MATH-GA1002 Multivariable Analysis

Differential of a Function
Smooth Functions
Directional Derivatives of a Function
Derivations

Deane Yang

Courant Institute of Mathematical Sciences
New York University

February 9, 2024

Differential of a Function With Respect to Coordinates

- Recall that given a C^{1} function $f: O \rightarrow \mathbb{R}$, its differential at $x \in O$ is the linear function

$$
\begin{aligned}
d f(x): \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
v & \mapsto D_{v} f(x)
\end{aligned}
$$

- In particular, for each $1 \leq k \leq n$,

$$
\begin{aligned}
\left\langle d f(x), e_{k}\right\rangle & =D_{e_{k}} f(x) \\
& =\partial_{k} f(x)
\end{aligned}
$$

- Since $\left(d x^{1}, \ldots, d x^{n}\right)$ is the dual basis to $\left(e_{1}, \ldots, e_{n}\right)$, it follows that

$$
d f(x)=\partial_{k} f(x) d x^{k}
$$

- Therefore, for any $v=e_{k} v^{k} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\langle d f(x), v\rangle & =\left\langle\partial_{j} f(x) d x^{j}, e_{k} v^{k}\right\rangle \\
& =\partial_{j} f(x) v^{k}\left\langle d x^{j}, e_{k}\right\rangle \\
& =\partial_{k} f(x) v^{k}
\end{aligned}
$$

Smooth Functions

- Let $O \subset \mathbb{R}^{n}$ be open and consider a function $f: O \rightarrow \mathbb{R}$
- f is C^{0} on O if it is continuous
- f is C^{1} on O if it is continuous and its partial derivatives are continuous
- Lemma: If f is C^{1}, then it is differentiable
- f is C^{k} if f and its partial derivatives up to order k are continuous
- f is C^{∞} or smooth if f and its partial derivatives of all orders are continuous
- The space of all C^{k} functions with domain O is denoted $C^{k}(O)$

Properties of Directional Derivatives

- Given $x_{0} \in O$ and $v \in \mathbb{R}^{n}$, the directional derivative D_{v} is an operator

$$
\begin{aligned}
D_{v}: C^{1}(O) & \rightarrow \mathbb{R} \\
f & \left.\mapsto \frac{d}{d t}\right|_{t=0} f(x+t v)
\end{aligned}
$$

- For any $f_{1}, f_{2} \in C^{1}(O)$ and $a^{1}, a^{2} \in \mathbb{R}$,
- Constant factor and sum rules:

$$
\left(D_{v}\left(a^{1} f_{1}+a^{2} f_{2}\right)\right)(x)=a^{1}\left(D_{v} f^{1}\right)(x)+a^{2}\left(D_{v} f^{2}\right)(x)
$$

- Product rule:

$$
\left(D_{v}\left(f_{1} f_{2}\right)\right)(x)=f_{2}(x)\left(D_{v} f_{1}\right)(x)+f_{1}(x)\left(D_{v} f_{2}\right)(x)
$$

Derivations

- Given an open $O \subset \mathbb{R}^{n}$, a map

$$
D: C^{\infty}(O) \rightarrow \mathbb{R}
$$

is a derivation at $x \in O$ if the following holds:

- For any $f_{1}, f_{2} \in C^{\infty}(O)$ and $a^{1}, a^{2} \in \mathbb{R}$,
- Constant factor and sum rules:

$$
D\left(a^{1} f_{1}+a^{2} f_{2}\right)=a^{1} D f^{1}+a^{2} D f^{2}
$$

- Product rule:

$$
D\left(f_{1} f_{2}\right)=f_{2}(x) D f_{1}+f_{1}(x) D f_{2}
$$

- A directional derivative is a derivation

Derivation of Constant Function is Zero

- Let D be a derivation at $x_{0} \in O$
- For any $c \in \mathbb{R}$ and $f \in C^{\infty}(O)$,

$$
\begin{aligned}
D(c f) & =f\left(x_{0}\right) D(c)+c D(f), \text { by product rule } \\
& =f\left(x_{0}\right) D(c)+D(c f), \text { by constant factor fule }
\end{aligned}
$$

- Therefore $D(c)=0$

A Derivation is a Directional Derivative (Part 1)

- By the Fundamental Theorem of Calculus,

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+\int_{t=0}^{t=1} \frac{d}{d t} f\left(x_{0}+t\left(x-x_{0}\right)\right) d t \\
& =f\left(x_{0}\right)+\int_{t=0}^{t=1}\left(x^{i}-x_{0}^{i}\right) \partial_{i} f\left(x_{0}+t\left(x-x_{0}\right)\right) d t \\
& =f\left(x_{0}\right)+\left(x^{i}-x_{0}^{i}\right) \int_{t=0}^{t=1} \partial_{i} f\left(x_{0}+t\left(x-x_{0}\right)\right) d t \\
& =f\left(x_{0}\right)+\phi^{i}(x) b_{i}(x),
\end{aligned}
$$

where

$$
\begin{aligned}
\phi^{i}(x) & =x^{i}-x_{0}^{i} \\
b_{i}(x) & =\int_{t=0}^{t=1} \partial_{i} f\left(x_{0}+t\left(x-x_{0}\right)\right) d t
\end{aligned}
$$

A Derivation is a Directional Derivative (Part 2)

- Therefore, if $v^{i}=D\left(\phi^{i}\right)$, then

$$
\begin{aligned}
D(f) & =D\left(f\left(x_{0}\right)+\phi^{i} b_{i}\right) \\
& =b_{i}\left(x_{0}\right) D\left(\phi^{i}\right)+\phi^{i}\left(x_{0}\right) D\left(b_{i}\right) \\
& =v^{i} \partial_{i} f\left(x_{0}\right) \\
& =D_{v} f\left(x_{0}\right)
\end{aligned}
$$

Fundamental Examples of Smooth Functions

- Constant function: For any $c \in \mathbb{R}$, the function

$$
f(x)=c, \forall x \in \mathbb{R}^{n}
$$

- $d f=0$
- Coordinate functions: For each $i \in\{1, \ldots, n\}$, the function

$$
\begin{aligned}
x^{i}: \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
\left(a^{1}, \ldots, a^{n}\right) & \mapsto a^{i}
\end{aligned}
$$

- $d x^{i}=\epsilon^{i}$

Partial Derivatives Commute

- If $f: O \rightarrow \mathbb{R}$ is C^{2}, then

$$
\left(\partial_{i}\left(\partial_{j} f\right)\right)(x)=\left(\partial_{j}\left(\partial_{i} f\right)\right)(x)
$$

- We shall denote

$$
\partial_{i j}^{2} f=\partial_{i}\left(\partial_{j} f\right)=\partial_{j}\left(\partial_{i} f\right)
$$

