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Definition of Real Vector Space

▶ A set V with the following binary operations
▶ Vector addition:

V × V → V

(v1, v2) 7→ v1 + v2

▶ Scalar multiplication

R× V → V

(s, v) 7→ sv = vs
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Required Properties of Vector Addition

▶ Associativity of vector addition: For any v1, v2, v3 ∈ V ,

(v1 + v2) + v3 = v1 + (v2 + v3)

▶ Commutativity: For any v1, v2 ∈ V ,

v1 + v2 = v2 + v1

▶ Additive identity: There exists an element, denoted 0 ∈ V ,
such that for any v ∈ V ,

v + 0 = v

▶ Additive inverse: For any v ∈ V , there exists an element,
denoted −v ∈ V , such that

v + (−v) = 0
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Required Properties of Scalar Multiplication

▶ Multiplicative identity: For any v ∈ V ,

1v = v1 = v

▶ Associativity of scalar multiplication: For any s1, s2 ∈ R and
v ∈ V ,

(s1s2)v = s1(s2v)

▶ Distributivity: For any s ∈ R, v1, v2 ∈ V ,

s(v1 + v2) = sv1 + sv2

▶ Distributivity: For any s1, s2 ∈ R, v ∈ V ,

(s1 + s2)v = s1v + s2v
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Vectors in the Plane

▶ There is a zero vector, also called the origin

•
0

▶ A vector is an arrow that starts at the origin and has a
direction and magnitude (length)

v1

v2

•
0
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Vector Operations

▶ Vector addition

•
0

v1

v2

v1 + v2

▶ Scalar multiplication

•
0

4v = v4

v

−v = (−1)v = v(−1)
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Span, Linear Independence and Basis
▶ The span of a subset S ⊂ V is

[S ] = {s1v1+· · ·+skvk : ∀s1, . . . , sk ∈ R, ∀v1, . . . , vk ∈ S , ∀k ∈ Z+}

▶ A finite set {v1, . . . , vn} ⊂ V is linearly independent if for
any s1, . . . , sn ∈ R,

s1v1 + · · ·+ snvn = 0 =⇒ s1 = · · · = sn = 0.

▶ A basis of V is a linearly independent set

B = {b1, . . . , bn} ⊂ V

such that [B] = V
▶ A vector space is finite-dimensional if it has a basis, and its

dimension is defined to be the number of elements in the basis

▶ Any two bases have the same number of elements
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Subspace

▶ S ⊂ V is a linear subspace if, using the same vector addition
and scalar multiplication as V , it is itself a vector space

▶ I.e., for any s1, s2 ∈ R and v1, v2 ∈ S ,

s1v1 + s2v2 ∈ S

▶ A linear subspace can be viewed as a plane in V that passes
through 0
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Quotient Space
▶ Given a subspace S ⊂ V , an affine subspace parallel to S is

a plane parallel to S that does not necessarily pass through 0

▶ An affine subspace parallel to S that contains v ∈ V is the set

v + S = {v + w : w ∈ S}

▶ That v + S is parallel to S means

v1 + S = v2 + S ⇐⇒ v2 − v1 ∈ S

▶ The quotient space of V over S is defined to be the set of
all affine subspaces parallel to S ,

V /S = {v + S : v ∈ V }

▶ V /S is a vector space, where for any v1, v2, v ∈ V and t ∈ R,

(v1 + S) + (v2 + S) = (v1 + v2) + S

t(v + S) = tv + S
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Linear Maps

▶ If V and W are vector spaces, then a map L : V → W is
linear if for any s1, s2 ∈ R and v1, v2 ∈ V ,

L(s1v1 + s2v2) = s1L(v1) + s2L(v2)
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Injective, Surjective, Bijective Linear Maps
▶ Consider a linear map L : V → W

▶ L is injective if

L(v1) = L(v2) =⇒ v1 = v2

▶ L : V → W is injective if and only if ker L = {0}
▶ L : V → W is surjective if L(V ) = W

▶ A map L : V → W is bijective or an isomorphism if it is
both injective and surjective

▶ If L : V → W is a linear isomorphism, then so is
L−1 : W → W

▶ A basis (v1, . . . , vn) of V defines a linear isomorphism

Rn → V

(s1, . . . , sn) 7→ s1v1 + · · ·+ snvn
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Kernel, Image, Cokernel of Linear Map

▶ The kernel of L is

ker(L) = {v ∈ V : L(v) = 0} ⊂ V

▶ The image of L is

L(V ) = {w ∈ W : ∃v ∈ V such that L(v)w} = {L(v) : ∀v ∈ V }

▶ The cokernel is the quotient space V /(ker L)

▶ There is a natural linear isomorphism

V /(ker L) → L(V )

v + ker(L) 7→ L(v)
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Dual Vector Space

0

v

w
ℓ = 2 ℓ = 0 ℓ = −2

▶ The dual vector space of a finite dimensional vector space V
is the vector space of linear functions on V ,

V ∗ = {ℓ : V → R : ℓ is linear}

▶ An element of V ∗ is called a covector or a 1-tensor
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Dual Basis

▶ Let (v1, . . . , vn) be a basis of V

▶ Any ℓ ∈ V ∗ is uniquely determined by its values
ℓ(v1), . . . , ℓ(vn), because

ℓ(s1v1 + · · ·+ snvn) = s1ℓ(v1) + · · ·+ snℓ(vn)

▶ The basis (v1, . . . , vn) naturally induces a basis (ℓ1, . . . , ℓn) of
V ∗ such that

ℓj(vk) = δjk =

{
1 if j = k

0 if j ̸= k

15 / 22



Pushforward of a Vector and Pullback of a Covector

▶ Let F : V → W be a linear map

▶ Given a vector v ∈ V , the pushforward of v is F (v) ∈ W

▶ Given a covector ℓ ∈ W , the pullback of ℓ ∈ W ∗ is the
element F ∗ℓ ∈ V ∗, where

F ∗ℓ = ℓ ◦ F : V → R

▶ The pullback of F is a linear map

F ∗ : W ∗ → V ∗

ℓ 7→ ℓ ◦ F
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Dual of Dual of a Vector Space is Itself

▶ There is a natural linear isomorphism V ∗∗ → V

▶ Any v ∈ V defines a linear function

fv : V ∗ → R
ℓ 7→ ℓ(v)

▶ This defines a map

F : V → V ∗∗

v 7→ fv

▶ Using a basis of V and its dual basis, it is easy to show that F
is a linear isomorphism
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Notation

▶ If v ∈ V and ℓ ∈ V ∗, we will write

⟨ℓ, v⟩ = ℓ(v) = v(ℓ) = ⟨v , ℓ⟩

▶ v ∈ V is called a vector

▶ ℓ ∈ V ∗ is called a covector or a 1-tensor
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2-tensors
▶ A function f : V × V → R is bilinear if for any w ∈ V , the

functions

V → R
v 7→ f (v ,w)

and

V → R
v 7→ f (w , v)

are linear
▶ Equivalently, f : V ×W is bilinear if for any a1, a2, b1, b2 ∈ R

and v , v1, v2,w ,w1,w2 ∈ V ,

f (a1v1 + a2v2,w) = a1f (v1,w) + a2f (v2,w)

f (v , b1w1 + b2w2) = b1f (v ,w1) + b2f (v ,w2)

▶ A bilinear function is also called a 2-tensor
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Vector Space of 2-Tensors
▶ The space of 2-tensors on V is denoted

V ∗ ⊗ V ∗ = { bilinear functions f : V × V → R},

which is a vector space

▶ If f1, f2 ∈ V ∗ ⊗ V ∗ and a1, a2 ∈ R, then

a1f1 + a2f2 ∈ V ∗ ⊗ V ∗

▶ Therefore, V ∗ ⊗ V ∗ is a vector space

▶ There is a natural map

V ∗ ×V ∗ → V ∗ ⊗ V ∗

(ℓ1, ℓ2) 7→ ℓ1 ⊗ ℓ2,

where for any v1, v2 ∈ V ,

(ℓ1 ⊗ ℓ2)(v1, v2) = ⟨ℓ1, v1⟩⟨ℓ2, v2⟩
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Pullback of a 2-Tensor

▶ Given any linear map L : V → W , there is a natural pullback
map

L∗ : W ∗ ⊗W ∗ → V ∗ ⊗ V ∗,

where for any bilinear function

f : W ×W → R,

the bilinear function L∗f : V × V → R is defined to be

(L∗f )(v1, v2) = f (L(v1), L(v2)), ∀v1, v2 ∈ V
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k-Tensors

▶ A k-tensor is a multilinear function

f : V × · · · × V → R,

where, if all inputs but one are held fixed, then f is a linear
function of the remaining input

▶ The space of all k-tensors, denoted V ∗ ⊗ · · · ⊗ V ∗, is a
finite-dimension real vector space

▶ The space of 1-tensors is V ∗
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