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Topology of Rn: Open Sets
▶ For any x1, x2 ∈ Rn,

|x2 − x1| =

(
n∑

k=1

(x2 − x1)
2

)1/2

|x2 − x1|∞ = max(|x12 − x11 |, . . . , |xn2 − xn1 |)

▶ An open ball of radius r centered at x0 ∈ Rn is defined to be

B(x0, r) = {x ∈ Rn : |x − x0| < r}

▶ An open cube of radius r centered at x0 ∈ Rn is defined to be

C (x0, r) = {x ∈ Rn : |x − x0|∞ < r}

▶ A set O ⊂ Rn is open if for any x ∈ O, there exists r > 0
such that C (x , r) ⊂ O

▶ Equivalently, a set O ⊂ Rn is open if for any x ∈ O, there
exists r > 0 such that B(x , r) ⊂ O
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Closed Sets

▶ A set C ⊂ Rn is closed if Rn\C is open
▶ Examples:

▶ The closed cube

C (x0, r) = {x ∈ Rn : |x − x0|∞ ≤ r}

▶ The closed ball

B(x0, r) = {x ∈ Rn : |x − x0| ≤ r}

▶ A set S ⊂ Rn that is not open is not necessarily closed
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Bounded Sets, Compact Sets

▶ A set S ⊂ Rn is bounded if there exists a cube C (0,R) such
that S ⊂ C (0,R)

▶ A set S ⊂ Rn is compact if any sequence in S has a
convergent subsequence

▶ (Heine-Borel) A set S ⊂ Rn is compact if and only if it is
closed and bounded

▶ Basic examples: Closed balls and closed cubes
▶ Lemma: S ⊂ Rn is compact if and only if any open covering

of S has a finite subcover
▶ An open covering of S is a possibly infinite collection of open

sets whose union contains S
▶ A finite subcover is a finite number of open sets in the

collection whose union contains S
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Bounded and Continuous Maps

▶ A map f : S → Rm is bounded if there exists M > 0 such
that

∀s ∈ S , |f (s)| ≤ M

▶ Given S ⊂ Rn, a function f : S → Rm is continuous at
x0 ∈ S if the following holds:
▶ For any ϵ > 0, there exists δ > 0 such that

|x − x0| < δ =⇒ |f (x)− f (x0)| < ϵ

▶ f : S → Rm is continuous if it is continuous at each x0 ∈ S

▶ Lemma: f : S → Rm is continuous if and only if for any open
set O ′ ⊂ Rm, there exists an open O ⊂ Rn such that

f −1(O ′) = O ∩ S
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Differentiable Function on R
▶ Rough idea: A function is differentiable at a point if it has a

good linear approximation at that point

▶ Given an open interval I ⊂ R, a function f : I → R is
differentiable at x0 ∈ I if there exists f ′(x0) ∈ R such that

lim
x→x0

f (x)− f (x0)

x − x0
= f ′(x0)

f ′(x0) is called the derivative of f at x0
▶ Equivalently, f is differentiable at x0 ∈ I if there exists m ∈ R

such that

lim
x→x0

f (x)− f (x0)−m(x − x0)

x − x0
= 0

If so, the derivative of f at x0 is defined to be

f ′(x0) = m
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Differentiable Function on Rn

▶ Rough idea: A function is differentiable at a point if it has a
good linear approximation at that point

▶ Given an open O ⊂ Rn, a function f : O → R is
differentiable at x0 = (x10 , . . . , x

n
0 ) ∈ O if there exists a linear

function ℓ : Rn → R such that

lim
x→x0

|f (x)− f (x0)− ℓ(x − x0)|
|x − x0|

= 0

▶ Observe that ℓ ∈ (Rn)∗

▶ ℓ is called the differential of f at x0 ∈ O and denoted df (x0)

▶ The differential of f is a map

df : O → (Rn)∗
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Directional Derivative of a Function
▶ The directional derivative of f : O → R at x0 ∈ O in the

direction v ∈ Rn is defined to be

Dv f (x0) =
d

dt

∣∣∣∣
t=0

f (x0 + tv)

= lim
t→0

f (x0 + tv)− f (x0)

t

▶ If f is differentiable at x0 and its differential at x0 is
ℓ = df (x0), then if v ̸= 0,

0 = lim
t→0

|f (x0 + tv)− f (x0)− ℓ(tv)|
|tv |

= lim
t→0

1

|v |

∣∣∣∣ f (x0 + tv)− f (x0)

t
− ℓ(v)

∣∣∣∣
=

1

|v |
|Dv f (x0)− ℓ(v)|

▶ Therefore, Dv f (x0) = ⟨df (x0), v⟩
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Partial Derivatives

▶ Let (e1, . . . , en) denote the standard basis of Rn

▶ If f : O → R is differentiable at x0 ∈ O, then the k-th partial
derivative of f at x0 is defined to be

∂i f (x0) =
d

dt

∣∣∣∣
t=0

f (x0 + tek) = lim
t→0

f (x0 + tei )− f (x0)

t

▶ If ℓ is the differential of f at x0, then

∂k f (x0) = ℓ(ek) = ⟨df (x0), ek⟩

▶ Conversely, if v = ekv
k , then

⟨df (x0), v⟩ = ⟨df (x0), ekvk⟩
= vk⟨df (x0), ek⟩
= vk∂k f (x0)
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Chain Rule
▶ Let O ⊂ Rn be open and f : O → R be differentiable at

x0 ∈ O

▶ Let I ⊂ R be a connected open interval and c : I → O be a
curve such that at t0 ∈ I ,

c(t0) = x0 and c ′(t0) = v

▶ The derivative of the composition f ◦ c : I → R at t0 is

(f ◦ c)′(t0) =
d

dt

∣∣∣∣
t=t0

f (c1(t), . . . , cn(t))

=
n∑

k=1

(∂k f (c(t0)))(c
k)′(t0)

= vk∂k f (x0)

= ⟨df (x0), v⟩
= Dv f (x0)
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Differential of Coordinate Function

▶ The differential of x i at each x0 ∈ Rn satisfies for any
v = (v1, . . . , vn) ∈ Rn

⟨dx i (x0), v⟩ =
d

dt

∣∣∣∣
t=0

x i (x0 + tv)

=
d

dt

∣∣∣∣
t=0

(x i + tv i )

= v i

▶ In particular, if (ϵ1, . . . , ϵn) is the dual basis to the standard
basis (e1, . . . , en) of Rn, then

dx i = ϵi
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