \partial_k f(x)\langle dx^k, v \rangle$$

Differential 1-Forms

A differential 1-form or just 1-form is a map

 $\theta: O \to T^*O,$

such that $\theta(x) \in T_x^*O$

▶ I.e., for each x, $\theta(x)$ is a linear function on \mathbb{R}^m ,

$$egin{aligned} & heta(x): \mathbb{R}^m o \mathbb{R} \ & v \mapsto \langle heta(x), v
angle \end{aligned}$$

Since (dx¹,..., dx^m) is a basis of (ℝ^m)*, it follows that for each x ∈ O, there exist coefficients a₁(x),..., a_m(x) such that

$$\theta(x) = a_1(x) \, dx^1 + \cdots + a_m(x) \, dx^m$$

• θ is a **smooth** 1-form if the functions a_1, \ldots, a_m are smooth

Pullback of 1-Form

▶ Recall that a linear map $L: V \rightarrow W$ induces a natural map

$$L^*: W^* \to V^*,$$

where for each $\beta \in W^*$, $L^*\beta = \beta \circ L \in V^*$, i.e., for each $v \in V$,

$$L^*\beta(v) = \beta(L(v))$$

- L*β is called the pullback of beta by L
- Let $O \subset \mathbb{R}^m$ and $P \subset \mathbb{R}^n$ be open
- Let $F: O \rightarrow P$ be a smooth map
- ► The pushforward map at x ∈ O is a linear map

$$F_*:\mathbb{R}^m\to\mathbb{R}^n$$

The pullback by F is a linear map

$$F^*: (\mathbb{R}^n)^* \to (\mathbb{R}^m)^*$$

16 / 21

Pullback of 1-Form (Part 2)

For any 1-form β on P and y ∈ P, β(y) ∈ (ℝⁿ)* is a linear function

 $\beta(y): T_y P \to \mathbb{R}$

▶ By definition, the pullback $F^*\beta$ at $x \in O$ is the linear function

 $(F^*\beta)(x):\mathbb{R}^m\to\mathbb{R}$

given by $(F^*\beta)(x) = \beta(F(x)) \circ F_*$

▶ I.e., given a tangent vector $v \in \mathbb{R}^m$ at $x \in \mathbb{R}^m$,

$$\langle (F^*\beta)(x), v \rangle = \langle \beta(F(x)) \circ F_* \rangle \\ = \langle \beta(F(x)), F_* v \rangle$$

Pullback of Differential of Function

- Let f : P → ℝ be a smooth function and F : O → P be a smooth map
- ▶ Recall that for any $v \in T_x O$, and $c : I \to O$ such that c(0) = x and c'(0) = v,

$$D_{v}(f \circ F)(x) = \langle d(f \circ F)(x), v \rangle$$
$$= \frac{d}{dt} \Big|_{t=0} f(F(c(t)))$$
$$= \frac{d}{dt} \Big|_{t=0} f((F \circ)(t)))$$
$$= \langle df(x), (F \circ c)'(0) \rangle$$
$$= \langle df(x), F_{*}v \rangle$$
$$= \langle (F^{*}df)(x), v \rangle$$

Coordinate Vectors and 1-Forms

- Let (x¹,...,x^m) denote coordinates on O
- Let (y^1, \ldots, y^m) denote coordinates on P
- Denote the coordinate basis of $T_X O$ by

$$(\partial_1^x,\ldots,\partial_m^x) = \left(\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^m}\right)$$

• Denote the coordinate basis of $T_y P$ by

$$\left(\partial_1^{y},\ldots,\partial_m^{y}\right) = \left(\frac{\partial}{\partial y^1},\ldots,\frac{\partial}{\partial y^m}\right)$$

Each coordinate on P can be viewed as a function

$$y^a: P \to \mathbb{R}$$

The differentials (dy¹,..., dyⁿ) are the basis of T^{*}_yP dual to the coordinate basis of T_yP

Pullback of Coordinate 1-Form

For each $x \in O$, denote

$$F(x) = (y^1(x), \dots, y^n(x)) \in P$$

For each $1 \le a \le n$, denote

$$(y^a \circ F)(x) = y^a(x)$$

• Then, for each $v \in T_x O$ and $1 \le a \le n$,

$$\langle (F^*dy^a)(x), v \rangle = \langle d(y^a \circ F), v \rangle$$

= $\langle dy^a, v \rangle$

▶ With respect to coordinates on *O*, if $v = v^i \partial_i^x \in T_x O$, then

$$\langle (F^* dy^a)(x), v \rangle = \langle dy^a, v \rangle \\ = \langle \partial_i^x y^a dx^i, v^j \partial_j^x \rangle \\ = v^j \frac{\partial y^a}{\partial x^j}$$

Pullback of 1-Form in Coordinates

$$\blacktriangleright F^* dy^a = \partial_j y^a \, dx^j$$

The pullback by F of the 1-form

$$\beta = b_a \, dy^a$$

is

$$F^*\beta = b_a \frac{\partial y^a}{\partial x^j} \, dx^j$$

• Here, $b_a = b_a \circ F$ and $y^a = y^a \circ F$