MATH-GA1002 Multivariable Analysis
 Linear and Multilinear Algebra 1-Tensors, 2-tensors

Deane Yang

Courant Institute of Mathematical Sciences
New York University

January 23, 2024

Course Information

- Web Pages
- My homepage: https://math.nyu.edu/~yangd
- Course Hompage
- Course Calendar
- Textbook
- Michael Spivak, Calculus on Manifolds
- Available as resource on Ed Resources

Definition of Real Vector Space

- A set V with the following binary operations
- Vector addition:

$$
\begin{aligned}
& V \times V \rightarrow V \\
& \left(v_{1}, v_{2}\right) \mapsto v_{1}+v_{2}
\end{aligned}
$$

- Scalar multiplication

$$
\begin{aligned}
\mathbb{R} \times V & \rightarrow V \\
(s, v) & \mapsto s v=v s
\end{aligned}
$$

Required Properties of Vector Addition

- Associativity of vector addition: For any $v_{1}, v_{2}, v_{3} \in V$,

$$
\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{3}\right)
$$

- Commutativity: For any $v_{1}, v_{2} \in V$,

$$
v_{1}+v_{2}=v_{2}+v_{1}
$$

- Additive identity: There exists an element, denoted $0 \in V$, such that for any $v \in V$,

$$
v+0=v
$$

- Additive inverse: For any $v \in V$, there exists an element, denoted $-v \in V$, such that

$$
v+(-v)=0
$$

Required Properties of Scalar Multiplication

- Multiplicative identity: For any $v \in V$,

$$
1 v=v 1=v
$$

- Associativity of scalar multiplication: For any $s_{1}, s_{2} \in \mathbb{R}$ and $v \in V$,

$$
\left(s_{1} s_{2}\right) v=s_{1}\left(s_{2} v\right)
$$

- Distributivity: For any $s \in \mathbb{R}, v_{1}, v_{2} \in V$,

$$
s\left(v_{1}+v_{2}\right)=s v_{1}+s v_{2}
$$

- Distributivity: For any $s_{1}, s_{2} \in \mathbb{R}, v \in V$,

$$
\left(s_{1}+s_{2}\right) v=s_{1} v+s_{2} v
$$

Vectors in the Plane

- There is a zero vector, also called the origin
- A vector is an arrow that starts at the origin and has a direction and magnitude (length)

Vector Operations

- Vector addition

- Scalar multiplication

Span, Linear Independence and Basis

- The span of a subset $S \subset V$ is

$$
[S]=\left\{s^{1} v_{1}+\cdots+s^{k} v_{k}: \forall s_{1}, \ldots, s_{k} \in \mathbb{R}, \forall v_{1}, \ldots, v_{k} \in S, \forall k \in \mathbb{Z}_{+}\right.
$$

- A finite set $\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ is linearly independent if for any $s^{1}, \ldots, s^{n} \in \mathbb{R}$,

$$
s^{1} v_{1}+\cdots+s^{n} v_{n}=0 \Longrightarrow s^{1}=\cdots=s^{n}=0
$$

- A basis of V is a linearly independent set

$$
B=\left\{b_{1}, \ldots, b_{n}\right\} \subset V
$$

such that $[B]=V$

- A vector space is finite-dimensional if it has a basis, and its dimension is defined to be the number of elements in the basis
- Any two bases have the same number of elements

Subspace

- $S \subset V$ is a linear subspace if, using the same vector addition and scalar multiplication as V, it is itself a vector space
- I.e., for any $s^{1}, s^{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in S$,

$$
s^{1} v_{1}+s^{2} v_{2} \in S
$$

- A linear subspace can be viewed as a plane in V that passes through 0

Quotient Space

- Given a subspace $S \subset V$, an affine subspace parallel to S is a plane parallel to S that does not necessarily pass through 0
- An affine subspace parallel to S that contains $v \in V$ is the set

$$
v+S=\{v+w: w \in S\}
$$

- That $v+S$ is parallel to S means

$$
v_{1}+S=v_{2}+S \Longleftrightarrow v_{2}-v_{1} \in S
$$

- The quotient space of V over S is defined to be the set of all affine subspaces parallel to S,

$$
V / S=\{v+S: v \in V\}
$$

- V / S is a vector space, where for any $v_{1}, v_{2}, v \in V$ and $t \in \mathbb{R}$,

$$
\begin{aligned}
\left(v_{1}+S\right)+\left(v_{2}+S\right) & =\left(v_{1}+v_{2}\right)+S \\
t(v+S) & =t v+S
\end{aligned}
$$

Linear Maps

- If V and W are vector spaces, then a map $L: V \rightarrow W$ is linear if for any $s^{1}, s^{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in V$,

$$
L\left(s^{1} v_{1}+s^{2} v_{2}\right)=s^{1} L\left(v_{1}\right)+s^{2} L\left(v_{2}\right)
$$

Injective, Surjective, Bijective Linear Maps

- Consider a linear map $L: V \rightarrow W$
- L is injective if

$$
L\left(v_{1}\right)=L\left(v_{2}\right) \Longrightarrow v_{1}=v_{2}
$$

- $L: V \rightarrow W$ is injective if and only if $\operatorname{ker} L=\{0\}$
- $L: V \rightarrow W$ is surjective if $L(V)=W$
- A map $L: V \rightarrow W$ is bijective or an isomorphism if it is both injective and surjective
- If $L: V \rightarrow W$ is a linear isomorphism, then so is $L^{-1}: W \rightarrow W$
- A basis $\left(v_{1}, \ldots, v_{n}\right)$ of V defines a linear isomorphism

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow V \\
\left(s^{1}, \ldots, s^{n}\right) & \mapsto s^{1} v_{1}+\cdots+s^{n} v_{n}
\end{aligned}
$$

Kernel, Image, Cokernel of Linear Map

- The kernel of L is

$$
\operatorname{ker}(L)=\{v \in V: L(v)=0\} \subset V
$$

- The image of L is

$$
L(V)=\{w \in W: \exists v \in V \text { such that } L(v) w\}=\{L(v): \forall v \in V\}
$$

- The cokernel is the quotient space $V /(\operatorname{ker} L)$
- There is a natural linear isomorphism

$$
\begin{aligned}
V /(\operatorname{ker} L) & \rightarrow L(V) \\
v+\operatorname{ker}(L) & \mapsto L(v)
\end{aligned}
$$

Dual Vector Space

- The dual vector space of a finite dimensional vector space V is the vector space of linear functions on V,

$$
V^{*}=\{\ell: V \rightarrow \mathbb{R}: \ell \text { is linear }\}
$$

- An element of V^{*} is called a covector or a 1-tensor

Dual Basis

- Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V
- Any $\ell \in V^{*}$ is uniquely determined by its values $\ell\left(v_{1}\right), \ldots, \ell\left(v_{n}\right)$, because

$$
\ell\left(s^{1} v_{1}+\cdots+s^{n} v_{n}\right)=s^{1} \ell\left(v_{1}\right)+\cdots+s^{n} \ell\left(v_{n}\right)
$$

- The basis $\left(v_{1}, \ldots, v_{n}\right)$ naturally induces a basis $\left(\ell^{1}, \ldots, \ell^{n}\right)$ of V^{*} such that

$$
\ell^{j}\left(v_{k}\right)=\delta_{k}^{j}= \begin{cases}1 & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

Pushforward of a Vector and Pullback of a Covector

- Let $F: V \rightarrow W$ be a linear map
- Given a vector $v \in V$, the pushforward of v is $F(v) \in W$
- Given a covector $\ell \in W$, the pullback of $\ell \in W^{*}$ is the element $F^{*} \ell \in V^{*}$, where

$$
F^{*} \ell=\ell \circ F: V \rightarrow \mathbb{R}
$$

- The pullback of F is a linear map

$$
\begin{aligned}
F^{*}: W^{*} & \rightarrow V^{*} \\
\ell & \mapsto \ell \circ F
\end{aligned}
$$

Dual of Dual of a Vector Space is Itself

- There is a natural linear isomorphism $V^{* *} \rightarrow V$
- Any $v \in V$ defines a linear function

$$
\begin{aligned}
f_{v}: V^{*} & \rightarrow \mathbb{R} \\
\ell & \mapsto \ell(v)
\end{aligned}
$$

- This defines a map

$$
\begin{aligned}
F: V & \rightarrow V^{* *} \\
v & \mapsto f_{v}
\end{aligned}
$$

- Using a basis of V and its dual basis, it is easy to show that F is a linear isomorphism

Notation

- If $v \in V$ and $\ell \in V^{*}$, we will write

$$
\langle\ell, v\rangle=\ell(v)=v(\ell)=\langle v, \ell\rangle
$$

- $v \in V$ is called a vector
- $\ell \in V^{*}$ is called a covector or a 1-tensor

2-tensors

- A function $f: V \times V \rightarrow \mathbb{R}$ is bilinear if for any $w \in V$, the functions

$$
\begin{aligned}
V & \rightarrow \mathbb{R} \\
v & \mapsto f(v, w)
\end{aligned}
$$

and

$$
\begin{aligned}
V & \rightarrow \mathbb{R} \\
v & \mapsto f(w, v)
\end{aligned}
$$

are linear

- Equivalently, $f: V \times W$ is bilinear if for any $a^{1}, a^{2}, b^{1}, b^{2} \in R$ and $v, v_{1}, v_{2}, w, w_{1}, w_{2} \in V$,

$$
\begin{aligned}
f\left(a^{1} v_{1}+a^{2} v_{2}, w\right) & =a^{1} f\left(v_{1}, w\right)+a^{2} f\left(v_{2}, w\right) \\
f\left(v, b^{1} w_{1}+b^{2} w_{2}\right) & =b^{1} f\left(v, w_{1}\right)+b^{2} f\left(v, w_{2}\right)
\end{aligned}
$$

- A bilinear function is also called a 2-tensor

Vector Space of 2-Tensors

- The space of 2-tensors on V is denoted

$$
V^{*} \otimes V^{*}=\{\text { bilinear functions } f: V \times V \rightarrow \mathbb{R}\}
$$

which is a vector space

- If $f_{1}, f_{2} \in V^{*} \otimes V^{*}$ and $a^{1}, a^{2} \in \mathbb{R}$, then

$$
a^{1} f_{1}+a^{2} f_{2} \in V^{*} \otimes V^{*}
$$

- Therefore, $V^{*} \otimes V^{*}$ is a vector space
- There is a natural map

$$
\begin{aligned}
V * \times V^{*} & \rightarrow V^{*} \otimes V^{*} \\
\left(\ell^{1}, \ell^{2}\right) & \mapsto \ell^{1} \otimes \ell^{2}
\end{aligned}
$$

where for any $v_{1}, v_{2} \in V$,

$$
\left(\ell^{1} \otimes \ell^{2}\right)\left(v_{1}, v_{2}\right)=\left\langle\ell^{1}, v_{1}\right\rangle\left\langle\ell^{2}, v_{2}\right\rangle
$$

Pullback of a 2-Tensor

- Given any linear map $L: V \rightarrow W$, there is a natural pullback map

$$
L^{*}: W^{*} \otimes W^{*} \rightarrow V^{*} \otimes V^{*}
$$

where for any bilinear function

$$
f: W \times W \rightarrow \mathbb{R}
$$

the bilinear function $L^{*} f: V \times V \rightarrow \mathbb{R}$ is defined to be

$$
\left(L^{*} f\right)\left(v_{1}, v_{2}\right)=f\left(L\left(v_{1}\right), L\left(v_{2}\right)\right), \forall v_{1}, v_{2} \in V
$$

k-Tensors

- A k-tensor is a multilinear function

$$
f: V \times \cdots \times V \rightarrow \mathbb{R}
$$

where, if all inputs but one are held fixed, then f is a linear function of the remaining input

- The space of all k-tensors, denoted $V^{*} \otimes \cdots \otimes V^{*}$, is a finite-dimension real vector space
- The space of 1-tensors is V^{*}

