# MATH-GA1002 Multivariable Analysis Inverse Function Theorem 

Deane Yang

Courant Institute of Mathematical Sciences
New York University
March 6, 2024

## Linear Isomorphism Implies Local Nonlinear Isomorphism

- Let $V$ and $W$ be $n$-dimensional vector spaces
- If $L: V \rightarrow W$ is a linear map with maximal rank, then
- $L$ is bijective
- Its inverse map $L^{-1}: W \rightarrow V$ is linear
- I.e., $L$ and $L^{-1}$ are linear isomorphisms
- Let $O \subset \mathbb{R}^{n}$ be open and $\Phi: O \rightarrow \mathbb{R}^{n}$ be a $C^{1}$ map
- Suppose that at $x_{0} \in O$, the differential of $\Phi$

$$
\partial \Phi\left(x_{0}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is a linear isomorphism

- Then there exists an open neighborhood $N \subset O$ of $x_{0}$ such that

$$
\left.\Phi\right|_{N}: N \rightarrow \Phi(N)
$$

is a diffeomorphism

## Inverse Function Theorem

Theorem
If $O \subset \mathbb{R}^{n}$ is open and $F: O \rightarrow \mathbb{R}^{n}$ is a $C^{k}$ map, where
$1 \leq k \leq \infty$ such that at $x_{0} \in O$, the linear map

$$
\partial F\left(x_{0}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is invertible, then, if $y_{0}=F\left(x_{0}\right)$, there exists $\epsilon>0$ such that

$$
F: F^{-1}\left(B\left(y_{0}, \epsilon\right)\right) \rightarrow B\left(y_{0}, \epsilon\right)
$$

is a diffeomorphism.

- First, we want to show that there exists an $\epsilon>0$ such that if $y \in B\left(y_{0}, \epsilon\right)$, then there is solution to the equation

$$
F(x)=y
$$

- Second, we show that the solution is unique
- This defines a map

$$
G: B\left(y_{0}, \epsilon\right) \rightarrow F^{-1}\left(B\left(y_{0}, \epsilon\right)\right)
$$

## Operator Norm of Matrix

- Given a linear map $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, let

$$
|L|=\sup |L(x)|:|x|=1\}
$$

Since $L$ is continuous and the unit sphere is compact, $|L|$ always exists

- It follows that for any $x \in \mathbb{R}^{m}$

$$
\begin{aligned}
|L(x)| & =\left|L\left(|x| \frac{x}{|x|}\right)\right| \\
& =\left|L\left(\frac{x}{|x|}\right)\right||x| \\
& \leq|L||x|
\end{aligned}
$$

- Properties

$$
\begin{array}{rlr}
|c L| & =c|L| & \text { (Homogeneity) } \\
\left|L_{1}+L_{2}\right| & \leq\left|L_{1}\right|+\left|L_{2}\right| & \text { (Triangle Inequality) }
\end{array}
$$

- A set $S$ of $n$-by- $m$ matrices is defined to be open if for any $L_{0} \in S$, there exists $\delta>0$ such that


## Set of Invertible Matrices is Open

- Let $L_{0}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be an invertible linear map
- Lemma: There exists $\delta>0$ such that for any linear map
$L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$,

$$
\left|L-L_{0}\right|<\delta \Longrightarrow L \text { is invertible }
$$

- Proof: Since

$$
|x|=\left|L_{0}^{-1}\left(L_{0}(x)\right)\right| \leq\left|L_{0}^{-1}\right|\left|L_{0}(x)\right|
$$

it follows that

$$
\begin{aligned}
L(x) & =L_{0}(x)+\left(L-L_{0}\right) x \\
& \geq\left|L_{0}(x)\right|-\left|\left(L-L_{0}\right) x\right| \\
& \geq\left|L_{0}^{-1}\right|^{-1}|x|-\left|L-L_{0}\right||x|
\end{aligned}
$$

Therefore, if

$$
\left|L-L_{0}\right|<\frac{1}{2}\left|L_{0}^{-1}\right|^{-1}
$$

then for any nonzero $x \in \mathbb{R}^{m},|L x|>0$, which implies that $L$ is invertible

## Invertible Jacobian (Part 1)

- Let $x_{0} \in O$ and assume $\partial F\left(x_{0}\right)$ is invertible
- There exists $\epsilon>0$ such that for any linear map $M: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$,

$$
\left|M-\partial F\left(x_{0}\right)\right|<\epsilon \Longrightarrow M \text { is invertible }
$$

- Since $\partial F$ is continuous, there exists $\delta>0$ such that

$$
x \in B\left(x_{0}, \delta\right) \Longrightarrow\left|\partial F(x)-\partial F\left(x_{0}\right)\right|<\epsilon
$$

- For any $x_{1}, x_{2} \in B\left(x_{0}, \delta\right)$ and $t \in[0,1]$,

$$
\begin{aligned}
\left|\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-x_{0}\right| & =\left|(1-t)\left(x_{1}-x_{0}\right)+t\left(x_{2}-x_{0}\right)\right| \\
& \leq(1-t)\left|x_{1}-x_{0}\right|+t\left|x_{2}-x_{0}\right| \\
& \leq \delta,
\end{aligned}
$$

which implies that $\partial F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)$ is invertible

## Invertible Jacobian (Part 1)

- Let

$$
M=\int_{t=0}^{t=1} \partial F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right) d t
$$

- Then

$$
\begin{aligned}
\left|M-\partial F\left(x_{0}\right)\right| & \left|\int_{t=0}^{t=1} \partial F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right) d t-\partial F\left(x_{0}\right)\right| \\
& =\left|\int_{t=0}^{t=1} \partial F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-\partial F\left(x_{0}\right) d t\right| \\
& \leq \int_{t=0}^{t=1}\left|\partial F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-\partial F\left(x_{0}\right)\right| d t \\
& \leq \int_{t=0}^{t=1} \epsilon d t \\
& =\epsilon
\end{aligned}
$$

- Therefore, $M$ is invertible and

$$
\left|M-\partial F\left(x_{0}\right)\right| \leq \epsilon
$$

## Fundamental Theorem of Calculus for a Map

- By the Fundamental Theorem of Calculus and the chain rule, for any $x_{1}, x_{2} \in B\left(x_{0}, \delta\right)$,

$$
\begin{aligned}
F\left(x_{2}\right)-F\left(x_{1}\right) & =\int_{t=0}^{t=1} \frac{d}{d t} F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right) d t \\
& =\int_{t=0}^{t=1}\left(x_{2}^{k}-x_{1}^{k}\right) \partial_{k} F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right) d t \\
& =\left(\int_{t=0}^{t=1} \partial F\left(x_{1}+t\left(x_{2}-x_{1}\right)\right) d t\right)\left(x_{2}-x_{1}\right) \\
& =M\left(x_{2}-x_{1}\right)
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right| & \leq|M|\left|x_{2}-x_{1}\right| \\
\left|x_{2}-x_{1}\right| & \leq\left|M^{-1}\right|\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right|
\end{aligned}
$$

## Existence of Solution (Part 1)

- Given any $y$ near $F\left(x_{0}\right)$, we want to show that there exists $x$ near $x_{0}$ such that

$$
F(x)=y
$$

- Recall that $L=\partial F\left(x_{0}\right)$ satisfies

$$
F(x) \simeq F\left(x_{0}\right)+L\left(x-x_{0}\right)
$$

and therefore, if $L$ is invertible,

$$
x \simeq x_{0}+L^{-1}\left(F(x)-F\left(x_{0}\right)\right)
$$

- Therefore, an approximate solution is

$$
x_{1}=x_{0}+L^{-1}\left(y-F\left(x_{0}\right)\right)
$$

- More generally, given an approximate solution $x_{k}$, we can hope that

$$
x_{k+1}=x_{k}+L^{-1}\left(y-F\left(x_{k}\right)\right)
$$

is a better one

- Observe that $x_{k+1}=x_{k}$ if and only if $x_{k}$ is a solution


## Reformulation as Fixed Point Equation

- Define a map $\Phi$ as follows:

$$
\Phi(x)=x+L^{-1}(y-F(x))
$$

- Then $F(x)=y$ if and only if

$$
\Phi(x)=x
$$

## Contraction Property

- Observe that

$$
\begin{aligned}
\left|\Phi\left(x_{2}\right)-\Phi\left(x_{1}\right)\right| & =\left|x_{2}-x_{1}-L^{-1}\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right)\right| \\
& =\mid x_{2}-x_{1}-L^{-1} M\left(x_{2}-x_{1}\right) \\
& =\left|L^{-1}(L-M)\left(x_{2}-x_{1}\right)\right| \\
& =\left|L^{-1}\right| M-L| | x_{2}-x_{1} \mid \\
& \leq\left|L^{-1}\right| \epsilon\left|x_{2}-x_{1}\right|
\end{aligned}
$$

- Choose $\epsilon>0$ so that $c=\left|L^{-1}\right| \epsilon<1$
- Then

$$
\left|\Phi\left(x_{2}\right)-\Phi\left(x_{1}\right)\right| \leq c\left|x_{2}-x_{1}\right|
$$

## Contraction Map has Fixed Point (Part 1)

- For each $k \geq 1$, let

$$
x_{k}=\Phi\left(x_{k-1}\right)
$$

- Then

$$
\begin{aligned}
\left|x_{k+1}-x_{k}\right| & \leq\left|\Phi\left(x_{k}\right)-\Phi\left(x_{k-1}\right)\right| \\
& \leq c\left|x_{k}-x_{k-1}\right|
\end{aligned}
$$

- By induction,

$$
\left|x_{k}-x_{k-1}\right| \leq c^{k-1}\left|x_{k}-x_{0}\right|
$$

## Contraction Map has Fixed Point (Part 2)

- Therefore, for any $1 \leq j \leq k$,

$$
\begin{aligned}
\left|x_{k}-x_{j}\right| & =\left|\left(x_{k}-x_{k-1}\right)+\left(x_{k-1}-x_{k-2}\right)+\cdots+\left(x_{j+1}-x_{j}\right)\right| \\
& \left.\leq\left|x_{k}-x_{k-1}\right|+\left|x_{k-1}-x_{k-2}\right|+\cdots+\mid x_{j+1}-x_{j}\right) \mid \\
& \leq\left(c^{k-1}+c^{k-1}+\cdots+c^{j}\right)\left|x_{1}-x_{0}\right| \\
& =c^{j} \frac{1-c^{j}}{1-c^{k}}\left|x_{1}-x_{0}\right| \\
& \leq c^{j}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

- This implies that the sequence $x_{0}, x_{2}, \ldots$ is a Cauchy sequence


## Differentiability of $F^{-1}$

- If $x_{1}=F^{-1}\left(y_{1}\right)$ and $x_{2}=F^{-1}\left(y_{2}\right)$, then

$$
F^{-1}\left(y_{2}\right)-F^{-1}\left(y_{1}\right)-L^{-1}\left(y_{2}-y_{1}\right)=x_{2}-x_{1}-L^{-1}\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right.
$$

- Therefore,

$$
\begin{aligned}
& \frac{\left|F^{-1}\left(y_{2}\right)-F^{-1}\left(y_{1}\right)-L^{-1}\left(y_{2}-y_{1}\right)\right|}{\left|y_{2}-y_{1}\right|} \\
& =\frac{\left|x_{2}-x_{1}-L^{-1}\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right)\right|}{\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right|} \\
& \leq C\left|F\left(x_{2}\right)-F\left(x_{1}\right)\right| \\
& =C\left|y_{2}-y_{1}\right|
\end{aligned}
$$

