MATH-GA1002 Multivariable Analysis

Riemann Integration Sets of Measure Zero Sets of Content Zero Fubini Theorem Basic Properties of Integrals

Deane Yang

Courant Institute of Mathematical Sciences New York University

March 30, 2024

Partition of an Interval

▶ A partition of an interval [a, b] is a finite sequence

$$P=(t_0,\ldots,t_N),$$

where

$$a = t_0 \leq t_1 \leq \cdots \leq t_N = b$$

A partition

$$\widetilde{P} = (\widetilde{t}_0, \ldots, \widetilde{t}_{\widetilde{N}})$$

is a **refinement** of P if

$$\{t_0,\ldots,t_N\}\subset\{\tilde{t}_0,\ldots,\tilde{t}_{\widetilde{N}}\}$$

Rectangles and Their Volumes

• A rectangle in \mathbb{R}^n is a set of the form

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n],$$

where $a_k \leq b_k$ for each $1 \leq k \leq n$

The volume of R is

$$\operatorname{vol}(R) = (b_1 - a_1) \cdots (b_n - a_n)$$

Partition of a Rectangle

► A partition of a rectangle *R* consists of *n* partitions,

$$P=(P_1,\ldots,P_n),$$

such that for each $1 \leq i \leq n$,

$$P_i = (t_{i,0},\ldots,t_{i,N_i})$$

is a partition of $[a_i, b_i]$

• A partition of *R* subdivides *R* into $N = N_1 \cdots N_n$ rectangles, where for each

$$1 \le i_1 \le N_1, \ 1 \le i_2 \le N_2, \dots, 1 \le i_n \le N_n,$$

there is the subrectangle

$$R_{i_1,i_2,\ldots,i_n} = [t_{1,i_1-1}, t_{1,i_1}] \times [t_{2,i_2-1}, t_{2,i_2}] \times \cdots \times [t_{n,i_n-1}, t_{n,i_n}]$$

4/131

Upper and Lower Riemann Sums

- Let $f : R \to \mathbb{R}$ be a bounded function
- Let P be a partition of R

• The volume of each subrectangle $S = R_{i_1,i_2,...,i_n}$ is

$$\mathsf{vol}(S) = (t_{i_1} - t_{i_1-1})(t_{i_2} - t_{i_2-1})\cdots(t_{i_n} - t_{i_n-1})$$

▶ For each subrectangle S of P, let

 $m(f,S) = \inf\{f(x) : x \in S\}$ and $M(f,S) = \sup\{f(x) : x \in S\}$

The lower Riemann sum of f for P is

$$L(f,P) = \sum_{S} m(f,S) \operatorname{vol}(S)$$

The upper Riemann sum of f for P is

$$L(f, P) = \sum_{S} m(f, S) \operatorname{vol}(S)$$

5/131

Refinement of Partition of Rectangle

A partition

$$\widetilde{P} = (\widetilde{P}_1, \ldots, \widetilde{P}_n)$$

is a refinement of

$$P=(P_1,\ldots,P_n)$$

if each \widetilde{P}_i is a refinement of P_i

Each subrectangle S of P is a union of subrectangles of \tilde{P} ,

$$S = \widetilde{S}_1 \cup \cdots \widetilde{S}_{N(\widetilde{P},S)},$$

where $N(\widetilde{P}, S)$ is the number of subrectangles of \widetilde{P} contained in S

Also,

$$\operatorname{vol}(S) = \operatorname{vol}(\widetilde{S}_1) + \dots + \operatorname{vol}(\widetilde{S}_{N(\widetilde{P},S)})$$

イロン 不得 とうほう イロン 二日

Refinements of Riemann Sums If $\tilde{S} \subset S$, then $m(f,S) \leq m(f,\tilde{S} \leq M(f,\tilde{S}) \leq M(f,S)$

L

It follows that

$$(f, P) = \sum_{S} m(f, S) \operatorname{vol}(S)$$
$$\leq \sum_{S} \sum_{\widetilde{S} \subset S} m(f, \widetilde{S}) \operatorname{vol}(\widetilde{S})$$
$$= \sum_{\widetilde{S}} m(f, \widetilde{S}) \operatorname{vol}(\widetilde{S})$$
$$= L(f, \widetilde{P})$$

Similarly,

$$U(f,P) \geq U(f,\widetilde{P})$$

► Therefore, if P' is a refinement of P, then $L(f, P) \le L(f, \widetilde{P}) \le U(f, \widetilde{P}) \le U(f, P)$

7/131

Riemann Integrable Functions

▶ Given a rectangle $R \subset \mathbb{R}^n$, a function $f : R \to \mathbb{R}$ is **Riemann** integrable if

 $\sup\{L(f, P): P \text{ is a partition of } R\}$ $= \inf\{U(f, P): P \text{ is a partition of } R\}$

The integral of a Riemann integrable function f over R is defined to be

$$\int_{R} f = \sup\{L(f, P) : P \text{ is a partition of } R\}$$
$$= \inf\{U(f, P) : P \text{ is a partition of } R\}$$

Sets of Measure Zero

A subset A ⊂ ℝⁿ has measure zero if for any ε > 0, there exists countably many rectangles R₁, R₂,... such that

$$A \subset \bigcup_{i=1}^{\infty} R_i$$

and

$$\sum_{i=1}^{\infty} \operatorname{vol}(R_i) \leq \epsilon$$

Examples of Sets of Measure Zero

- A finite set $A \subset \mathbb{R}^n$ has measure zero
- A countable set $A = \{a_1, a_2, \dots\} \subset \mathbb{R}^n$ has measure zero
 - ▶ Because for any e > 0, if R_i is a rectangle such that a_i ∈ R_i and

$$\operatorname{vol}(R_i) = \epsilon 2^{-i},$$

then

$$A \subset igcup_{i=1}^{\infty} R_i$$
 $\sum_{i=1}^{\infty} \operatorname{vol}(R_i) = \sum_{i=1}^{\infty} \epsilon 2^{-i} = \epsilon$

If A₁, A₂,..., is a countable collection of sets with measure zero, then their union

$$A = \bigcup_{i=1}^{\infty} A_i$$

has measure zero

Sets of Content Zero

A subset A ⊂ ℝⁿ has content zero if for any ε > 0, there exists a *finite* collection of rectangles R₁,..., R_N ⊂ ℝⁿ such that

$$A \subset R_1 \cup \cdots \cup R_N$$
 and $\operatorname{vol}(R_1) + \cdots + \operatorname{vol}(R_N) < \epsilon$.

If a set has content zero, then it has measure zero

Compact and Measure Zero Implies Content Zero

- ► Theorem: If A ⊂ ℝⁿ is compact and has measure 0, then it has content 0
- Let \(\epsilon > 0\). Since A has measure 0, there exists a countable cover of A by rectangles, \{R_1, ..., \} such that

$$\sum_{i=1}^{\infty} \operatorname{vol}(R_i) < \epsilon$$

Proof: Since A is compact, there exists a finite subcover R_{i1},..., R_{iN} of A and

$$\sum_{j=1}^{N} \operatorname{vol}(R_{i_j} \leq \sum_{i=1}^{\infty} \operatorname{vol}(R_i) < \epsilon$$

Since this holds for any $\epsilon > 0$, A has content 0

Nonempty Closed Interval in ${\mathbb R}$ Does Not Have Measure 0

▶ Let *a* < *b*

▶ **Theorem:** The interval $[a, b] \subset \mathbb{R}$ does not have content zero

Proof: Let R₁,..., R_N be rectangles, i.e., nonempty connected compact intervals, such that

$$[a,b] \subset R_1 \cup \cdots \cup R_N$$

Let

$$a = t_0 < t_1 < \cdots < t_M = b$$

be all endpoints of all R_1, \ldots, R_N , listed in increasing order

Since each $[t_{k-1}, t_k]$ lies in at least one of the R_i , it follows that

$$b-a = \sum_{k=1}^{M} t_k - t_{k-1} \le \sum_{i=1}^{N} \operatorname{vol}(R_i)$$

▶ Corollary: The interval $[a, b] \subset \mathbb{R}$ does not have measure zero

Integrable Functions on a Closed Rectangle

- Let $R \subset \mathbb{R}^n$ be a closed rectangle
- Let $f : R \to \mathbb{R}$ be a bounded function and

 $B = \{x \in R : f \text{ is not continuous at } x\}$

Theorem: *f* is integrable if and only if *B* has measure 0

Fubini Theorem

- Let $R = [a^1, b^1] \times \cdots \times [a^n, b^n]$
- Let $f : R \to \mathbb{R}$ be a function satisfying the following:
 - f is Riemann integrable on R
 - Given any lower dimensional rectangle R' ⊂ R, the restriction of f to R' is Riemann integrable
- Then integral can be calculated as a sequence of 1-variable integrals

$$\int_{R} f$$

$$= \int_{x^{1}=a^{1}}^{x^{1}=b^{1}} \left(\int_{x^{2}=a^{2}}^{x^{2}=b^{2}} \cdots \left(\int_{x^{n}=a^{n}}^{x^{n}=b^{n}} f(x^{1},\ldots,x^{n}) dx^{n} \right) \cdots dx^{2} \right) dx^{1}$$

Second, it does not matter which order you do the integrals in

Interior and Boundary of a set $A \subset \mathbb{R}^n$

• Let $A \subset \mathbb{R}^n$

- ► The interior of A is the maximal open subset of A, i.e., the set of all points x ∈ A such that there exist an open neigborhood of x contained in A
- ► The boundary of A is the set of all points x ∈ ℝⁿ such that any open neigborhood of x contains at least one point in A and at least one point not in A

Integrability of Characteristic Function of a Subset

The characteristic or indicator function of a subset C ⊂ ℝⁿ is defined by

$$\chi_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$$

- Theorem: χ_C is integrable if and only if the boundary of C has measure 0
- Proof: If x is in the interior of C, then there exists an open neighborhood O ⊂ C of x and therefore χ_C continuous at x
- If x is in the exterior of C, then there exists an open neighborhood O ⊂ ℝⁿ\C of x and therefore χ_C continuous at x
- It follows that χ_C is integrable if and only if the boundary of C has measure 0

Basic Properties of Volumes of Rectangles

For any rectangle $R \subset \mathbb{R}^n$ and $\tau \in \mathbb{R}^n$, let

$$R + \tau = \{x + \tau : x \in R\}$$

Then

$$\operatorname{vol}(R+\tau) = \operatorname{vol}(R)$$

If D is a diagonal matrix with nonnegative diagonal values, then DR is also a rectangle and

$$\operatorname{vol}(DR) = \det(D)\operatorname{vol}(R)$$

- The boundary of a rectangle has measure 0 (and therefore content 0)
- ▶ If R_1, R_2 are rectangles with disjoint interiors such that $R_1 \cup R_2$ is a rectangle, then

$$\mathsf{vol}(R_1 \cup R_2) = \mathsf{vol}(R_1) + \mathsf{vol}(R_2)$$

イロト 不得 トイヨト イヨト 二日

Basic Properties of Integrals over Rectangles

▶ If *f* is integrable on a rectangle $R \subset \mathbb{R}^n$ and $\tau \in \mathbb{R}^n$, then

$$\int_{R+\tau} f = \int_R f_\tau \, dx,$$

where $f_{\tau}(x) = f(x + \tau)$

If D is a diagonal matrix with nonnegative diagonal values, then

$$\int_{DR} f = \det(D) \int_{R} f_{D},$$

where $f_D(x) = f(Dx)$

Basic Properties of Volumes of Domains in \mathbb{R}^n

- Let $M \subset \mathbb{R}^n$ be a bounded set whose boundary has measure 0
- There exists a rectangle R such that M lies in its interior
- Define the volume of M to be

$$\operatorname{vol}(M) = \int_R \chi_M$$

For any $\tau \in \mathbb{R}^n$, let

$$M+\tau = \{x+\tau : x \in M\}$$

Then

$$\operatorname{vol}(M+\tau) = \operatorname{vol}(M)$$

- If D is a diagonal matrix with nonnegative diagonal values, then DM is also a domain whose boundary has measure 0 and vol(DR) = det(D) vol(R)
- ► If M₁, M₂ are domains whose boundaries have measure 0 and whose interiors are disjoint, then

$$\operatorname{vol}(M_1 \cup M_2) = \operatorname{vol}(M_1) + \operatorname{vol}(M_2) \quad \text{for all } \quad \text{for al$$

Basic Properties of Integrals over a Domain

- Let M be a bounded domain whose boundary has measure 0
- A function f : M → ℝ is integrable if it is continuous except on a set of measure 0
- Define the integral of f over M to be

$$\int_{M} f = \int_{R} f \chi_{M},$$

where R is a rectangle such that M lies in its interior

For any $\tau \in \mathbb{R}^n$ and integrable $f: M + \tau \to \mathbb{R}$,

$$\int_{M+\tau} f = \int_M f_\tau \, dx,$$

where $f_{\tau}(x) = f(x + \tau)$

 If D is a diagonal matrix with nonnegative diagonal values and f : DM → ℝ, then

$$\int_{DR} f = \det(D) \int_{R} f_{D},$$

where $f_D(x) = f(Dx)$

21/131