MATH-GA1002 Multivariable Analysis
 Area of Parallelogram
 Oriented Area
 Permutations
 Sign of Permutation
 Exterior m-Tensors
 Orientation of Vector Space

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 30, 2024

Affine Transformations and Parallelograms

- An affine transformation is a map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where there exists a linear isomorphism $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\tau \in \mathbb{R}^{n}$ such that

$$
A(x)=\tau+L(x)
$$

- A parallelogram is an affine transformation of a rectangle, i.e., P is a parallelogram if there exists a rectangle R and an affine transformation A such that

$$
P=A(R)
$$

Parallelogram in Vector Space

- Let $P(v, w)$ be the parallelogram with sides $v, w \in \mathbb{R}^{2}$.

$$
P(v, w)=\{a v+b w: 0 \leq a, b \leq 1\} .
$$

- Since each side has measure 0 , we can define the area of the parallelogram to be

$$
A(v, w)=\int \chi_{P(v, w)}
$$

Area of Parallelogram

- Any parallelogram $P(v, w)$ can be decomposed into a rectangle and two congruent triangles
- The parallelogram has the same area as the rectangle with the same base and height

Area of Two Parallelograms with Parallel Bases

- If v_{1} and v_{2} both point upward relative to w, then

$$
A\left(v_{1}+v_{2}, w\right)=A\left(v_{1}, w\right)+A\left(v_{2}, w\right)
$$

Area of Two Parallelograms with Parallel Bases

- If v_{1} points upward and v_{2} points downward relative to w, then

$$
A\left(v_{1}+v_{2}, w\right)=A\left(v_{1}, w\right)-A\left(v_{2}, w\right)
$$

Area of rescaled parallelogram

- If $c \geq 0$,

$$
A(c v, w)=c A(v, w)
$$

- In general,

$$
A(c v, w)=|c| A(v, w)
$$

Area of reflected parallelogram

$$
A(-v, w)=A(v, w)
$$

Area Versus Oriented Area

- The area function is awkward to use
- $A(t v, w)=|t| A(v, w)$
- It is not a differentiable function of v and w
- Redefine A so that it is bilinear and therefore sometimes negative
- Since $A(v, v)=0$, it is alternating

$$
\begin{aligned}
0 & =A(v+w, v+w) \\
& =A(v, v)+A(v, w)+A(w, v)+A(w, w) \\
& =A(v, w)+A(w, v)
\end{aligned}
$$

- $A(v, w)$ is called the oriented area of $P(v, w)$

Oriented Area of Parallelogram

- A is an exterior 2-tensor:

$$
\begin{aligned}
A\left(v_{1}+v_{2}, w\right) & =A\left(v_{1}, w\right)+A\left(v_{2}, w\right) \\
A(c v, w) & =c A(v, w) \\
A(w, v) & =-A(v, w)
\end{aligned}
$$

- Since $A\left(e_{1}, e_{2}\right)=1$ is a positively oriented orthonormal basis, if $v_{1}=a_{1}^{1} e_{1}+a_{1}^{2} e_{2}$ and $v_{2}=a_{2}^{1} e_{1}+a_{2}^{2} e_{2}$, then

$$
\begin{aligned}
A\left(v_{1}, w_{2}\right) & =A\left(a_{1}^{1} e_{1}+a_{1}^{2} e_{2}, a_{2}^{1} e_{1}+a_{2}^{2} e_{2}\right) \\
& =\left(a_{1}^{1} a_{2}^{2}-a_{1}^{2} a_{2}^{1}\right) \\
& =\operatorname{det}\left[\begin{array}{ll}
a_{1}^{1} & a_{2}^{1} \\
a_{1}^{2} & a_{2}^{2}
\end{array}\right]
\end{aligned}
$$

- The sign of $A\left(v_{1}, v_{2}\right)$ depends on determinant of the change of basis matrix

Generalization to Higher Dimensions

- Let V be an m-dimensional vector space
- An m-tensor

$$
A: V \times \cdots \times V \rightarrow \mathbb{R}
$$

- In \mathbb{R}^{m}, the parallelopiped spanned by vectors $\left(v_{1}, \ldots, v_{m}\right)$ is defined to be

$$
P\left(v_{1}, \ldots, v_{m}\right)=\left\{a^{1} v_{1}+\cdots a^{m} v_{m}: 0 \leq a^{1}, \ldots, a^{m} \leq 1\right\}
$$

- If $\left(e_{1}, \ldots, e_{m}\right)$ is the standard basis of \mathbb{R}^{m}, then

$$
P\left(e_{1}, \ldots, e_{m}\right)=1
$$

is a rectangle (in fact, a cube)

- Its volume is defined to be

$$
\begin{equation*}
\operatorname{vol}\left(e_{1}, \ldots, e_{m}\right)=1 \tag{1}
\end{equation*}
$$

Permutations

- A permutation of order m is a bijective map

$$
\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}
$$

- A permutation defines an ordered set

$$
(\sigma(1), \ldots, \sigma(m))
$$

where each integer appears exactly once

- Let S_{m} denote the set of all permutations of order m
- S_{m} is a subset of the space \mathcal{M}_{m} of all maps from $\{1, \ldots, m\}$ to itself,

Permutations Comprise a Group

- Group multiplication is composition of maps
- For any $\sigma_{1}, \sigma_{2} \in S_{m}$,

$$
\sigma_{2} \circ \sigma_{1} \in S_{m}
$$

- For any $\sigma_{1}, \sigma_{2}, \sigma_{3} \in S_{m}$

$$
\sigma_{3} \circ\left(\sigma_{2} \circ \sigma_{1}\right)=\left(\sigma_{3} \circ \sigma_{2}\right) \circ \sigma_{1}
$$

- There exists a unique permutation $e \in S_{m}$ such that for any $k \in\{1, \ldots, m\}$,

$$
e(k)=k
$$

- For any $\sigma \in S_{m}$,

$$
\sigma \circ e=e \circ \sigma=\sigma
$$

- For any $\sigma \in S_{m}$, there exists a unique $\sigma^{-1} \in S_{m}$ such that

$$
\sigma \circ \sigma^{-1}=\sigma^{-1} \circ \sigma=e
$$

Notation for Permutations

- Let

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{k}
\end{array}\right)
$$

denote the permutation such that

$$
\begin{aligned}
\sigma\left(a_{j}\right) & =a_{j+1} \text { if } 1 \leq j \leq k-1 \\
\sigma\left(a_{k}\right) & =a_{1} \\
\sigma(i) & =i \text { if } i \notin\left\{a_{1}, \ldots, a_{k}\right\}
\end{aligned}
$$

Sign of Permutation

- A transposition is an element $\tau \in S_{m}$ such that for some $j \neq k$,

$$
\begin{aligned}
\tau(j) & =k \\
\tau(k) & =j \\
\tau(i) & =i \text { if } i \neq j \text { and } i \neq k
\end{aligned}
$$

- There exists a unique function

$$
\epsilon: S_{m} \rightarrow\{-1,1\}
$$

satisfying the following:

- $\epsilon(e)=1$
- For any transposition τ,

$$
\epsilon(\tau)=-1
$$

- For any $\sigma_{1}, \sigma_{2} \in S_{m}$,

$$
\epsilon\left(\sigma_{2} \circ \sigma_{1}\right)=\epsilon\left(\sigma_{2}\right) \epsilon\left(\sigma_{1}\right)
$$

- $\epsilon(\sigma)$ is called the sign of σ

Sign of Map

- This can be extended to a function

$$
\epsilon: \mathcal{M}_{m} \rightarrow\{-1,0,1\}
$$

where if $\sigma \in \mathcal{M}_{m}$ is not bijective, then

$$
\epsilon(\sigma)=0
$$

Examples

- $\tau=(12) \in S_{3}$ is the permutation such that

$$
\tau(1)=2, \tau(2)=1, \tau(3)=3
$$

- It is a transposition and therefore $\epsilon(\tau)=-1$
- $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \in S_{3}$ satisfies

$$
\sigma(1)=2, \sigma(2)=3, \sigma(3)=1
$$

- Since

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \circ(23),
$$

it follows that $\epsilon(\sigma)=1$

Exterior m-Tensors on m-Dimensional Vector Space

- An m-tensor of an m-dimensional vector space V

$$
T: V \times \cdots \times V \rightarrow \mathbb{R}
$$

is alternating or exterior if for any $\left\{v_{1}, \ldots, v_{m}\right\} \subset V$ and transposition $\tau \in S_{m}$,

$$
T\left(v_{\tau(1)}, \ldots, v_{\tau(m)}\right)=-T\left(v_{1}, \ldots, v_{m}\right)
$$

- Equivalently, for any $\sigma \in S_{m}$,

$$
T\left(v_{\sigma(1)}, \ldots, v_{\sigma(m)}\right)=\epsilon(\sigma) T\left(v_{1}, \ldots, v_{m}\right)
$$

- The space of all alternating m-tensors will be denoted $\Lambda^{m} V^{*}$
$\operatorname{dim}(V)=m \Longrightarrow \operatorname{dim}\left(\Lambda^{m} V^{*}\right)=1$
- Let $T \in \Lambda^{m} V^{*}$
- Let $\left(e_{1}, \ldots, e_{m}\right)$ be a basis of V
- Let $v_{k}=e_{1} a_{k}^{1}+\cdots+e_{m} a_{k}^{j} \in V, 1 \leq k \leq m$
- Then

$$
\begin{aligned}
T\left(v_{1}, \ldots, v_{m}\right) & =T\left(e_{j_{1}} a_{1}^{j_{1}}, \ldots, e_{j_{m}} a_{m}^{j_{m}}\right) \\
& =\sum_{j_{1}=1}^{m} \cdots \sum_{j_{m}=1}^{m} T\left(e_{j_{1}} a_{1}^{j_{1}}, \ldots, e_{j_{m}} a_{m}^{j_{m}}\right) \\
& =\sum_{\sigma \in \mathcal{M}_{m}} a_{1}^{\sigma(1)} \cdots a_{m}^{\sigma(m)} T\left(e_{\sigma(1)}, \ldots, e_{\sigma(m)}\right) \\
& =\sum_{\sigma \in \mathcal{M}_{m}} a_{1}^{\sigma(1)} \ldots a_{m}^{\sigma(m)} \epsilon(\sigma) T\left(e_{1}, \ldots, e_{m}\right) \\
& =\left(\sum_{\sigma \in \mathcal{M}_{m}} \epsilon(\sigma) a_{1}^{\sigma(1)} \ldots a_{m}^{\sigma(m)}\right) T\left(e_{1}, \ldots, e_{m}\right) \\
& =(\operatorname{det}(A)) T\left(e_{1}, \ldots, e_{m}\right)
\end{aligned}
$$

Volume of Parallelopiped in \mathbb{R}^{m}

- Using geometric arguments as above, it can be shown that there is a unique exterior m-tensor

$$
\text { vol }: \mathbb{R}^{m} \times \cdots \times \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

such that the n-dimensional volume of a parallelopiped $P\left(v_{1}, \ldots, v_{m}\right)$ is equal to

$$
\left|\operatorname{vol}\left(v_{1}, \ldots, v_{m}\right)\right|
$$

- We therefore defined the n-dimensional oriented volume of $P\left(v_{1}, \ldots, v_{m}\right)$ to be

$$
\operatorname{vol}\left(v_{1}, \ldots, v_{m}\right)
$$

- If $v_{k}=e_{j} a_{k}^{j}$, where $\left(e_{1}, \ldots, e_{m}\right)$ is the standard basis of \mathbb{R}^{m}, then

$$
\operatorname{vol}\left(v_{1}, \ldots, v_{m}\right)=\operatorname{det}(A)
$$

Orientation of a Basis in \mathbb{R}^{m}

- Let $\left(v_{1}, \ldots, v_{m}\right)$ be an ordered basis of \mathbb{R}^{m}
- The basis is positively oriented if

$$
\operatorname{vol}\left(v_{1}, \ldots, v_{m}\right)>0
$$

- The order of the basis vectors matters!

Orientation of a Vector Space

- The space $\Lambda^{m} V^{*}$ of alternating m-tensors is 1-dimensional
- Therefore, if $A_{1}, A_{2} \in \Lambda^{m} V^{*}$ are both nonzero, then there exists a nonzero $c \in \mathbb{R}$ such that $A_{2}=c A_{1}$
- It follows that $\Lambda^{m} V^{*} \backslash\{0\}$ has two connected components, where $A_{1}, A_{2}=c A_{1}$ lie in the same component if $c>0$ and different components if $c<0$
- Each component is called an orientation on V
- Any nonzero $\Theta \in \Lambda^{m} V^{*}$ determines an orientation
- An oriented vector space is a vector space with an orientation, denoted $\Lambda_{+}^{m} V^{*}$, called the positive orientation
- An ordered basis $\left(v_{1}, \ldots, v_{m}\right)$ is positively oriented if for any $\Theta \in \Lambda_{+}^{m} V^{*}$,

$$
\Theta\left(v_{1}, \ldots, v_{m}\right)>0
$$

