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Partition of an Interval

I A partition of an interval [a, b] is a finite sequence

P = (t0, . . . , tN),

where
a = t0 ≤ t1 ≤ · · · ≤ tN = b

I A partition
P̃ = (t̃0, . . . , t̃Ñ)

is a refinement of P if

{t0, . . . , tN} ⊂ {t̃0, . . . , t̃Ñ}
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Rectangles and Their Volumes

I A rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn],

where ak ≤ bk for each 1 ≤ k ≤ n

I The volume of R is

vol(R) = (b1 − a1) · · · (bn − an)
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Partition of a Rectangle

I A partition of a rectangle R consists of n partitions,

P = (P1, . . . ,Pn),

such that for each 1 ≤ i ≤ n,

Pi = (ti ,0, . . . , ti ,Ni
)

is a partition of [ai , bi ]

I A partition of R subdivides R into N = N1 · · ·Nn rectangles,
where for each

1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2, . . . , 1 ≤ in ≤ Nn,

there is the subrectangle

Ri1,i2,...,in = [t1,i1−1, t1,i1 ]× [t2,i2−1, t2,i2 ]× · · · × [tn,in−1, tn,in ]
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Upper and Lower Riemann Sums
I Let f : R → R be a bounded function

I Let P be a partition of R

I The volume of each subrectangle S = Ri1,i2,...,in is

vol(S) = (ti1 − ti1−1)(ti2 − ti2−1) · · · (tin − tin−1)

I For each subrectangle S of P, let

m(f ,S) = inf{f (x) : x ∈ S} and M(f ,S) = sup{f (x) : x ∈ S}

I The lower Riemann sum of f for P is

L(f ,P) =
∑
S

m(f ,S) vol(S)

I The upper Riemann sum of f for P is

L(f ,P) =
∑
S

m(f ,S) vol(S)
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Refinement of Partition of Rectangle

I A partition
P̃ = (P̃1, . . . , P̃n)

is a refinement of

P = (P1, . . . ,Pn)

if each P̃i is a refinement of Pi

I Each subrectangle S of P is a union of subrectangles of P̃,

S = S̃1 ∪ · · · S̃N(P̃,S)
,

where N(P̃, S) is the number of subrectangles of P̃ contained
in S

I Also,
vol(S) = vol(S̃1) + · · ·+ vol(S̃

N(P̃,S)
)
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Refinements of Riemann Sums
I If S̃ ⊂ S , then

m(f , S) ≤ m(f , S̃ ≤ M(f , S̃) ≤ M(f , S)

I It follows that

L(f ,P) =
∑
S

m(f ,S) vol(S)

≤
∑
S

∑
S̃⊂S

m(f , S̃) vol(S̃)

=
∑
S̃

m(f , S̃) vol(S̃)

= L(f , P̃

I Similarly,
U(f ,P) ≥ U(f , P̃)

I Therefore, if P ′ is a refinement of P, then

L(f ,P) ≤ L(f , P̃) ≤ U(f , P̃) ≤ U(f ,P)
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Riemann Integrable Functions

I Given a rectangle R ⊂ Rn, a function f : R → R is Riemann
integrable if

sup{L(f ,P) : P is a partition of R}
= inf{U(f ,P) : P is a partition of R}

I The integral of a Riemann integrable function f over R is
defined to be∫

R
f = sup{L(f ,P) : P is a partition of R}

= inf{U(f ,P) : P is a partition of R}
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Sets of Measure Zero

I A subset A ⊂ Rn has measure zero if for any ε > 0, there
exists countably many rectangles R1,R2, . . . such that

A ⊂
∞⋃
i=1

Ri

and
∞∑
i=1

vol(Ri ) ≤ ε
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Examples of Sets of Measure Zero
I A finite set A ⊂ Rn has measure zero
I A countable set A = {a1, a2, · · · } ⊂ Rn has measure zero

I Because for any ε > 0, if Ri is a rectangle such that ai ∈ Ri

and
vol(Ri ) = ε2−i ,

then

A ⊂
∞⋃
i=1

Ri

∞∑
i=1

vol(Ri ) =
∞∑
i=1

ε2−i = ε

I If A1,A2, . . . , is a countable collection of sets with measure
zero, then their union

A =
∞⋃
i=1

Ai

has measure zero
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Sets of Content Zero

I A subset A ⊂ Rn has content zero if for any ε > 0, there
exists a finite collection of rectangles R1, . . . ,RN ⊂ Rn such
that

A ⊂ R1 ∪ · · · ∪ RN and vol(R1) + · · ·+ vol(RN) < ε.

I If a set has content zero, then it has measure zero
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Compact and Measure Zero Implies Content Zero

I Theorem: If A ⊂ Rn is compact and has measure 0, then it
has content 0

I Let ε > 0. Since A has measuer 0, there exists a countable
cover of A by rectangles, {R1, . . . , } such that

∞∑
i=1

vol(Ri ) < ε

I Proof: Since A is compact, there exists a finite subcover
Ri1 , . . . ,RiN of A and

N∑
j=1

vol(Rij ≤
∞∑
i=1

vol(Ri ) < ε

Since this holds for any ε > 0, A has content 0
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Nonempty Closed Interval in R Does Not Have Measure 0

I Let a < b

I Theorem: The interval [a, b] ⊂ R does not have content zero

I Proof: Let R1, . . . ,RN be rectangles, i.e., nonempty
connected compact intervals, such that

[a, b] ⊂ R1 ∪ · · · ∪ RN

I Let
a = t0 < t1 < · · · < tM = b

be all endpoints of all R1, . . . ,RN , listed in increasing order

I Since each [tk−1, tk ] lies in at least one of the Ri , it follows
that

b − a =
M∑
k=1

tk − tk−1 ≤
N∑
i=1

vol(Ri )

I Corollary: The interval [a, b] ⊂ R does not have measure zero
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Integrable Functions on a Closed Rectangle

I Let R ⊂ Rn be a closed rectangle

I Let f : R → R be a bounded function and

B = {x ∈ R : f is not continuous at x}

I Theorem: f is integrable if and only if B has measure 0
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Fubini Theorem

I Let R = [a1, b1]× · · · × [an, bn]
I Let f : R → R be a function satisfying the following:

I f is Riemann integrable on R
I Given any lower dimensional rectangle R ′ ⊂ R, the restriction

of f to R ′ is Riemann integrable

I Then integral can be calculated as a sequence of 1-variable
integrals∫
R
f

=

∫ x1=b1

x1=a1

(∫ x2=b2

x2=a2
· · ·
(∫ xn=bn

xn=an
f (x1, . . . , xn) dxn

)
· · · dx2

)
dx1

I Second, it does not matter which order you do the integrals in
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Interior and Boundary of a set A ⊂ Rn

I Let A ⊂ Rn

I The interior of A is the maximal open subset of A, i.e., the
set of all points x ∈ A such that there exist an open
neigborhood of x contained in A

I The boundary of A is the set of all points x ∈ Rn such that
any open neigborhood of x contains at least one point in A
and at least one point not in A
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Integrability of Characteristic Function of a Subset
I The characteristic or indicator function of a subset C ⊂ Rn

is defined by

χC (x) =

{
1 if x ∈ C

0 if x /∈ C

I Theorem: χC is integrable if and only if the boundary of C
has measure 0

I Proof: If x is in the interior of C , then there exists an open
neighborhood O ⊂ C of x and therefore χC continuous at x

I If x is in the exterior of C , then there exists an open
neighborhood O ⊂ Rn\C of x and therefore χC continuous at
x

I If x is in the boundary of C , then any neighborhood of x
contains both a point in C and a point not in C and therefore
χC is not continuous at C

I It follows that χC is integrable if and only if the boundary of
C has measure 0
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Basic Properties of Volumes of Rectangles
I For any rectangle R ⊂ Rn and τ ∈ Rn, let

R + τ = {x + τ : x ∈ R}

I Then
vol(R + τ) = vol(R)

I If D is a diagonal matrix with nonnegative diagonal values,
then DR is also a rectangle and

vol(DR) = det(D) vol(R)

I The boundary of a rectangle has measure 0 (and therefore
content 0)

I If R1,R2 are rectangles with disjoint interiors such that
R1 ∪ R2 is a rectangle, then

vol(R1 ∪ R2) = vol(R1) + vol(R2)
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Basic Properties of Integrals over Rectangles

I If f is integrable on a rectangle R ⊂ Rn and τ ∈ Rn, then∫
R+τ

f =

∫
R
fτ dx ,

where fτ (x) = f (x + τ)

I If D is a diagonal matrix with nonnegative diagonal values,
then ∫

DR
f = det(D)

∫
R
fD ,

where fD(x) = f (Dx)

19 / 131



Basic Properties of Volumes of Domains in Rn

I Let M ⊂ Rn be a bounded set whose boundary has measure 0
I There exists a rectangle R such that M lies in its interior
I Define the volume of M to be

vol(M) =

∫
R
χM

I For any τ ∈ Rn, let

M + τ = {x + τ : x ∈ M}
I Then

vol(M + τ) = vol(M)

I If D is a diagonal matrix with nonnegative diagonal values,
then DM is also a domain whose boundary has measure 0 and

vol(DR) = det(D) vol(R)

I If M1,M2 are domains whose boundaries have measure 0 and
whose interiors are disjoint, then

vol(M1 ∪M2) = vol(M1) + vol(M2)
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Basic Properties of Integrals over a Domain
I Let M be a bounded domain whose boundary has measure 0
I A function f : M → R is integrable if it is continuous except

on a set of measure 0
I Define the integral of f over M to be∫

M
f =

∫
R
f χM ,

where R is a rectangle such that M lies in its interior
I For any τ ∈ Rn and integrable f : M + τ → R,∫

M+τ
f =

∫
M
fτ dx ,

where fτ (x) = f (x + τ)
I If D is a diagonal matrix with nonnegative diagonal values

and f : DM → R, then∫
DR

f = det(D)

∫
R
fD ,

where fD(x) = f (Dx)
21 / 131


