MATH-GA1002 Multivariable Analysis

Differentiable Maps
Directional Derivative of Map
Differential of Map
Immersions, Embeddings, Submersions, Diffeomorphisms

Deane Yang

Courant Institute of Mathematical Sciences
New York University
February 14, 2024

Differentiable Map F from \mathbb{R}^{n} to \mathbb{R}^{m}

- Given an open $O \subset \mathbb{R}^{n}$, a map $F: O \rightarrow \mathbb{R}^{m}$ is differentiable at $x_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{n}\right) \in O$ if there exists a linear map

$$
L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

such that

$$
\lim _{x \rightarrow x_{0}} \frac{\left|F(x)-F\left(x_{0}\right)-L\left(x-x_{0}\right)\right|}{\left|x-x_{0}\right|}=0
$$

- L is called the differential or Jacobian of F at $x_{0} \in O$ and denoted

$$
\partial F\left(x_{0}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

- L is also called the pushforward map of F at x_{0} and denoted

$$
F_{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Directional Derivative of a Map

- The directional derivative of $F: O \rightarrow \mathbb{R}^{m}$ at $x_{0} \in O$ in the direction $v \in \mathbb{R}^{n}$ is defined to be $D_{v} F\left(x_{0}\right) \in \mathbb{R}^{m}$, where

$$
\begin{aligned}
D_{v} F\left(x_{0}\right) & =\left.\frac{d}{d t}\right|_{t=0} F\left(x_{0}+t v\right) \\
& =\lim _{t \rightarrow 0} \frac{F\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t}
\end{aligned}
$$

- If F is differentiable at x_{0} and its differential at x_{0} is L, then if $v \neq 0$, it follows by the definition of the differential of F that

$$
\begin{aligned}
0 & =\lim _{t \rightarrow 0} \frac{\left|F\left(x_{0}+t v\right)-f\left(x_{0}\right)-L(t v)\right|}{|t v|} \\
& =\lim _{t \rightarrow 0} \frac{1}{|v|}\left|\frac{F\left(x_{0}+t v\right)-F\left(x_{0}\right)}{t}-L(v)\right| \\
& =\frac{1}{|v|}\left|D_{v} f\left(x_{0}\right)-L(v)\right|
\end{aligned}
$$

Differential of a Map

- Therefore, the directional derivative of F at x_{0} in the direction v is given by

$$
D_{v} F\left(x_{0}\right)=L(v)=\partial F\left(x_{0}\right)(v)
$$

- Equivalently, the differential of F at x_{0} is the linear map

$$
\begin{aligned}
\partial F\left(x_{0}\right): \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
v & \mapsto D_{v} F\left(x_{0}\right)
\end{aligned}
$$

- Equivalently, the pushforward map of F at x_{0} is the linear map

$$
\begin{aligned}
F_{*}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
v & \mapsto D_{v} F\left(x_{0}\right)
\end{aligned}
$$

Smooth Maps

- A map $F=\left(f^{1}, \ldots, f^{m}\right): O \rightarrow \mathbb{R}^{m}$ is C^{k} if each f_{j} is C^{k}, $1 \leq j \leq m$
- Lemma: If F is C^{1}, then it is differentiable
- The space of all C^{k} maps with domain O and range \mathbb{R}^{m} is denoted $C^{k}\left(O, \mathbb{R}^{m}\right)$

Jacobian of a C^{1} Map

- Let $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ denote the space of a linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}
- Let $F: O \rightarrow \mathbb{R}^{m}$ be a C^{1} map and $\partial F: O \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ its Jacobian
- For each $x \in O$, the directional derivative of F at x in the direction v is defined to be

$$
D_{v} F(x)=\left.\frac{d}{d t}\right|_{t=0} F(c(t)) \in \mathbb{R}^{m}
$$

where c is a C^{1} curve such that $c(0)=x$ and $c^{\prime}(0)=v$

- It follows by the same proof as for C^{1} functions that

$$
D_{v} F(x)=(\partial F(x))(v)
$$

- It is also called the pushforward of F, denoted

$$
\begin{aligned}
F_{*}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\
v & \mapsto D_{v} F(x)
\end{aligned}
$$

Example: Polar Coordinates

- Polar coordinates: Let

$$
\begin{aligned}
P: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(r, \theta) & \mapsto(r \cos (\theta), r(\sin \theta))
\end{aligned}
$$

- Given $(v, w) \in \mathbb{R}^{2}$, the directional derivative of P at $\left(r_{0}, \theta_{0}\right)$ is

$$
\begin{aligned}
& D_{(v, w)} P\left(r_{0}, \theta_{0}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\left(r_{0}+t v\right) \cos \left(\theta_{0}+t w\right),\left(r_{0}+t v\right) \sin \left(\theta_{0}+t w\right)\right) \\
& =\left(v \cos \left(\theta_{0}+t w\right)-\left(r_{0}+t v\right) w \sin \left(\theta_{0}+t w\right)\right. \\
& \quad v \sin \left(\theta_{0}+t w\right)+\left.\left(\left(r_{0}+t v\right) w \cos \left(\theta_{0}+t w\right)\right)\right|_{t=0} \\
& =\left(v \cos \left(\theta_{0}\right)-w r_{0} \sin \left(\theta_{0}\right), v \sin \left(\theta_{0}\right)+w r_{0} \cos \left(\theta_{0}\right)\right) \\
& =v\left(\cos \left(\theta_{0}\right), \sin \left(\theta_{0}\right)\right)+w\left(-r_{0} \sin \left(\theta_{0}\right), r_{0} \cos \left(\theta_{0}\right)\right)
\end{aligned}
$$

Pushforward of Polar Coordinate Map

- The Jacobian of P is given by

$$
\begin{aligned}
\left(\partial P\left(r_{0}, \theta_{0}\right)\right)(v, w) & =D_{(v, w)} P\left(r_{0}, \theta_{0}\right) \\
& =\left[\begin{array}{cc}
\cos \left(\theta_{0}\right) & -r_{0} \sin \left(\theta_{0}\right) \\
\sin \left(\theta_{0}\right) & r_{0} \cos \left(\theta_{0}\right)
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]
\end{aligned}
$$

- The pushforward map of P at $\left(r_{0}, \theta_{0}\right)$ is

$$
\begin{aligned}
P_{*}(v, w) & =D_{(v, w)} P\left(r_{0}, \theta_{0}\right) \\
& =\left[\begin{array}{cc}
\cos \left(\theta_{0}\right) & -r_{0} \sin \left(\theta_{0}\right) \\
\sin \left(\theta_{0}\right) & r_{0} \cos \left(\theta_{0}\right)
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]
\end{aligned}
$$

- Treat and calculate the Jacobian or pushforward as a map and not a matrix

Differentiation of a Matrix Function of a Single Variable

- Let $\mathrm{gl}(n)$ denote the space of real n-by- n matrices and $\mathrm{GL}(n)$ the space of invertible matrices
- Let / be a nonempty connected interval and consider a map

$$
F: I \rightarrow \mathrm{gl}(n)=\mathbb{R}^{n^{2}}
$$

- Let $F_{k}^{j}: I \rightarrow \mathbb{R}$ denote the component in the j-th row and k-th column of F
- F is defined to be C^{k} if each F_{k}^{j} is C^{k}
- If F is C^{1}, then the derivative of F is the map $F^{\prime}: I \rightarrow \mathrm{gl}(n)$, where the component of F^{\prime} in the j-th row and k-th column is

$$
\left(F^{\prime}\right)_{k}^{k}=\left(F_{k}^{j}\right)^{\prime}
$$

Rules of Differentiation

- Let $c^{1}, c^{2} \in \mathbb{R}$ and F_{1}, F_{2} be C^{1} maps from I to $\mathrm{gl}(n)$
- Constant factor and sum rules: Since, for each $1 \leq j, k \leq n$,

$$
\left(c^{1}\left(F_{1}\right)_{k}^{j}+c^{2}\left(F_{2}\right)_{k}^{j}\right)^{\prime}=c^{1}\left(F_{1}^{\prime}\right)_{k}^{j}+c^{2}\left(F_{2}^{\prime}\right)_{k}^{j}
$$

it follows that

$$
\left(c^{1} F_{1}+c^{2} F_{2}\right)^{\prime}=c^{1} F_{1}^{\prime}+c^{2} F_{2}^{\prime}
$$

- Product rule: Since, for each $1 \leq j, k, l \leq n$,

$$
\left(\left(F_{1}\right)_{k}^{j}\left(F_{2}\right)_{l}^{k}\right)^{\prime}=\left(F_{1}^{\prime}\right)_{k}^{j}\left(F_{2}\right)_{l}^{k}+\left(F_{1}\right)_{k}^{j}\left(F_{2}^{\prime}\right)_{l}^{k}
$$

it follows by summing this over $1 \leq k \leq n$ and the sum rule that

$$
\left(\sum_{k=1}^{n}\left(\left(F_{1}\right)_{k}^{j}\left(F_{2}\right)_{l}^{k}\right)^{\prime}=\sum_{k=1}^{n}\left(\left(F_{1}^{\prime}\right)_{k}^{j}\left(F_{2}\right)_{l}^{k}+\left(F_{1}\right)_{k}^{j}\left(F_{2}^{\prime}\right)_{l}^{k}\right)\right.
$$

- Therefore,

$$
\left(F_{1} F_{2}\right)^{\prime}=F_{1}^{\prime} F_{2}+F_{1} F_{2}^{\prime}
$$

Implicit Differentiation of Matrix Inverse (Part 1)

- Recall that $\mathrm{GL}(n)$ is an open subset of $\operatorname{gl}(n)=\mathbb{R}^{n^{2}}$
- We want to find the differential of the map

$$
\begin{aligned}
\Phi: \mathrm{GL}(n) & \rightarrow \mathrm{GL}(n) \\
M & \mapsto M^{-1}
\end{aligned}
$$

- The map

$$
\begin{aligned}
\Psi: \mathrm{GL}(n) & \rightarrow \mathrm{GL}(n) \\
M & \mapsto M \Phi(M)
\end{aligned}
$$

is the constant map because $\Psi(M)=l$ for all $M \in \mathrm{GL}(n)$

- Therefore, the differential of Ψ is always the zero map

Implicit Differentiation of Matrix Inverse (Part 2)

- For any $M \in \mathrm{GL}(n)$ and $V \in \mathrm{gl}(n)$,

$$
\begin{aligned}
0 & =(\partial \Psi(M))(V) \\
& =D_{V} \Psi(M) \\
& =\left.\frac{d}{d t}\right|_{t=0} \Psi(M+t V) \\
& =\left.\frac{d}{d t}\right|_{t=0}((M+t V) \Phi(M+t V)) \\
& =\left(\left.\frac{d}{d t}\right|_{t=0}((M+t V)) \Phi(M)\right)+M\left(\left.\frac{d}{d t} \Phi(M+t v)\right|_{t=0}\right) \\
& =V \Phi(M)+M D_{V} \Phi(M) \\
& =V M^{-1}+M D_{V} \Phi(M)
\end{aligned}
$$

- Therefore, at $M \in \mathrm{GL}(n)$, the pushforward maps is

$$
\begin{aligned}
\Phi_{*}: \operatorname{gl}(n) & \rightarrow \operatorname{gl}(n) \\
V & \mapsto-M^{-1} V M^{-1}
\end{aligned}
$$

Immersions, Embeddings, Diffeomorphisms

- Let $O \subset \mathbb{R}^{n}$ be open and $F: O \rightarrow \mathbb{R}^{m}$ be C^{1}
- If, for any $x \in O$, the Jacobian of F at x,

$$
\partial F(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

is injective, then F is an immersion

- If F is an injective immersion, it is called an embedding
- If $m=n$ and F is an embedding, then the map

$$
F: O \rightarrow F(O)
$$

is bijective and called a diffeomorphism

- Fact: If for some $1 \leq k \leq \infty, F: O \rightarrow F(O)$ is a C^{k} diffeomorphism, then its inverse map

$$
F^{-1}: F(O) \rightarrow 0
$$

is also a C^{k} diffeomorphism

Linear Isomorphism Implies Local Nonlinear Isomorphism

- Let V and W be n-dimensional vector spaces
- If $L: V \rightarrow W$ is a linear map with maximal rank, then
- L is bijective
- Its inverse map $L^{-1}: W \rightarrow V$ is linear
- I.e., L and L^{-1} are linear isomorphisms
- Let $O \subset \mathbb{R}^{n}$ be open and $\Phi: O \rightarrow \mathbb{R}^{n}$ be a C^{1} map
- Suppose that at $x_{0} \in O$, the differential of Φ

$$
\partial \Phi\left(x_{0}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is a linear isomorphism

- Then there exists an open neighborhood $N \subset O$ of x_{0} such that

$$
\left.\Phi\right|_{N}: N \rightarrow \Phi(N)
$$

is a diffeomorphism

