MATH-GA1002 Multivariable Analysis

Differentiable Maps Directional Derivative of Map Differential of Map Immersions, Embeddings, Submersions, Diffeomorphisms

Deane Yang

Courant Institute of Mathematical Sciences New York University

February 14, 2024

イロン 不得 とうほう イロン 二日

1/14

Differentiable Map F from \mathbb{R}^n to \mathbb{R}^m

Given an open O ⊂ ℝⁿ, a map F : O → ℝ^m is differentiable at x₀ = (x₀¹,..., x₀ⁿ) ∈ O if there exists a linear map

$$L: \mathbb{R}^n \to \mathbb{R}^m$$

such that

$$\lim_{x \to x_0} \frac{|F(x) - F(x_0) - L(x - x_0)|}{|x - x_0|} = 0$$

► L is called the differential or Jacobian of F at x₀ ∈ O and denoted

$$\partial F(x_0) : \mathbb{R}^n \to \mathbb{R}^m$$

L is also called the pushforward map of F at x₀ and denoted

$$F_*: \mathbb{R}^n \to \mathbb{R}^m$$

Directional Derivative of a Map

▶ The directional derivative of $F : O \to \mathbb{R}^m$ at $x_0 \in O$ in the direction $v \in \mathbb{R}^n$ is defined to be $D_v F(x_0) \in \mathbb{R}^m$, where

$$D_{v}F(x_{0}) = \left.\frac{d}{dt}\right|_{t=0}F(x_{0}+tv)$$
$$= \lim_{t\to 0}\frac{F(x_{0}+tv)-f(x_{0})}{t}$$

If F is differentiable at x₀ and its differential at x₀ is L, then if v ≠ 0, it follows by the definition of the differential of F that

$$0 = \lim_{t \to 0} \frac{|F(x_0 + tv) - f(x_0) - L(tv)|}{|tv|}$$

=
$$\lim_{t \to 0} \frac{1}{|v|} \left| \frac{F(x_0 + tv) - F(x_0)}{t} - L(v) \right|$$

=
$$\frac{1}{|v|} |D_v f(x_0) - L(v)|$$

3/14

Differential of a Map

Therefore, the directional derivative of F at x₀ in the direction v is given by

$$D_{v}F(x_{0}) = L(v) = \partial F(x_{0})(v)$$

Equivalently, the differential of F at x₀ is the linear map

$$\partial F(x_0) : \mathbb{R}^n \to \mathbb{R}^m$$

 $v \mapsto D_v F(x_0)$

Equivalently, the pushforward map of F at x₀ is the linear map

$$F_*: \mathbb{R}^n \to \mathbb{R}^m$$
$$v \mapsto D_v F(x_0)$$

Smooth Maps

- A map $F = (f^1, \ldots, f^m) : O \to \mathbb{R}^m$ is C^k if each f_j is C^k , $1 \le j \le m$
- ▶ Lemma: If F is C¹, then it is differentiable
- ► The space of all C^k maps with domain O and range ℝ^m is denoted C^k(O, ℝ^m)

Jacobian of a C^1 Map

- Let $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ denote the space of a linear maps from \mathbb{R}^n to \mathbb{R}^m
- Let $F : O \to \mathbb{R}^m$ be a C^1 map and $\partial F : O \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ its Jacobian
- For each x ∈ O, the directional derivative of F at x in the direction v is defined to be

$$D_{v}F(x) = \left. rac{d}{dt}
ight|_{t=0} F(c(t)) \in \mathbb{R}^{m},$$

where c is a C^1 curve such that c(0) = x and c'(0) = vIt follows by the same proof as for C^1 functions that

$$D_v F(x) = (\partial F(x))(v)$$

It is also called the pushforward of F, denoted

$$F_*: \mathbb{R}^n \to \mathbb{R}^m$$

 $v \mapsto D_v F(x)$

6/14

Example: Polar Coordinates

Polar coordinates: Let

$$\begin{aligned} P: \mathbb{R}^2 &\to \mathbb{R}^2 \\ (r, \theta) &\mapsto (r \cos(\theta), r(\sin \theta)) \end{aligned}$$

• Given $(v, w) \in \mathbb{R}^2$, the directional derivative of P at (r_0, θ_0) is

$$\begin{split} D_{(v,w)} P(r_0, \theta_0) \\ &= \left. \frac{d}{dt} \right|_{t=0} \left((r_0 + tv) \cos(\theta_0 + tw), (r_0 + tv) \sin(\theta_0 + tw) \right) \\ &= (v \cos(\theta_0 + tw) - (r_0 + tv) w \sin(\theta_0 + tw), \\ v \sin(\theta_0 + tw) + ((r_0 + tv) w \cos(\theta_0 + tw)) \right|_{t=0} \\ &= (v \cos(\theta_0) - wr_0 \sin(\theta_0), v \sin(\theta_0) + wr_0 \cos(\theta_0)) \\ &= v (\cos(\theta_0), \sin(\theta_0)) + w (-r_0 \sin(\theta_0), r_0 \cos(\theta_0)) \end{split}$$

Pushforward of Polar Coordinate Map

The Jacobian of P is given by

$$(\partial P(r_0, \theta_0))(v, w) = D_{(v,w)}P(r_0, \theta_0)$$
$$= \begin{bmatrix} \cos(\theta_0) & -r_0\sin(\theta_0) \\ \sin(\theta_0) & r_0\cos(\theta_0) \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}$$

• The pushforward map of P at (r_0, θ_0) is

$$P_*(v, w) = D_{(v,w)}P(r_0, \theta_0)$$
$$= \begin{bmatrix} \cos(\theta_0) & -r_0\sin(\theta_0) \\ \sin(\theta_0) & r_0\cos(\theta_0) \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}$$

Treat and calculate the Jacobian or pushforward as a map and not a matrix Differentiation of a Matrix Function of a Single Variable

- Let gl(n) denote the space of real n-by-n matrices and GL(n) the space of invertible matrices
- Let I be a nonempty connected interval and consider a map

$$F: I \to \mathrm{gl}(n) = \mathbb{R}^{n^2}$$

- Let F^j_k: I → ℝ denote the component in the j-th row and k-th column of F
- F is defined to be C^k if each F_k^j is C^k
- ▶ If F is C^1 , then the derivative of F is the map $F' : I \rightarrow gl(n)$, where the component of F' in the *j*-th row and *k*-th column is

$$(F')_k^k = (F_k^j)^k$$

Rules of Differentiation

- Let $c^1, c^2 \in \mathbb{R}$ and F_1, F_2 be C^1 maps from I to gl(n)
- ▶ Constant factor and sum rules: Since, for each $1 \le j, k \le n$,

$$(c^{1}(F_{1})_{k}^{j}+c^{2}(F_{2})_{k}^{j})^{\prime}=c^{1}(F_{1}^{\prime})_{k}^{j}+c^{2}(F_{2}^{\prime})_{k}^{j},$$

it follows that

$$(c^1F_1 + c^2F_2)' = c^1F_1' + c^2F_2'$$

▶ Product rule: Since, for each $1 \le j, k, l \le n$,

$$((F_1)_k^j (F_2)_l^k)' = (F_1')_k^j (F_2)_l^k + (F_1)_k^j (F_2')_l^k,$$

it follows by summing this over $1 \le k \le n$ and the sum rule that

$$\left(\sum_{k=1}^{n} ((F_1)_k^j (F_2)_l^k\right)' = \sum_{k=1}^{n} ((F_1')_k^j (F_2)_l^k + (F_1)_k^j (F_2')_l^k)$$

Therefore,

$$(F_1F_2)' = F_1'F_2 + F_1F_2'$$

Implicit Differentiation of Matrix Inverse (Part 1)

• Recall that GL(n) is an open subset of $gl(n) = \mathbb{R}^{n^2}$

We want to find the differential of the map

 $\Phi: \operatorname{GL}(n) \to \operatorname{GL}(n)$ $M \mapsto M^{-1}$

$$\Psi: \operatorname{GL}(n) o \operatorname{GL}(n) \ M \mapsto M\Phi(M)$$

is the constant map because Ψ(M) = I for all M ∈ GL(n)
 Therefore, the differential of Ψ is always the zero map

Implicit Differentiation of Matrix Inverse (Part 2)

For any
$$M \in GL(n)$$
 and $V \in gl(n)$,

$$0 = (\partial \Psi(M))(V)$$

= $D_V \Psi(M)$
= $\frac{d}{dt}\Big|_{t=0} \Psi(M + tV)$
= $\frac{d}{dt}\Big|_{t=0} ((M + tV)\Phi(M + tV))$
= $\left(\frac{d}{dt}\Big|_{t=0} ((M + tV))\Phi(M)) + M\left(\frac{d}{dt}\Phi(M + tv)\Big|_{t=0}\right)$
= $V\Phi(M) + MD_V\Phi(M)$
= $VM^{-1} + MD_V\Phi(M)$

▶ Therefore, at $M \in GL(n)$, the pushforward maps is

$$\Phi_* : \mathsf{gl}(n) \to \mathsf{gl}(n)$$

$$V \mapsto -M^{-1}VM^{-1}$$

$$\underset{12/14}{\longrightarrow} 4 \xrightarrow{\sim} 4$$

Immersions, Embeddings, Diffeomorphisms

- Let $O \subset \mathbb{R}^n$ be open and $F : O \to \mathbb{R}^m$ be C^1
- If, for any $x \in O$, the Jacobian of F at x,

 $\partial F(x): \mathbb{R}^n \to \mathbb{R}^m,$

is injective, then F is an immersion

- If F is an injective immersion, it is called an embedding
- If m = n and F is an embedding, then the map

$$F: O \rightarrow F(O)$$

is bijective and called a diffeomorphism

Fact: If for some 1 ≤ k ≤ ∞, F : O → F(O) is a C^k diffeomorphism, then its inverse map

$$F^{-1}:F(O)\to O$$

is also a C^k diffeomorphism

Linear Isomorphism Implies Local Nonlinear Isomorphism

- Let V and W be n-dimensional vector spaces
- If $L: V \rightarrow W$ is a linear map with maximal rank, then
 - L is bijective
 - Its inverse map $L^{-1}: W \to V$ is linear
 - I.e., L and L^{-1} are linear isomorphisms
- Let $O \subset \mathbb{R}^n$ be open and $\Phi: O \to \mathbb{R}^n$ be a C^1 map
- Suppose that at $x_0 \in O$, the differential of Φ

$$\partial \Phi(x_0) : \mathbb{R}^n \to \mathbb{R}^n$$

is a linear isomorphism

▶ Then there exists an open neighborhood $N \subset O$ of x_0 such that

$$\Phi|_N: N \to \Phi(N)$$

is a diffeomorphism