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Chain Rule for Maps
▶ Given an open O ⊂ Rn, a C 1 map

F : O → Rm,

an open U ⊂ Rm, F (O) ⊂ U, and a C 1 map

G : U → Rk ,

the chain rule states that

∂(G ◦ F )(x) = (∂G (F (x))) ◦ (∂F (x))

▶ First, recall that given any x ∈ O, and v ∈ Rn, then for any
C 1 curve

c : I → O, where c(0) = x and c ′(0) = v ,

it follows that

∂F (x)(v) =
d

dt

∣∣∣∣
t=0

F (c(t))
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Proof of Chain Rule for Maps
▶ Given x ∈ O and v ∈ Rn, let

c : I → U

t 7→ F (x + tv)

Observe that

c(0) = F (x) and c ′(0) = ∂F (x)(v)

▶ Then the differential of G ◦ F at x is

∂(G ◦ F )(x)(v) = d

dt

∣∣∣∣
t=0

G (F (x + tv))

=
d

dt

∣∣∣∣
t=0

G (c(t))

= ∂G (F (x))(c ′(0))

= ∂G (F (x)(∂F (x)(v))

▶ Therefore,

∂(G ◦ F )(x) = (∂G (F (x))) ◦ (∂F (x))
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Linear Implicit Function Theorem

▶ Let m, n > 0 and M : Rm × Rn → Rm be a linear map of the
form

M =
[
Am×m Bm×n

]
,

where A is invertible

▶ Then there exists a unique linear map

N : Rm × Rn → Rm × Rn

such that

M

[
v
w

]
= u ⇐⇒

[
v
w

]
= N

[
u
w

]
(1)

▶ Moreover, N is a linear isomorphism
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Proof of Linear Implicit Function Theorem

▶ For any (v ,w) ∈ Rm × Rn,

M

[
v
w

]
= Av + Bw .

▶ Therefore, for each u ∈ Rm,

M

[
v
w

]
= u ⇐⇒ Av + Bw = u

⇐⇒ v = A−1(u − Bw)

⇐⇒
[
v
w

]
=

[
A−1 −A−1B
0n×m In×n

] [
u
w

]
▶ Therefore,

N =

[
A−1 −A−1B
0n×m In×n

]
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Another Proof of Linear Implicit Function Theorem
▶ Let L : Rn × Rm → Rn × Rm be the linear map

L

[
v
w

]
=

[
Av + Bw

w

]
,

i.e.,

L =

[
A B

0n×m In×n

]
▶ Observe that L is invertible and

L−1 =

[
A−1 −A−1B
0n×m In×n

]
▶ Then

M

[
v
w

]
= u ⇐⇒ L

[
v
w

]
=

[
u
w

]
⇐⇒ L−1

[
u
w

]
=

[
v
w

]
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Implicit Function Theorem
▶ Let m, n > 0, O be an open neighborhood of 0 ∈ Rn+m and

f : O → Rm

be a C 1 map such that f (0) and

∂f (0) : Rm+n → Rm

is a matrix of the form

∂f (0) =
[
Am×m Bm×n

]
,

where A is invertible
▶ Then there exists an open neighborhood N of 0 ∈ Rm+n and

a unique C 1 map
ϕ : N → O

such that for any (z , y) ∈ N,

(x , y) ∈ ϕ(N) and f (x , y) = z ⇐⇒ (x , y) = ϕ(z , y)

▶ Moreover, ϕ is a diffeomorphism
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Proof of Implicit Function Theorem (Part 1)

▶ Let F : O → Rn+m be given by

F (x , y) = (f (x , y), y)

▶ The differential of F at (0, 0) is a linear map

∂F (0, 0) : Rn+m → Rn+m[
v
w

]
7→

[
∂f (0, 0)(v ,w)

w

]
= L

[
v
w

]
,

where

L =

[
A B

0n×m In×n

]
,

▶ Since A is invertible, so is L
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Proof of Implicit Function Theorem (Part 2)

▶ Since L = ∂F (0, 0) is invertible, it follows by the inverse
function theorem that there exist an open neighborhood N of
0 ∈ Rn+m and a unique C 1 map

F−1 : N → O

such that F (F−1(z , y)) = (z , y) for any (z , y) ∈ N

▶ If F−1(z , y) = (ϕ1(z , y), ψ2(z , y)), then

(z , y) = F (F−1(z , y)) = F (ϕ1(z , y), ϕ2(z , y)) = (f (ϕ1(z , y), ϕ2(z , y)), ϕ2(x , y)),

which holds if and only if ϕ2(z , y) = y and f (ϕ1(z , y), y) = z

▶ It follows that for any (z , y) ∈ N,

(x , y) ∈ F−1(N) and F (x , y) = (z , y) ⇐⇒ F (x , y) = (z , y)
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Normal Form for Surjective Linear Map

▶ Let dim(V ) = m + n, dim(W ) = m, and L : V → W be a
linear maps with rank m

▶ Fact: There exists linear isomorphisms A : W → Rm and
B : Rn+m → V such that the linear map

M = A ◦ L ◦ B : Rm+n → Rm

is the matrix
M =

[
Im×m 0m×n

]
,

i.e., for any (x ′, x ′′) ∈ Rm × Rn,

M

[
x ′

x ′′

]
= x ′
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Proof
▶ Since the rank of L is m, dim(ker(L)) = n
▶ Let (em+1, . . . , em+n) be a basis of ker(L)
▶ Extend this to a basis (e1, . . . , em, em+1, . . . , em+n) of V
▶ For each 1 ≤ j ≤ m, let fj = L(ej)
▶ (f1, . . . , fm) is linearly independent and therefore a basis of W
▶ Therefore, for any 1 ≤ a ≤ m + n,

L(ea) =

{
fa if 1 ≤ a ≤ m

0 if m + 1 ≤ a ≤ m + n

▶ Let (ϵ1, . . . , ϵN) be the standard basis of RN

▶ Let A : W → Rm, B : Rn+m → V be linear maps given by

A(fj) = ϵj , ∀1 ≤ j ≤ m

B(ϵa) = ea, ∀1 ≤ a ≤ m + n

▶ Then M = A ◦ L ◦ B : Rm+n → Rm satisfies

M(ϵa) =

{
ϵa if 1 ≤ a ≤ m

0 if m + 1 ≤ a ≤ m + n
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Normal Form for Submersion
▶ Let O be an open neighborhood of 0 ∈ Rm+n and

Φ : O → Rm

be a C k submersion such that Φ(0) = 0

▶ There exists a neighborhood U ⊂ O of 0, and a
diffeomorphisms

R : Φ(U) → Rm

S : S−1(U) → U

such that the map

Ψ = R ◦ Φ ◦ S : S−1(U) → Rm

is given by

Ψ(x ′, x ′′) = x ′, ∀(x ′, x ′′) ∈ S−1(U)
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Proof of Normal Form for Submersion
▶ Since

L = ∂Φ(0) : Rm+n → Rm

has rank m, there exist linear isomorphisms

A : Rm → Rm and B : Rm+n → Rm+n

such that
A ◦ L ◦ B =

[
Im×m 0m×n

]
▶ Therefore, if

Ψ = A ◦ Φ ◦ B : B−1(O) → Rm,

then the differential of Ψ at (0) is

∂Ψ(0) =
[
Im×m 0m×n

]
▶ The theorem now follows by the implicit function theorem
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Normal Form for Injective Linear Map

▶ Let dim(V ) = m, dim(W ) = m + n, and L : V → W be a
linear maps with rank m

▶ Fact: There exists linear isomorphisms A : W → Rm+n and
B : Rm → V such that the linear map

M = A ◦ L ◦ B : Rm → Rm+n

is the matrix

M =

[
Im×m

0n×m

]
,

i.e., for all x ′ ∈ Rm,

Mx ′ =

[
x ′

0′′

]
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Proof

▶ Let (em+1, . . . , em) be a basis of V

▶ For each 1 ≤ j ≤ m, let fj = L(ej)

▶ Since ker(L) = {0}, (f1, . . . , fm) is linearly independent

▶ Extend to a basis (f1, . . . , fm, fm+1, . . . , fm+n)

▶ Let A : W → Rm+n, B : Rn+m → V be linear maps given by

A(fa) = ϵa, ∀1 ≤ a ≤ m + n

B(ϵj) = ej , ∀1 ≤ j ≤ m

▶ Then M = A ◦ L ◦ B : Rm+n → Rm satisfies

M(ϵj) = ϵj , ∀1 ≤ j ≤ m
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Normal Form for Immersion

▶ Let O ′ be an open neighborhood of 0 ∈ Rm and
Φ : O ′ → Rm+n be a C k immersion such that Phi(0) = 0

▶ Then there exists a neighborhood U ′ ⊂ O ′ of 0, a
neighborhood U ⊂ Rm+n of 0, and diffeomorphisms

R : U → Rm+n

S : S−1(U ′) → U ′

such that Φ(U ′) ⊂ U and the map

Ψ = R ◦ Φ ◦ S : S−1(U ′) → Rm+n

is given by
Φ(x ′) = (x ′, 0) ∈ Rm × Rn
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Proof of Normal Form for Immersion (Part 1)

▶ Since
L = ∂Φ(0) : Rm → Rm+n

has rank m, there exist linear isomorphisms

A : Rm+n → Rm+n and B : Rm → Rm

such that

A ◦ L ◦ B =

[
Im×m

0n×m

]
▶ Therefore, the map Ψ = A◦Φ◦B has differential at 0 equal to

∂Ψ(0) =

[
Im×m

0n×m

]
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Proof of Normal Form for Immersion (Part 2)

▶ Now define the map

F : B−1(O)× Rn → Rm × Rn

(x , y) 7→ (Ψ(x , y), y)

▶ The differential of F at (0, 0) ∈ B−1(O) is

∂F (0, 0) : Rm × Rn → Rm × Rn[
v
w

]
7→

[
Im×m 0m×n

0n×m In×n

]
= I(m+n)×(m+n)

▶ The theorem now follows by the inverse function theorem
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Linear Maps and Bases of Vector Spaces
▶ If V is an n-dimensional vector space, then any basis

(b1, . . . , bn) of V defines a linear isomorphism

Rn → V

(r1, . . . , rn) 7→ r1b1 + · · ·+ rnbn = rkbk

▶ Conversely, any linear isomorphism

L : Rn → V

defines a basis (b1, . . . , bn) where

bk = L(ek)

▶ For any linear isomorphisms L1, L2 : Rn → V ,
L−1
2 ◦ L1 : Rn → Rn is a linear isomorphism

▶ The set of all linear isomorphisms L : Rn → V is a linear
atlas of V
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Linear Atlas of a Set

▶ An n-dimensional linear atlas of a nonempty set S is a
nonempty collection A of bijective maps Φ : Rn → S such
that for any Φ1,Φ2 ∈ A, the map

Φ−1
2 ◦ Φ1 : Rn → Rn

is a linear isomorphism

▶ A linear atlas on S implies a unique vector space structure on
S such that the maps in the atlas are linear

▶ An atlas can consist of only one map

▶ Given an atlas A, there is maximal atlas that contains all
possible linear maps Φ : Rn → S
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Linear Maps

▶ If S has an n-dimensional linear atlas S and T has an
m-dimensional atlas T , then a map

L : S → T

is linear if and only if for any Φ ∈ S and Ψ ∈ T , the map

Ψ ◦ Φ−1 : Rn → Rm

is linear
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Nonlinear Atlas of a Set
▶ An n-dimensional C k atlas of a nonempty set S is a

nonempty collection A of bijective maps Φ : O → S , where
O ⊂ Rn is open, such that for any maps

Φ1 : O1 → S and Φ2 : O2 → S

in A, the map
Φ−1
2 ◦ Φ1 : O1 → O2

is a C k diffeomorphism

▶ A bijective map Ψ : U → S , where U ⊂ Rn is open is
compatible with an n-dimensional C k local atlas A if for any
Φ : O → S in the atlas, the map

Φ−1 ◦Ψ : U → O

is a C k diffeomorphism

▶ Given an atlas A, there is maximal atlas that contains all
maps Φ : Rn → S that are compatible with A
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C k Manifolds

▶ A set S with a C k atlas is an example of a C k manifold

▶ Any open O ⊂ Rn is an n-dimensional C k manifold

▶ A C k manifold is an abstract space that is a nonlinear
analogue of an abstract vector space

▶ Any map Φ : U → S in the atlas S is called a coordinate
map

▶ The inverse map Φ−1 : S → U will also be called a coordinate
map

▶ Below, we will restrict to manifolds with atlases and
coordinate maps of this form
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C k Maps

▶ If S is an n-dimensional C k manifold with atlas S and T is an
m-dimensional C k manifold with atlas T , then a map

F : S → T

is C k if and only if for any maps

Φ : O → S in S and Ψ : U → S in T ,

the map
Ψ ◦ Φ−1 : O → U

is C k
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