MATH-GA1002 Multivariable Analysis

Riemann Integration Sets of Measure Zero Sets of Content Zero
Fubini Theorem
Basic Properties of Integrals

Deane Yang

Courant Institute of Mathematical Sciences
New York University

March 30, 2024

Partition of an Interval

- A partition of an interval $[a, b]$ is a finite sequence

$$
P=\left(t_{0}, \ldots, t_{N}\right)
$$

where

$$
a=t_{0} \leq t_{1} \leq \cdots \leq t_{N}=b
$$

- A partition

$$
\widetilde{P}=\left(\tilde{t}_{0}, \ldots, \tilde{t}_{\widetilde{N}}\right)
$$

is a refinement of P if

$$
\left\{t_{0}, \ldots, t_{N}\right\} \subset\left\{\tilde{t}_{0}, \ldots, \tilde{t}_{\widetilde{N}}\right\}
$$

Rectangles and Their Volumes

- A rectangle in \mathbb{R}^{n} is a set of the form

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]
$$

where $a_{k} \leq b_{k}$ for each $1 \leq k \leq n$

- The volume of R is

$$
\operatorname{vol}(R)=\left(b_{1}-a_{1}\right) \cdots\left(b_{n}-a_{n}\right)
$$

Partition of a Rectangle

- A partition of a rectangle R consists of n partitions,

$$
P=\left(P_{1}, \ldots, P_{n}\right),
$$

such that for each $1 \leq i \leq n$,

$$
P_{i}=\left(t_{i, 0}, \ldots, t_{i, N_{i}}\right)
$$

is a partition of $\left[a_{i}, b_{i}\right]$

- A partition of R subdivides R into $N=N_{1} \cdots N_{n}$ rectangles, where for each

$$
1 \leq i_{1} \leq N_{1}, 1 \leq i_{2} \leq N_{2}, \ldots, 1 \leq i_{n} \leq N_{n},
$$

there is the subrectangle

$$
R_{i_{1}, i_{2}, \ldots, i_{n}}=\left[t_{1, i_{1}-1}, t_{1, i_{1}}\right] \times\left[t_{2, i_{2}-1}, t_{2, i_{2}}\right] \times \cdots \times\left[t_{n, i_{n}-1}, t_{n, i_{n}}\right]
$$

Upper and Lower Riemann Sums

- Let $f: R \rightarrow \mathbb{R}$ be a bounded function
- Let P be a partition of R
- The volume of each subrectangle $S=R_{i_{1}, i_{2}, \ldots, i_{n}}$ is

$$
\operatorname{vol}(S)=\left(t_{i_{1}}-t_{i_{1}-1}\right)\left(t_{i_{2}}-t_{i_{2}-1}\right) \cdots\left(t_{i_{n}}-t_{i_{n}-1}\right)
$$

- For each subrectangle S of P, let

$$
m(f, S)=\inf \{f(x): x \in S\} \text { and } M(f, S)=\sup \{f(x): x \in S\}
$$

- The lower Riemann sum of f for P is

$$
L(f, P)=\sum_{S} m(f, S) \operatorname{vol}(S)
$$

- The upper Riemann sum of f for P is

$$
L(f, P)=\sum_{S} m(f, S) \operatorname{vol}(S)
$$

Refinement of Partition of Rectangle

- A partition

$$
\widetilde{P}=\left(\widetilde{P}_{1}, \ldots, \widetilde{P}_{n}\right)
$$

is a refinement of

$$
P=\left(P_{1}, \ldots, P_{n}\right)
$$

if each \widetilde{P}_{i} is a refinement of P_{i}

- Each subrectangle S of P is a union of subrectangles of \widetilde{P},

$$
S=\widetilde{S}_{1} \cup \cdots \widetilde{S}_{N(\widetilde{P}, S)}
$$

where $N(\widetilde{P}, S)$ is the number of subrectangles of \widetilde{P} contained in S

- Also,

$$
\operatorname{vol}(S)=\operatorname{vol}\left(\widetilde{S}_{1}\right)+\cdots+\operatorname{vol}\left(\widetilde{S}_{N(\widetilde{P}, S)}\right)
$$

Refinements of Riemann Sums

- If $\widetilde{S} \subset S$, then

$$
m(f, S) \leq m(f, \widetilde{S} \leq M(f, \widetilde{S}) \leq M(f, S)
$$

- It follows that

$$
\begin{aligned}
L(f, P) & =\sum_{S} m(f, S) \operatorname{vol}(S) \\
& \leq \sum_{S} \sum_{\widetilde{S} \subset S} m(f, \widetilde{S}) \operatorname{vol}(\widetilde{S}) \\
& =\sum_{\widetilde{S}} m(f, \widetilde{S}) \operatorname{vol}(\widetilde{S}) \\
& =L(f, \widetilde{P}
\end{aligned}
$$

- Similarly,

$$
U(f, P) \geq U(f, \widetilde{P})
$$

- Therefore, if P^{\prime} is a refinement of P, then

$$
L(f, P) \leq L(f, \widetilde{P}) \leq U(f, \widetilde{P}) \leq U(f, P)
$$

Riemann Integrable Functions

- Given a rectangle $R \subset \mathbb{R}^{n}$, a function $f: R \rightarrow \mathbb{R}$ is Riemann integrable if

$$
\begin{aligned}
\sup \{L(f, P): P & \text { is a partition of } R\} \\
& =\inf \{U(f, P): P \text { is a partition of } R\}
\end{aligned}
$$

- The integral of a Riemann integrable function f over R is defined to be

$$
\begin{aligned}
\int_{R} f & =\sup \{L(f, P): P \text { is a partition of } R\} \\
& =\inf \{U(f, P): P \text { is a partition of } R\}
\end{aligned}
$$

Sets of Measure Zero

- A subset $A \subset \mathbb{R}^{n}$ has measure zero if for any $\epsilon>0$, there exists countably many rectangles R_{1}, R_{2}, \ldots such that

$$
A \subset \bigcup_{i=1}^{\infty} R_{i}
$$

and

$$
\sum_{i=1}^{\infty} \operatorname{vol}\left(R_{i}\right) \leq \epsilon
$$

Examples of Sets of Measure Zero

- A finite set $A \subset \mathbb{R}^{n}$ has measure zero
- A countable set $A=\left\{a_{1}, a_{2}, \cdots\right\} \subset \mathbb{R}^{n}$ has measure zero
- Because for any $\epsilon>0$, if R_{i} is a rectangle such that $a_{i} \in R_{i}$ and

$$
\operatorname{vol}\left(R_{i}\right)=\epsilon 2^{-i}
$$

then

$$
\begin{gathered}
A \subset \bigcup_{i=1}^{\infty} R_{i} \\
\sum_{i=1}^{\infty} \operatorname{vol}\left(R_{i}\right)=\sum_{i=1}^{\infty} \epsilon 2^{-i}=\epsilon
\end{gathered}
$$

- If A_{1}, A_{2}, \ldots, is a countable collection of sets with measure zero, then their union

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

has measure zero

Sets of Content Zero

- A subset $A \subset \mathbb{R}^{n}$ has content zero if for any $\epsilon>0$, there exists a finite collection of rectangles $R_{1}, \ldots, R_{N} \subset \mathbb{R}^{n}$ such that

$$
A \subset R_{1} \cup \cdots \cup R_{N} \text { and } \operatorname{vol}\left(R_{1}\right)+\cdots+\operatorname{vol}\left(R_{N}\right)<\epsilon
$$

- If a set has content zero, then it has measure zero

Compact and Measure Zero Implies Content Zero

- Theorem: If $A \subset \mathbb{R}^{n}$ is compact and has measure 0 , then it has content 0
- Let $\epsilon>0$. Since A has measuer 0 , there exists a countable cover of A by rectangles, $\left\{R_{1}, \ldots,\right\}$ such that

$$
\sum_{i=1}^{\infty} \operatorname{vol}\left(R_{i}\right)<\epsilon
$$

- Proof: Since A is compact, there exists a finite subcover $R_{i_{1}}, \ldots, R_{i_{N}}$ of A and

$$
\sum_{j=1}^{N} \operatorname{vol}\left(R_{i j} \leq \sum_{i=1}^{\infty} \operatorname{vol}\left(R_{i}\right)<\epsilon\right.
$$

Since this holds for any $\epsilon>0, A$ has content 0

Nonempty Closed Interval in \mathbb{R} Does Not Have Measure 0

- Let $a<b$
- Theorem: The interval $[a, b] \subset \mathbb{R}$ does not have content zero
- Proof: Let R_{1}, \ldots, R_{N} be rectangles, i.e., nonempty connected compact intervals, such that

$$
[a, b] \subset R_{1} \cup \cdots \cup R_{N}
$$

- Let

$$
a=t_{0}<t_{1}<\cdots<t_{M}=b
$$

be all endpoints of all R_{1}, \ldots, R_{N}, listed in increasing order

- Since each $\left[t_{k-1}, t_{k}\right]$ lies in at least one of the R_{i}, it follows that

$$
b-a=\sum_{k=1}^{M} t_{k}-t_{k-1} \leq \sum_{i=1}^{N} \operatorname{vol}\left(R_{i}\right)
$$

- Corollary: The interval $[a, b] \subset \mathbb{R}$ does not have measure zero

Integrable Functions on a Closed Rectangle

- Let $R \subset \mathbb{R}^{n}$ be a closed rectangle
- Let $f: R \rightarrow \mathbb{R}$ be a bounded function and

$$
B=\{x \in R: f \text { is not continuous at } x\}
$$

- Theorem: f is integrable if and only if B has measure 0

Fubini Theorem

- Let $R=\left[a^{1}, b^{1}\right] \times \cdots \times\left[a^{n}, b^{n}\right]$
- Let $f: R \rightarrow \mathbb{R}$ be a function satisfying the following:
- f is Riemann integrable on R
- Given any lower dimensional rectangle $R^{\prime} \subset R$, the restriction of f to R^{\prime} is Riemann integrable
- Then integral can be calculated as a sequence of 1 -variable integrals
$\int_{R} f$
$=\int_{x^{1}=a^{1}}^{x^{1}=b^{1}}\left(\int_{x^{2}=a^{2}}^{x^{2}=b^{2}} \cdots\left(\int_{x^{n}=a^{n}}^{x^{n}=b^{n}} f\left(x^{1}, \ldots, x^{n}\right) d x^{n}\right) \cdots d x^{2}\right) d x^{1}$
- Second, it does not matter which order you do the integrals in

Interior and Boundary of a set $A \subset \mathbb{R}^{n}$

- Let $A \subset \mathbb{R}^{n}$
- The interior of A is the maximal open subset of A, i.e., the set of all points $x \in A$ such that there exist an open neigborhood of x contained in A
- The boundary of A is the set of all points $x \in \mathbb{R}^{n}$ such that any open neigborhood of x contains at least one point in A and at least one point not in A

Integrability of Characteristic Function of a Subset

- The characteristic or indicator function of a subset $C \subset \mathbb{R}^{n}$ is defined by

$$
\chi C(x)= \begin{cases}1 & \text { if } x \in C \\ 0 & \text { if } x \notin C\end{cases}
$$

- Theorem: χ_{C} is integrable if and only if the boundary of C has measure 0
- Proof: If x is in the interior of C, then there exists an open neighborhood $O \subset C$ of x and therefore χ_{C} continuous at x
- If x is in the exterior of C, then there exists an open neighborhood $O \subset \mathbb{R}^{n} \backslash C$ of x and therefore χ_{C} continuous at x
- If x is in the boundary of C, then any neighborhood of x contains both a point in C and a point not in C and therefore χ_{C} is not continuous at C
- It follows that χ_{C} is integrable if and only if the boundary of C has measure 0

Basic Properties of Volumes of Rectangles

- For any rectangle $R \subset \mathbb{R}^{n}$ and $\tau \in \mathbb{R}^{n}$, let

$$
R+\tau=\{x+\tau: x \in R\}
$$

- Then

$$
\operatorname{vol}(R+\tau)=\operatorname{vol}(R)
$$

- If D is a diagonal matrix with nonnegative diagonal values, then $D R$ is also a rectangle and

$$
\operatorname{vol}(D R)=\operatorname{det}(D) \operatorname{vol}(R)
$$

- The boundary of a rectangle has measure 0 (and therefore content 0)
- If R_{1}, R_{2} are rectangles with disjoint interiors such that $R_{1} \cup R_{2}$ is a rectangle, then

$$
\operatorname{vol}\left(R_{1} \cup R_{2}\right)=\operatorname{vol}\left(R_{1}\right)+\operatorname{vol}\left(R_{2}\right)
$$

Basic Properties of Integrals over Rectangles

- If f is integrable on a rectangle $R \subset \mathbb{R}^{n}$ and $\tau \in \mathbb{R}^{n}$, then

$$
\int_{R+\tau} f=\int_{R} f_{\tau} d x
$$

where $f_{\tau}(x)=f(x+\tau)$

- If D is a diagonal matrix with nonnegative diagonal values, then

$$
\int_{D R} f=\operatorname{det}(D) \int_{R} f_{D},
$$

where $f_{D}(x)=f(D x)$

Basic Properties of Volumes of Domains in \mathbb{R}^{n}

- Let $M \subset \mathbb{R}^{n}$ be a bounded set whose boundary has measure 0
- There exists a rectangle R such that M lies in its interior
- Define the volume of M to be

$$
\operatorname{vol}(M)=\int_{R} \chi_{M}
$$

- For any $\tau \in \mathbb{R}^{n}$, let

$$
M+\tau=\{x+\tau: x \in M\}
$$

- Then

$$
\operatorname{vol}(M+\tau)=\operatorname{vol}(M)
$$

- If D is a diagonal matrix with nonnegative diagonal values, then $D M$ is also a domain whose boundary has measure 0 and

$$
\operatorname{vol}(D R)=\operatorname{det}(D) \operatorname{vol}(R)
$$

- If M_{1}, M_{2} are domains whose boundaries have measure 0 and whose interiors are disjoint, then

$$
\operatorname{vol}\left(M_{1} \cup M_{2}\right)=\operatorname{vol}\left(M_{1}\right)+\operatorname{vol}\left(M_{2}\right)
$$

Basic Properties of Integrals over a Domain

- Let M be a bounded domain whose boundary has measure 0
- A function $f: M \rightarrow \mathbb{R}$ is integrable if it is continuous except on a set of measure 0
- Define the integral of f over M to be

$$
\int_{M} f=\int_{R} f \chi_{M},
$$

where R is a rectangle such that M lies in its interior

- For any $\tau \in \mathbb{R}^{n}$ and integrable $f: M+\tau \rightarrow \mathbb{R}$,

$$
\int_{M+\tau} f=\int_{M} f_{\tau} d x
$$

where $f_{\tau}(x)=f(x+\tau)$

- If D is a diagonal matrix with nonnegative diagonal values and $f: D M \rightarrow \mathbb{R}$, then

$$
\int_{D R} f=\operatorname{det}(D) \int_{R} f_{D}
$$

where $f_{D}(x)=f(D x)$

