MATH-GA1002 Multivariable Analysis Inverse Function Theorem

Deane Yang

Courant Institute of Mathematical Sciences New York University

March 6, 2024

Linear Isomorphism Implies Local Nonlinear Isomorphism

- Let V and W be n-dimensional vector spaces
- If $L: V \to W$ is a linear map with maximal rank, then
 - L is bijective
 - Its inverse map $L^{-1}: W \to V$ is linear
 - I.e., L and L^{-1} are linear isomorphisms
- Let $O \subset \mathbb{R}^n$ be open and $\Phi: O \to \mathbb{R}^n$ be a C^1 map
- Suppose that at $x_0 \in O$, the differential of Φ

$$\partial \Phi(x_0) : \mathbb{R}^n \to \mathbb{R}^n$$

is a linear isomorphism

▶ Then there exists an open neighborhood $N \subset O$ of x_0 such that

$$\Phi|_N: N \to \Phi(N)$$

is a diffeomorphism

Inverse Function Theorem

Theorem If $O \subset \mathbb{R}^n$ is open and $F : O \to \mathbb{R}^n$ is a C^k map, where $1 \le k \le \infty$ such that at $x_0 \in O$, the linear map

 $\partial F(x_0) : \mathbb{R}^n \to \mathbb{R}^n$

is invertible, then, if $y_0 = F(x_0)$, there exists $\epsilon > 0$ such that

$$F: F^{-1}(B(y_0,\epsilon)) \to B(y_0,\epsilon)$$

is a diffeomorphism.

First, we want to show that there exists an e > 0 such that if y ∈ B(y₀, e), then there is solution to the equation

$$F(x) = y$$

Second, we show that the solution is uniqueThis defines a map

$$G:B(y_0,\epsilon)\to F^{-1}(B(y_0,\epsilon))$$

Operator Norm of Matrix

• Given a linear map $L : \mathbb{R}^m \to \mathbb{R}^n$, let

$$|L| = \sup |L(x)| : |x| = 1$$

Since L is continuous and the unit sphere is compact, |L| always exists

• It follows that for any $x \in \mathbb{R}^m$

$$L(x)| = \left| L\left(|x|\frac{x}{|x|}\right) \right|$$
$$= \left| L\left(\frac{x}{|x|}\right) \right| |x|$$
$$\leq |L||x|$$

Properties

|cL| = c|L| (Homogeneity) $|L_1 + L_2| \le |L_1| + |L_2|$ (Triangle Inequality)

► A set *S* of *n*-by-*m* matrices is defined to be **open** if for any $L_0 \in S$, there exists $\delta > 0$ such that

Set of Invertible Matrices is Open

- Let $L_0 : \mathbb{R}^m \to \mathbb{R}^m$ be an invertible linear map
- Lemma: There exists $\delta > 0$ such that for any linear map $L : \mathbb{R}^m \to \mathbb{R}^m$,

$$|L - L_0| < \delta \implies L$$
 is invertible

Proof: Since

$$|x| = |L_0^{-1}(L_0(x))| \le |L_0^{-1}||L_0(x)|,$$

it follows that

$$egin{aligned} \mathcal{L}(x) &= \mathcal{L}_0(x) + (\mathcal{L} - \mathcal{L}_0)x \ &\geq |\mathcal{L}_0(x)| - |(\mathcal{L} - \mathcal{L}_0)x| \ &\geq |\mathcal{L}_0^{-1}|^{-1}|x| - |\mathcal{L} - \mathcal{L}_0||x| \end{aligned}$$

Therefore, if

$$|L - L_0| < \frac{1}{2} |L_0^{-1}|^{-1},$$

then for any nonzero $x \in \mathbb{R}^m$, |Lx| > 0, which implies that L is invertible

Invertible Jacobian (Part 1)

- Let $x_0 \in O$ and assume $\partial F(x_0)$ is invertible
- There exists $\epsilon > 0$ such that for any linear map $M : \mathbb{R}^m \to \mathbb{R}^m$,

$$|M - \partial F(x_0)| < \epsilon \implies M$$
 is invertible

• Since ∂F is continuous, there exists $\delta > 0$ such that

$$x \in B(x_0, \delta) \implies |\partial F(x) - \partial F(x_0)| < \epsilon$$

For any $x_1, x_2 \in B(x_0, \delta)$ and $t \in [0, 1]$,

$$egin{aligned} |(x_1+t(x_2-x_1))-x_0| &= |(1-t)(x_1-x_0)+t(x_2-x_0)| \ &\leq (1-t)|x_1-x_0|+t|x_2-x_0| \ &\leq \delta, \end{aligned}$$

which implies that $\partial F(x_1 + t(x_2 - x_1))$ is invertible

Invertible Jacobian (Part 1)

$$M = \int_{t=0}^{t=1} \partial F(x_1 + t(x_2 - x_1)) dt$$

Then

Let

$$|M - \partial F(x_0)| \left| \int_{t=0}^{t=1} \partial F(x_1 + t(x_2 - x_1)) dt - \partial F(x_0) \right|$$

= $\left| \int_{t=0}^{t=1} \partial F(x_1 + t(x_2 - x_1)) - \partial F(x_0) dt \right|$
 $\leq \int_{t=0}^{t=1} |\partial F(x_1 + t(x_2 - x_1)) - \partial F(x_0)| dt$
 $\leq \int_{t=0}^{t=1} \epsilon dt$
= ϵ

► Therefore, *M* is invertible and

$$|M - \partial F(x_0)| \le \epsilon$$

Fundamental Theorem of Calculus for a Map

By the Fundamental Theorem of Calculus and the chain rule, for any x₁, x₂ ∈ B(x₀, δ),

$$F(x_2) - F(x_1) = \int_{t=0}^{t=1} \frac{d}{dt} F(x_1 + t(x_2 - x_1)) dt$$

= $\int_{t=0}^{t=1} (x_2^k - x_1^k) \partial_k F(x_1 + t(x_2 - x_1)) dt$
= $\left(\int_{t=0}^{t=1} \partial F(x_1 + t(x_2 - x_1)) dt\right) (x_2 - x_1)$
= $M(x_2 - x_1)$

Therefore,

$$|F(x_2) - F(x_1)| \le |M| |x_2 - x_1|$$

 $|x_2 - x_1| \le |M^{-1}| |F(x_2) - F(x_1)|$

Existence of Solution (Part 1)

• Given any y near $F(x_0)$, we want to show that there exists x near x_0 such that

$$F(x) = y$$

• Recall that $L = \partial F(x_0)$ satisfies

$$F(x)\simeq F(x_0)+L(x-x_0)$$

and therefore, if L is invertible,

$$x \simeq x_0 + L^{-1}(F(x) - F(x_0))$$

Therefore, an approximate solution is

$$x_1 = x_0 + L^{-1}(y - F(x_0))$$

• More generally, given an approximate solution x_k , we can hope that

$$x_{k+1} = x_k + L^{-1}(y - F(x_k))$$

is a better one

• Observe that $x_{k+1} = x_k$ if and only if x_k is a solution

Reformulation as Fixed Point Equation

• Define a map Φ as follows:

$$\Phi(x) = x + L^{-1}(y - F(x))$$

• Then F(x) = y if and only if

 $\Phi(x) = x$

Contraction Property

Observe that

$$\begin{aligned} |\Phi(x_2) - \Phi(x_1)| &= |x_2 - x_1 - L^{-1}(F(x_2) - F(x_1))| \\ &= |x_2 - x_1 - L^{-1}M(x_2 - x_1)| \\ &= |L^{-1}(L - M)(x_2 - x_1)| \\ &= |L^{-1}|M - L||x_2 - x_1| \\ &\leq |L^{-1}|\epsilon|x_2 - x_1| \end{aligned}$$

▶ Choose $\epsilon > 0$ so that $c = |L^{-1}|\epsilon < 1$ ▶ Then

$$|\Phi(x_2)-\Phi(x_1)|\leq c|x_2-x_1|$$

Contraction Map has Fixed Point (Part 1)

For each k ≥ 1, let
$$x_k = \Phi(x_{k-1})$$
Then

$$egin{aligned} |x_{k+1} - x_k| &\leq |\Phi(x_k) - \Phi(x_{k-1})| \ &\leq c |x_k - x_{k-1}| \end{aligned}$$

▶ By induction,

$$|x_k - x_{k-1}| \le c^{k-1} |x_k - x_0|$$

Contraction Map has Fixed Point (Part 2)

• Therefore, for any $1 \le j \le k$,

$$\begin{aligned} |x_k - x_j| &= |(x_k - x_{k-1}) + (x_{k-1} - x_{k-2}) + \dots + (x_{j+1} - x_j)| \\ &\leq |x_k - x_{k-1}| + |x_{k-1} - x_{k-2}| + \dots + |x_{j+1} - x_j)| \\ &\leq (c^{k-1} + c^{k-1} + \dots + c^j)|x_1 - x_0| \\ &= c^j \frac{1 - c^j}{1 - c^k}|x_1 - x_0| \\ &\leq c^j |x_1 - x_0| \end{aligned}$$

• This implies that the sequence x_0, x_2, \ldots is a Cauchy sequence

Differentiability of F^{-1}

If
$$x_1 = F^{-1}(y_1)$$
 and $x_2 = F^{-1}(y_2)$, then
 $F^{-1}(y_2) - F^{-1}(y_1) - L^{-1}(y_2 - y_1) = x_2 - x_1 - L^{-1}(F(x_2) - F(x_1))$

► Therefore,

$$\frac{|F^{-1}(y_2) - F^{-1}(y_1) - L^{-1}(y_2 - y_1)|}{|y_2 - y_1|}$$

=
$$\frac{|x_2 - x_1 - L^{-1}(F(x_2) - F(x_1))|}{|F(x_2) - F(x_1)|}$$

$$\leq C|F(x_2) - F(x_1)|$$

=
$$C|y_2 - y_1|$$