MATH-GA1002 Multivariable Analysis Topology of \mathbb{R}^n Continuous Functions and Maps Differentiable Functions and Maps Differential of a Function Directonal Derivative of a Function

Deane Yang

Courant Institute of Mathematical Sciences New York University

February 9, 2024

イロト 不得 トイヨト イヨト 二日

1/11

Topology of \mathbb{R}^n : Open Sets

For any $x_1, x_2 \in \mathbb{R}^n$,

$$|x_2 - x_1| = \left(\sum_{k=1}^n (x_2 - x_1)^2\right)^{1/2}$$

$$|x_2 - x_1|_{\infty} = \max(|x_2^1 - x_1^1|, \dots, |x_2^n - x_1^n|)$$

An **open ball** of radius *r* centered at $x_0 \in \mathbb{R}^n$ is defined to be

$$B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}$$

An **open cube** of radius *r* centered at $x_0 \in \mathbb{R}^n$ is defined to be

$$C(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0|_{\infty} < r\}$$

- A set O ⊂ ℝⁿ is open if for any x ∈ O, there exists r > 0 such that C(x, r) ⊂ O
- Equivalently, a set O ⊂ ℝⁿ is open if for any x ∈ O, there exists r > 0 such that B(x, r) ⊂ O

Closed Sets

- ▶ A set $C \subset \mathbb{R}^n$ is **closed** if $\mathbb{R}^n \setminus C$ is open
- Examples:

The closed cube

$$\overline{C(x_0,r)} = \{x \in \mathbb{R}^n : |x - x_0|_{\infty} \le r\}$$

The closed ball

$$\overline{B(x_0,r)} = \{x \in \mathbb{R}^n : |x - x_0| \le r\}$$

• A set $S \subset \mathbb{R}^n$ that is not open is **not** necessarily closed

Bounded Sets, Compact Sets

- A set S ⊂ ℝⁿ is **bounded** if there exists a cube C(0, R) such that S ⊂ C(0, R)
- A set S ⊂ ℝⁿ is compact if any sequence in S has a convergent subsequence
- (Heine-Borel) A set S ⊂ ℝⁿ is compact if and only if it is closed and bounded
- Basic examples: Closed balls and closed cubes
- Lemma: S ⊂ ℝⁿ is compact if and only if any open covering of S has a finite subcover
 - An open covering of S is a possibly infinite collection of open sets whose union contains S
 - A finite subcover is a finite number of open sets in the collection whose union contains S

Bounded and Continuous Maps

A map $f: S \to \mathbb{R}^m$ is **bounded** if there exists M > 0 such that

 $\forall s \in S, |f(s)| \leq M$

Given S ⊂ ℝⁿ, a function f : S → ℝ^m is continuous at x₀ ∈ S if the following holds:

For any $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x-x_0| < \delta \implies |f(x)-f(x_0)| < \epsilon$$

- $f: S \to \mathbb{R}^m$ is continuous if it is continuous at each $x_0 \in S$
- Lemma: f : S → ℝ^m is continuous if and only if for any open set O' ⊂ ℝ^m, there exists an open O ⊂ ℝⁿ such that

$$f^{-1}(O') = O \cap S$$

Differentiable Function on $\mathbb R$

- Rough idea: A function is differentiable at a point if it has a good linear approximation at that point
- Given an open interval *I* ⊂ ℝ, a function *f* : *I* → ℝ is differentiable at x₀ ∈ *I* if there exists *f*'(x₀) ∈ ℝ such that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

 $f'(x_0)$ is called the **derivative** of f at x_0

▶ Equivalently, f is differentiable at $x_0 \in I$ if there exists $m \in \mathbb{R}$ such that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - m(x - x_0)}{x - x_0} = 0$$

If so, the derivative of f at x_0 is defined to be

$$f'(x_0)=m$$

6/11

イロン 不得 とうほう イロン 二日

Differentiable Function on \mathbb{R}^n

- Rough idea: A function is differentiable at a point if it has a good linear approximation at that point
- Given an open O ⊂ ℝⁿ, a function f : O → ℝ is differentiable at x₀ = (x₀¹,...,x₀ⁿ) ∈ O if there exists a linear function ℓ : ℝⁿ → ℝ such that

$$\lim_{x \to x_0} \frac{|f(x) - f(x_0) - \ell(x - x_0)|}{|x - x_0|} = 0$$

- ▶ Observe that l ∈ (ℝⁿ)*
- ℓ is called the **differential** of f at $x_0 \in O$ and denoted $df(x_0)$
- The differential of f is a map

$$df: O \to (\mathbb{R}^n)^*$$

Directional Derivative of a Function

The directional derivative of f : O → ℝ at x₀ ∈ O in the direction v ∈ ℝⁿ is defined to be

$$D_{v}f(x_{0}) = \left.\frac{d}{dt}\right|_{t=0} f(x_{0}+tv)$$
$$= \lim_{t \to 0} \frac{f(x_{0}+tv) - f(x_{0})}{t}$$

• If f is differentiable at x_0 and its differential at x_0 is $\ell = df(x_0)$, then if $v \neq 0$,

$$0 = \lim_{t \to 0} \frac{|f(x_0 + tv) - f(x_0) - \ell(tv)|}{|tv|}$$

=
$$\lim_{t \to 0} \frac{1}{|v|} \left| \frac{f(x_0 + tv) - f(x_0)}{t} - \ell(v) \right|$$

=
$$\frac{1}{|v|} |D_v f(x_0) - \ell(v)|$$

• Therefore, $D_v f(x_0) = \langle df(x_0), v \rangle$

8/11

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partial Derivatives

- Let (e_1, \ldots, e_n) denote the standard basis of \mathbb{R}^n
- If f : O → ℝ is differentiable at x₀ ∈ O, then the k-th partial derivative of f at x₀ is defined to be

$$\partial_i f(x_0) = \left. \frac{d}{dt} \right|_{t=0} f(x_0 + te_k) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$$

• If ℓ is the differential of f at x_0 , then

$$\partial_k f(x_0) = \ell(e_k) = \langle df(x_0), e_k \rangle$$

• Conversely, if $v = e_k v^k$, then

$$egin{aligned} \langle df(x_0), v
angle &= \langle df(x_0), e_k v^k
angle \ &= v^k \langle df(x_0), e_k
angle \ &= v^k \partial_k f(x_0) \end{aligned}$$

9/11

イロン イボン イヨン トヨ

Chain Rule

- Let $O \subset \mathbb{R}^n$ be open and $f : O \to \mathbb{R}$ be differentiable at $x_0 \in O$
- ▶ Let $I \subset \mathbb{R}$ be a connected open interval and $c : I \to O$ be a curve such that at $t_0 \in I$,

$$c(t_0) = x_0$$
 and $c'(t_0) = v$

▶ The derivative of the composition $f \circ c : I \rightarrow \mathbb{R}$ at t_0 is

$$(f \circ c)'(t_0) = \left. \frac{d}{dt} \right|_{t=t_0} f(c^1(t), \dots, c^n(t))$$
$$= \sum_{k=1}^n (\partial_k f(c(t_0)))(c^k)'(t_0)$$
$$= v^k \partial_k f(x_0)$$
$$= \langle df(x_0), v \rangle$$
$$= D_v f(x_0)$$

10/11

Differential of Coordinate Function

▶ The differential of x^i at each $x_0 \in \mathbb{R}^n$ satisfies for any $v = (v^1, ..., v^n) \in \mathbb{R}^n$

$$\langle dx^{i}(x_{0}), v \rangle = \left. \frac{d}{dt} \right|_{t=0} x^{i}(x_{0} + tv)$$
$$= \left. \frac{d}{dt} \right|_{t=0} (x^{i} + tv^{i})$$
$$= v^{i}$$

In particular, if (ϵ¹,..., ϵⁿ) is the dual basis to the standard basis (e₁,..., e_n) of ℝⁿ, then

$$dx^i = \epsilon^i$$