MATH-GA1002 Multivariable Analysis
 Change of Variables Formula for Integral
 Tangent Bundle Pushforward of Tangent Vector Cotangent Bundle Differential 1-Forms Pullback of Differential 1-Form

Deane Yang

Courant Institute of Mathematical Sciences
New York University
April 27, 2024

Change of Variables Formula for Single and Double Integrals

- The change of variable formula for a single integral is also known as substitution,

$$
\int_{u=u(a)}^{u=u(b)} f(u) d u=\int_{x=a}^{x=b} f(u(x)) u^{\prime}(x) d x .
$$

- The change of variable formula for a double integral is more complicated:

$$
\begin{aligned}
& \int_{x=\ldots}^{x=\ldots} \int_{y=\ldots}^{y=\ldots)} f(x, y) d y d x \\
& =\int_{u=\ldots}^{u=\ldots} \int_{v=\ldots}^{v=\ldots} f(x(u, v), y(u, v))|\operatorname{det} J(u, v)| d v d u,
\end{aligned}
$$

where

$$
J(u, v)=\left[\begin{array}{cc}
\partial_{u} x & \partial_{v} x \\
\partial_{u} y & \partial_{v} y
\end{array}\right]
$$

Change of Variables Formula for Multiple Integral

- The change of variable formula for an m-dimensional integral is:

$$
\begin{aligned}
& \int_{x^{1}=\ldots}^{x^{1}=\ldots} \cdots \int_{x^{m}=\ldots}^{\left.x^{m}=\ldots\right)} f\left(x^{1}, \ldots, x^{m}\right) d x^{m} \ldots d x^{1} \\
= & \int_{u^{1}=\ldots}^{u^{1}=\ldots} \cdots \int_{u^{m}=\ldots}^{u^{m}=\ldots} f\left(x^{1}(u), \ldots, x^{m}(u)\right)|\operatorname{det} J(u)| d u^{m} \cdots d u^{1},
\end{aligned}
$$

where

$$
J(u)=\left[\begin{array}{ccc}
\partial_{1} x^{1} & \cdots & \partial_{m} x^{1} \\
\vdots & & \vdots \\
\partial_{1} x^{m} & \cdots & \partial_{m} x^{m}
\end{array}\right]
$$

Inconsistency Between Single and Double Integrals

- If $f(x, y)$ is always positive on a rectangle $R=[a, b] \times[c, d]$, then

$$
\int_{R} f=\int_{x=a}^{x=b} \int_{y=c}^{y=d} f(x, y) d y d x>0
$$

- If $f(x)$ is always positive on an interval $[a, b]$, then

$$
\int_{x=a}^{x=b} f(x) d x=-\int_{x=b}^{x=a} f(x) d x
$$

- For a single integral, the direction of integration matters
- We do this, so that the Fundamental Theorem of Calculus,

$$
\int_{x=a}^{x=b} f^{\prime}(x) d x=f(b)-f(a)
$$

holds, even if $a>b$

Tangent Vectors

- Let $O \subset \mathbb{R}^{m}$ be open
- Recall that a tangent vector at $x \in O$ is the velocity vector of a parameterized curve
- Let $T_{x} O$ be the space of all tangent vectors at x
- Given a tangent vector $v \in T_{x} O$, there is a smooth curve $c: I \rightarrow O$ such that

$$
c(0)=x \text { and } c^{\prime}(0)=v
$$

- Recall also that a tangent vector defines a directional derivative of functions
- Given a tangent vector $v \in \mathbb{R}^{m}$ at $x \in O$ and a smooth function $f: O \rightarrow \mathbb{R}$,

$$
D_{v} f(x)=\left.\frac{d}{d t}\right|_{t=0} f(c(t))
$$

Coordinate Tangent Vectors

- Given $x=\left(x^{1}, \ldots, x^{m}\right) \in O$ and $1 \leq k \leq m$, let $c_{k}: I \rightarrow O$ be the curve such that

$$
c_{k}(t)=\left(c_{k}^{1}(t), \ldots, c_{k}^{m}(t)\right)
$$

where for each $1 \leq j \leq m$,

$$
c_{k}^{j}(t)= \begin{cases}x^{j} & \text { if } j \neq k \\ t & \text { if } j=k\end{cases}
$$

- For each $1 \leq k \leq m$, let $\partial_{k} \in T_{x} O$ be the velocity vector
- Then $c_{k}(0)=x$ and

$$
\partial_{k}=c_{k}^{\prime}(0)
$$

Tangent Space is a Vector Space

- Let $v \in T_{x} O$ and $c: I \rightarrow O$ be a curve such that $c(0)=x$ and $c^{\prime}(0)=v$
- If $c(t)=\left(c^{1}(t), \ldots, c^{m}(t)\right)$, then

$$
v=c^{\prime}(0)=\left(\left(c^{1}\right)^{\prime}(0), \ldots,\left(c^{m}\right)^{\prime}(0)\right) \in \mathbb{R}^{m}
$$

- For any $a \in \mathbb{R}$, the curve $\tilde{c}: I \rightarrow O$ given by

$$
\tilde{c}(t)=x+t(a v)
$$

has velocity $\tilde{c}^{\prime}(0)=a v$

- Given $x \in O$ and $v_{1}, v_{2} \in T_{x} O$, if c_{1} and c_{2} are the curves given by

$$
c_{1}(t)=x+t v_{1} \text { and } c_{2}(t)=x+t v_{2}
$$

then the curve $c: I \rightarrow O$ given by

$$
c(t)=x+t\left(v_{1}+v_{2}\right)
$$

satisfies $c(0)=x$ and $c^{\prime}(0)=v_{1}+v_{2}$

- $T_{p} O$ satisfies all of the properties of a vector space

Tangent Bundle

- We will let

$$
T_{*} O=\coprod_{x \in O} T_{x} O,
$$

which is called the tangent bundle of O

Coordinate Tangent Vectors are a Basis of Tangent Space

- Any $v \in T_{x} O$ can be written with respect the coordinate tangent vectors $\left(\partial_{1}, \ldots, \partial_{m}\right)$ as

$$
v=\partial_{k} a^{k}=a^{1} \partial_{1}+\cdots+a^{m} \partial_{m}
$$

- I.e., there is a linear isomorphism

$$
\begin{aligned}
\mathbb{R}^{m} & \rightarrow T_{x} O \\
\left(a^{1}, \ldots, a^{m}\right) & \mapsto a^{1} \partial_{1}+\cdots+a^{m} \partial_{m}
\end{aligned}
$$

Pushforward of a Tangent Vector

- Let $U \subset \mathbb{R}^{k}$ and $F: U \rightarrow O$ be a smooth map
- Let $t=\left(t^{1}, \ldots, t^{k}\right)$ denote the coordinates on U
- Recall that the differential of F at $t \in U$ is the linear map

$$
\begin{aligned}
\partial F(t): T_{t} U & \rightarrow T_{F(t)} O \\
\tau & \mapsto D_{\tau} F(x)=\left.\frac{d}{d t}\right|_{t=0} F(c(t)),
\end{aligned}
$$

where $c(0)=t$ and $c^{\prime}(0)=\tau$

- The tangent vector $\partial F(x)(\tau)$ is called the pushforward of τ by F
- The pushforward map at x is also denoted

$$
F_{*}: T_{t} U \rightarrow T_{F(t)} O
$$

Cotangent Space and Bundle

- For each $x \in O$, denote $T_{x}^{*} O=\left(T_{x} O\right)^{*}$
- And denote

$$
T^{*} O=\coprod_{x \in O} T_{x}^{*} O
$$

Differentials of Functions

- Let $O \subset \mathbb{R}^{m}$ be open and $f: O \rightarrow \mathbb{R}$ be a smooth function
- Recall that the differential of f at each $x \in O$ is a linear map

$$
d f(x): T_{x} O \rightarrow \mathbb{R}
$$

where, for each $v \in T_{x} O$,

$$
\langle d f(x), v\rangle=D_{v} f(x)=\left.\frac{d}{d t}\right|_{t=0} f(c(t))
$$

where $c: I \rightarrow O$ is a smooth curve such that $c(0)=x$ and $c^{\prime}(0)=v$

Differentials of Coordinate Functions

- Let $\left(\partial_{1}, \ldots, \partial_{m}\right)$ denote the standard basis of \mathbb{R}^{m}
- For each $1 \leq k \leq m$, there is the coordinate function

$$
\begin{aligned}
x^{k}: \mathbb{R}^{m} & \rightarrow \mathbb{R} \\
\left(a^{1}, \ldots, a^{m}\right) & \mapsto a^{k}
\end{aligned}
$$

- Let $v=\partial_{k} v^{k} \in T_{x} O$
- Letc $: I \rightarrow O$ be a curve such that $c^{\prime}(0)=v$
- Then, if $c=\left(c^{1}, \ldots, c^{m}\right)$, then for any $1 \leq j \leq m$, differential of x^{j} at $x \in O$ is $d x^{j} \in T_{x}^{*} O$, where

$$
\left\langle d x^{j}(x), v\right\rangle=\left.\frac{d}{d t}\right|_{t=0} x^{j}(c(t))=\left(c^{j}\right)^{\prime}(0)=v^{j}
$$

- In particular,

$$
\left\langle d x^{j}, \partial_{k}\right\rangle=\delta_{k}^{j}
$$

- Therefore, $\left(d x^{1}, \ldots, d x^{m}\right)$ is the basis of $T_{x}^{*} O$ that is dual to the standard basis $\left(\partial_{1}, \ldots, \partial_{m}\right)$ of $T_{x} O$

Differential of Function With Respect to Coordinates

- Recall that if $f: O \rightarrow \mathbb{R}$ is a smooth function, then its differential is given by

$$
d f=\partial_{k} f d x^{k}
$$

where for each $x \in O, d f(x) \in T_{x} O$

- For any $v=\partial_{k} v^{k} \in T_{x} O$, let $c: I \rightarrow O$ be a curve such that $c(0)=x$ and $c^{\prime}(0)=v$
- Then, by the chain rule,

$$
\begin{aligned}
\langle d f(x), v\rangle & =D_{v} f(x) \\
& =\left.\frac{d}{d t}\right|_{t=0} f(c(t)) \\
& =\partial_{k} f(c(0))\left(c^{k}\right)^{\prime}(0) \\
& =\partial_{k} f(x) v^{k} \\
& =\partial_{k} f(x)\left\langle d x^{k}, v\right\rangle
\end{aligned}
$$

Differential 1-Forms

- A differential 1-form or just 1-form is a map

$$
\theta: O \rightarrow T^{*} O
$$

such that $\theta(x) \in T_{x}^{*} O$

- I.e., for each $x, \theta(x)$ is a linear function on \mathbb{R}^{m},

$$
\begin{aligned}
\theta(x): \mathbb{R}^{m} & \rightarrow \mathbb{R} \\
v & \mapsto\langle\theta(x), v\rangle
\end{aligned}
$$

- Since $\left(d x^{1}, \ldots, d x^{m}\right)$ is a basis of $\left(\mathbb{R}^{m}\right)^{*}$, it follows that for each $x \in O$, there exist coefficients $a_{1}(x), \ldots, a_{m}(x)$ such that

$$
\theta(x)=a_{1}(x) d x^{1}+\cdots+a_{m}(x) d x^{m}
$$

- θ is a smooth 1 -form if the functions a_{1}, \ldots, a_{m} are smooth

Pullback of 1-Form

- Recall that a linear map $L: V \rightarrow W$ induces a natural map

$$
L^{*}: W^{*} \rightarrow V^{*}
$$

where for each $\beta \in W^{*}, L^{*} \beta=\beta \circ L \in V^{*}$, i.e., for each $v \in V$,

$$
L^{*} \beta(v)=\beta(L(v))
$$

- $L^{*} \beta$ is called the pullback of beta by L
- Let $O \subset \mathbb{R}^{m}$ and $P \subset \mathbb{R}^{n}$ be open
- Let $F: O \rightarrow P$ be a smooth map
- The pushforward map at $x \in O$ is a linear map

$$
F_{*}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

- The pullback by F is a linear map

$$
F^{*}:\left(\mathbb{R}^{n}\right)^{*} \rightarrow\left(\mathbb{R}^{m}\right)^{*}
$$

Pullback of 1-Form (Part 2)

- For any 1-form β on P and $y \in P, \beta(y) \in\left(\mathbb{R}^{n}\right)^{*}$ is a linear function

$$
\beta(y): T_{y} P \rightarrow \mathbb{R}
$$

- By definition, the pullback $F^{*} \beta$ at $x \in O$ is the linear function

$$
\left(F^{*} \beta\right)(x): \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

given by $\left(F^{*} \beta\right)(x)=\beta(F(x)) \circ F_{*}$

- I.e., given a tangent vector $v \in \mathbb{R}^{m}$ at $x \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\left\langle\left(F^{*} \beta\right)(x), v\right\rangle & =\left\langle\beta(F(x)) \circ F_{*}\right\rangle \\
& =\left\langle\beta(F(x)), F_{*} v\right\rangle
\end{aligned}
$$

Pullback of Differential of Function

- Let $f: P \rightarrow \mathbb{R}$ be a smooth function and $F: O \rightarrow P$ be a smooth map
- Recall that for any $v \in T_{x} O$, and $c: I \rightarrow O$ such that $c(0)=x$ and $c^{\prime}(0)=v$,

$$
\begin{aligned}
D_{v}(f \circ F)(x) & =\langle d(f \circ F)(x), v\rangle \\
& =\left.\frac{d}{d t}\right|_{t=0} f(F(c(t))) \\
& \left.=\left.\frac{d}{d t}\right|_{t=0} f((F \circ)(t))\right) \\
& =\left\langle d f(x),(F \circ c)^{\prime}(0)\right\rangle \\
& =\left\langle d f(x), F_{*} v\right\rangle \\
& =\left\langle\left(F^{*} d f\right)(x), v\right\rangle
\end{aligned}
$$

Coordinate Vectors and 1-Forms

- Let $\left(x^{1}, \ldots, x^{m}\right)$ denote coordinates on O
- Let $\left(y^{1}, \ldots, y^{m}\right)$ denote coordinates on P
- Denote the coordinate basis of $T_{x} O$ by

$$
\left(\partial_{1}^{x}, \ldots, \partial_{m}^{x}\right)=\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{m}}\right)
$$

- Denote the coordinate basis of $T_{y} P$ by

$$
\left(\partial_{1}^{y}, \ldots, \partial_{m}^{y}\right)=\left(\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{m}}\right)
$$

- Each coordinate on P can be viewed as a function

$$
y^{a}: P \rightarrow \mathbb{R}
$$

- The differentials $\left(d y^{1}, \ldots, d y^{n}\right)$ are the basis of $T_{y}^{*} P$ dual to the coordinate basis of $T_{y} P$

Pullback of Coordinate 1-Form

- For each $x \in O$, denote

$$
F(x)=\left(y^{1}(x), \ldots, y^{n}(x)\right) \in P
$$

- For each $1 \leq a \leq n$, denote

$$
\left(y^{a} \circ F\right)(x)=y^{a}(x)
$$

- Then, for each $v \in T_{x} O$ and $1 \leq a \leq n$,

$$
\begin{aligned}
\left\langle\left(F^{*} d y^{a}\right)(x), v\right\rangle & =\left\langle d\left(y^{a} \circ F\right), v\right\rangle \\
& =\left\langle d y^{a}, v\right\rangle
\end{aligned}
$$

- With respect to coordinates on O, if $v=v^{i} \partial_{i}^{x} \in T_{x} O$, then

$$
\begin{aligned}
\left\langle\left(F^{*} d y^{a}\right)(x), v\right\rangle & =\left\langle d y^{a}, v\right\rangle \\
& =\left\langle\partial_{i}^{x} y^{a} d x^{i}, v^{j} \partial_{j}^{x}\right\rangle \\
& =v^{j} \frac{\partial y^{a}}{\partial x^{j}}
\end{aligned}
$$

Pullback of 1-Form in Coordinates

- $F^{*} d y^{a}=\partial_{j} y^{a} d x^{j}$
- The pullback by F of the 1 -form

$$
\beta=b_{a} d y^{a}
$$

is

$$
F^{*} \beta=b_{a} \frac{\partial y^{a}}{\partial x^{j}} d x^{j}
$$

- Here, $b_{a}=b_{a} \circ F$ and $y^{a}=y^{a} \circ F$

