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Assignments

▶ All homework assignments and exams will be handled using
Gradescope

▶ Homework
▶ Every one or two weeks
▶ Provided as Overleaf project and Gradescope assignment
▶ Solutions must be typed up using LaTeX
▶ Submissions uploaded as PDF to Gradescope

▶ Midterm and Final
▶ In person
▶ Format to be determined

▶ 150 minute written exam
▶ 30 minute oral exam
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Grading Policy

▶ Course grade
▶ Homework: 20%
▶ Midterm: 30%
▶ Final: 50%
▶ Tweaks

▶ Homework and Exams
▶ Partial credit for correct and relevant logical reasoning
▶ Full credit for correct and relevant logical reasoning and correct

answer
▶ No credit for correct answer but incorrect logical reasoning
▶ Incorrect logic and calculations wil be severely penalized
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Course Information

▶ Web Pages
▶ My homepage
▶ Course Homepage
▶ Course Calendar

▶ Textbook
▶ Yisong Yang, A Concise Text on Advanced Linear Algebra,

Cambridge University Press
▶ PDF available in Ed Discussion Resources
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https://math.nyu.edu/~yangd/index.html
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Functions and Maps

▶ We will use the following notation when defining a function or
map:

function : domain → codomain

input 7→ output

▶ When doing calculations and proofs, It is important to keep
track of the domain and codomain of a function

▶ Given maps F : X → Y and G : W → Z , then F can be
composed with G ,

G ◦ F : X → Z

if and only if Y ⊂ W ,

▶ If you make sure that each input to a function really is an
element of the domain and each output really is treated as an
element of the codomain, you will catch 90% of your errors
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Logical Symbols

▶ ∀ means for each or for any or for all

▶ ∃ means there is at least one or there exists at least one

▶ ∃! means there is exactly one or there exists exactly one

▶ (assumption) =⇒ (conclusion) means
▶ if (assumption), then (conclusion)
▶ (assumption) only if (conclusion)
▶ (conclusion) if (assumption)

▶ ⇐⇒ means if and only if
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Abstract Vector Space

▶ Let F be either the reals (denoted R) or the complex numbers
(denoted C)

▶ A vector space over F is a set V with the following:
▶ An element called the zero vector, denoted 0⃗, 0V , or simply 0
▶ An operation called vector addition:

V × V → V

(v1, v2) 7→ v1 + v2

▶ An operation called scalar multiplication:

V × F → V

(v , r) 7→ rv = vr

such that the following properties hold
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Properties of Vector Addition

▶ Associativity

(v1 + v2) + v3 = v1 + (v2 + v2)

▶ Commutativity

v1 + v2 = v2 + v1

▶ Identity element:

v + 0⃗ = v

▶ Inverse element: For each v ∈ V , there exists an element,
denoted −v , such that

v + (−v) = 0⃗
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Scalar Multiplication

▶ Properties
▶ Associativity

(f1f2)v = f1(f2v)

▶ Distributivity

(f1 + f2)v = f1v + f2v

f (v1 + v2) = fv1 + fv2

▶ Identity element

1v = v
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Consequences

▶

0v = 0v + v − v

= 0v + 1v − v

= (0 + 1)v − v

= v − v

= 0⃗

▶

(−1)v = (−1)v + v − v

= (−1)v + 1v − v

= (−1 + 1)v − v

= 0v − v

= 0⃗− v

= −v
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Valid and Invalid Expressions

▶ Valid expressions

(vector) + (vector)

(scalar) + (scalar)

(scalar)(vector)

(vector)(scalar)

(scalar)(scalar)

▶ Invalid expressions

(vector) + (scalar)

(scalar) + (vector)

(vector)(vector)
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Linear Combination of Vectors

▶ Given a finite set of vectors v1, . . . , vm ∈ V and scalars
f 1, . . . , f m, the vector

f 1v1 + · · ·+ f mvm

is called a linear combination of v1, . . . , vm
▶ Given a subset S ⊂ V , not necessarily finite, the span of S is

the set of all possible linear combinations of vectors in S

[S ] =

{f 1v1 + · · ·+ f mvm : ∀ f 1, . . . , f m ∈ F and v1, . . . , vm ∈ S}

▶ A vector space V is finite dimensional if there is a finite set S
of vectors such that

[S ] = V

▶ In this course vector spaces are assumed to be finite dimensional
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Basis of a Vector Space

▶ A set {v1, . . . , vk} ⊂ V is linearly independent if

f 1v1 + · · · f mvm = 0⃗ =⇒ f 1 = · · · = f m = 0,

▶ A finite set S = (v1, . . . , vm) ⊂ V is called a basis of V if it is
linearly independent and

[S ] = V

▶ For such a basis, if v ∈ V , then there exist a unique set of scalar
coefficients (a1, . . . , am) such that

v = akvk

▶ In other words, the map

Fm → V

⟨f 1, . . . , f m⟩ 7→ f 1v1 + · · ·+ f mvm

is bijective
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Dimension of a Vector Space

▶ Every finite dimensional vector space has a basis

▶ Any two bases have the same number of elements

▶ The dimension of a vector space is defined to be the number of
elements in a basis

▶ The dimension of V is denoted dimV
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Definition of an Abstract Matrix

▶ An m-by-n abstract matrix M is a table of symbols with m
rows and n columns

▶ The element in the j-th row and k-th column is labeled

M j
k

▶ Therefore,

M =

M1
1 · · · M1

n
...

...
Mm

1 · · · Mm
n


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Row and Column Matrices

▶ A row matrix is a matrix with 1 row,

R =
[
R1 · · · Rn

]
▶ A column matrix is a matrix with 1 column

C =

C 1

...
Cm


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Product of Row and Column Matrices (Part 1)

▶ Let R be a row matrix with m columns and C be a column
matrix with m rows,

R =
[
R1 · · · Rm

]
and C =

C 1

...
Cm


▶ Suppose that for each 1 ≤ k ≤ m, the product

RjC
j

is well defined, e.g.,

R1, . . . ,Rm,C
1, . . . ,Cm ∈ F (1)

R1, . . . ,Rm ∈ V and C 1, . . . ,Cm ∈ F (2)

R1, . . . ,Rm ∈ F and C 1, . . . ,Cm ∈ V (3)
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Product of Row and Column Matrices (Part 2)

▶ The matrix product of R and C is defined to be the 1-by-1
matrix

RC =
[
R1 · · · Rm

] C 1

...
Cm

 = R1C
1 + · · ·+ RmC

m

▶ If (1) holds, then RC is a scalar-valued 1-by-1 matrix

▶ If (2) or (3) holds, then RC is a vector-valued 1-by-1 matrix
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Product of Two Matrices

▶ Let R1, . . . ,Rm denote the rows of an m-by-k matrix

M =

M1
1 · · · M1

k
...

...
Mm

1 · · · Mm
k

 =

R1

...
Rm


▶ Let C1, . . . ,Cn denote the columns of a k-by-n matrix

N =

N
1
1 · · · N1

n
...

...
Nk

1 · · · Nn
m

 =
[
C1 · · · Cn

]
▶ The product of M and N is defined to be the m-by-n matrix,

denoted MN, where for each

1 ≤ j ≤ m and 1 ≤ k ≤ n,

the element in the j-th row and k-th column is

(MN)jk = R jCk
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Properties of Abstract Matrix Multiplication

▶ If A,B are m-by-k matrices and C is a k-by-n matrix, then

(A+ B)C = AC + BC

▶ If A is an m-by-k matrix and B,C are k-by-n matrices, then

A(B + C ) = AB + AC

▶ If A is an m-by-j matrix, B is a j-by-k matrix, and C is a k-by-n
matrix, then

(AB)C = A(BC )
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Matrix Notation for Vector with Respect to Basis

▶ Let (b1, . . . , bm) be a basis of a vector space V
▶ For each v ∈ V , there are unique coefficients c1, . . . , cm ∈ F

such that

v = b1c
1 + · · ·+ bmc

m

=
[
b1 · · · bm

] c1

...
cm


= BC ,

where the basis is written as a row matrix of vectors

B =
[
b1 · · · bm

]
and the coefficients are written as a column matrix of scalars

C =

c1

...
cm


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Matrices of Matrices

▶ Let M be an abstract m-by-k matrix

M =

M1
1 · · · M1

k
...

...
Mm

1 · · · Mm
k ,


where each M i

j is itself an p-by-p matrix
▶ Therefore, M is an mp-by-kp matrix, broken up into p-by-p

blocks
▶ Let N be an abstract k-by-n matrix

N =

N
1
1 · · · N1

n
...

...
Nk

1 · · · Nk
n ,


where each N j

l is itself an p-by-p matrix
▶ Then the abstract matrix product A = MN is the same as the

standard matrix product A = MN
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Change of Basis of Formula

▶ Let E = (e1, . . . , en) be a basis of V and

v = a1e1 + · · ·+ anen

▶ If F = (f1, . . . , fn) is another basis, then there is a unique matrix
M such that for each 1 ≤ k ≤ n,

fk = M1
k e1 + · · ·+Mn

k en

▶ v can also be written with respect to the basis F ,

v = b1f1 + · · ·+ bnfn

▶ How are (a1, . . . , an) and (b1, . . . , bn) related?
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Standard Basis of F3

▶ Denote the standard basis vectors of F3 by

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1


▶ The basis can be written as a row matrix of column vectors:

E =
[
e1 e2 e3

]
=

 1 0 0
0 1 0
0 0 1

 = I

▶ Any vector v = (v1, v2, v3) ∈ F can be written as

v =

v1

v2

v3

 = e1v
1 + e2v

2 + e3v
3 =

[
e1 e2 e3

] v1

v2

v3

 = Ev
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Change of Basis Example on F3

▶ Consider a basis of F3,

F =
[
f1 f2 f3

]
=

 1 0 0
−1 1 0
1 1 1


▶ Given a vector v = (v1, v2, v3), there are coefficients b1, b2, b3

such that

v =

v1

v2

v3

 = f1b
1 + f2b

2 + f3b
3

=

 1
−1
1

 b1 +

01
1

 b2 +

00
1

 b3 = Fb

▶ Therefore,
b = F−1v
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Change of Basis Example on F3

▶ Consider a basis

F =
[
f1 f2 f3

]
=

 1 0 0
−1 1 0
1 1 1


▶ Given a vector v = (1, 2, 3), there are coefficients b1, b2, b3 such

that

(1, 2, 3) = b1(1,−1, 1) + b2(0, 1, 1) + b3(0, 0, 1)

= (b1,−b1 + b2, b1 + b3 + b3)

or, equivalently,

b1 = 1

−b1 + b2 = 2

b1 + b2 + b3 = 3

▶ Unique solution is (b1, b2, b3) = (1, 3,−1)
27 / 44
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Change of Basis on Abstract Vector Space

▶ Consider two different bases of an n-dimensional vector space V ,

E =
[
e1 · · · en

]
and F =

[
f1 · · · fn

]
▶ Since E is a basis, we can write each basis vector of F as a

linear combination of the vectors in E

F =
[
f1 · · · fn

]
=

[
e1M

1
1 + · · ·+ enM

n
1 · · · e1M

1
n + · · ·+ enM

n
n

]
=

[
e1 · · · en

] M
1
1 · · · M1

n
...

...
Mn

1 · · · Mn
n


= EM,

where M is a square matrix of scalars
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Change of Coefficients

▶ Any vector v can be written as either a linear combination of the
basis E ,

v = e1a
1 + · · ·+ ena

n =
[
e1 · · · en

] a
1

...
an

 = Ea

or as a linear combination of the basis F ,

v = f1b
1 + · · ·+ fnb

n =
[
f1 · · · fn

] b
1

...
bn

 = Fb

▶ Since F = EM,

v = Fb = (EM)b = E (Mb)

▶ Therefore,
a = Mb and b = M−1a
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Change of Basis Formula

▶ Let E and F be bases of V such that

F = EM,

▶ If v = Ea = Fb, then

a = Mb and b = M−1a

▶ The matrix that transforms old coefficients into new coefficients
is the inverse of the matrix that transforms the old basis into the
new basis

▶ Equivalently, the matrix that transforms the old basis into the
new basis is the matrix that transforms the new coefficients into
the old coefficients

▶ WARNING: This works only if you write a basis as a row matrix
of vectors and the coefficients as a column matrix of scalars
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Linear Functions

▶ If V is a vector space, then a function

ℓ : V → F

is linear, if for any v1, v2 ∈ V

ℓ(v1 + v2) = ℓ(v1) + ℓ(v2)

and for any v ∈ V and s ∈ F,

ℓ(vs) = ℓ(v)s

▶ Consequences:

ℓ(0V ) = 0

ℓ(−v) = −ℓ(v)
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Properties of Linear Functions

▶ If ℓ1, ℓ2 are linear functions, then so is ℓ1 + ℓ2
▶ If 0 is the zero function, it is linear and for any linear function ℓ,

ℓ+ 0 = ℓ

▶ If s ∈ F and ℓ is a linear function, then the function sℓ, which is
defined by

(sℓ)(v) = s(ℓ(v)),

is also a linear function
▶ If we denote −ℓ = (−1)ℓ, then

ℓ+ (−ℓ) = 0

▶ It is straightforward to verify that these operations satisfy the
properties of vector addition and scalar multiplication

▶ It follows that the set of all linear functions on V , denoted V ∗,
is a vector space

▶ It is called the dual vector space of V
32 / 44
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Linear Maps

▶ If V and W are vector spaces, then

L : V → W

is a linear map, if for any v , v1, v2 ∈ V and s ∈ F,

L(v1 + v2) = L(v1) + L(v2)

L(sv) = sL(v)

▶ Consequences:

L(0V ) = 0W

L(−v) = −L(v)
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Properties of Linear Maps

▶ If K : U → V and L : V → W are linear maps, then so is

L ◦ K : U → W

▶ If L : V → W is bijective, it is called a linear isomorphism

▶ If L : V → W is a linear isomorphism, then so is

L−1 : W → V

34 / 44



Course
Requirements

Notation

Abstract Vector
Spaces

Abstract Matrix
Notation

Change of Basis

Linear Functions
and Maps

n-Dimensional Vector Spaces are Isomorphic

▶ Let dimV = dimW = m

▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fm) be a basis of W

▶ The map

LE ,F : V → W

e1a
1 + · · ·+ ema

m 7→ f1a
1 + · · ·+ fma

m

is a linear isomorphism

▶ Given any basis (e1, . . . , em) of V , there is a linear isomorphism

LV : Fm → V

(a1, . . . , am) 7→ e1a
1 + · · ·+ ema

m
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Space of Linear Maps

▶ Let Hom(V ,W ) denote the set of all linear maps with domain
V and codomain W

▶ It is straightforward to check that if L1, L2, L ∈ Hom(V ,W ) and
s ∈ F, then

L1 + L2, sL ∈ Hom(V ,W )

are also linear maps from V to W

▶ It is also easily checked that these operations satisfy the
properties of vector addition and scalar multiplication

▶ It follows that Hom(V ,W ) is itself also a vector space

▶ Observe that V ∗ = Hom(V ,F)
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Endomorphisms and Automorphisms

▶ The space of endomorphisms of V is defined to be

End(V ) = Hom(V ,V )

▶ An endomorphism L : V → V is an automorphism if it is
bijective

▶ The space of automorphisms of V is denoted Aut(V )
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Linear maps from Fm to Fn

▶ Let gl(n,m,F) denote the vector space of n-by-m matrices with
components in F
▶ dim gl(n,m,F) = nm
▶ Let gl(n,F) = gl(n, n,F)
▶ Let gl(n) = gl(n,R)

▶ There is a natural linear isomorphism

Hom(Fm,Fn) = gl(n,m,F)
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Matrix as Linear Map

▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fn) be a basis of W

▶ For each M ∈ gl(n,m,F), let L : V → W be the linear map
where

∀ 1 ≤ k ≤ m, L(ek) = f1M
1
k + · · ·+ fnM

n
k

and therefore for any v = e1a
1 + · · · emam = Ea,

L(v) = L(e1a
1 + · · ·+ ema

m)

= L(e1)a
1 + · · ·+ L(em)a

m

= (f1M
1
1 + · · ·+ fnM

n
1 )a

1 + · · ·+ (f1M
1
m + · · ·+ fnM

n
m)a

m

= f1(M
1
1a

1 + · · ·+M1
ma

m) + · · · fn(Mn
1 a

1 + · · ·+Mn
ma

m)

= f1(Ma)1 + · · ·+ fn(Ma)n

▶ This defines a map IE ,F : gl(n,m,F) → Hom(V ,W )
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Linear Map as Matrix

▶ Let E = (e1, . . . , em) be a basis of V
▶ Let F = (f1, . . . , fn) be a basis of W
▶ Let L : V → W be a linear map
▶ For each ek , 1 ≤ k ≤ m, there exists (M1

k , . . . ,M
n
k ) ∈ Fn such

that
L(ek) = f1M

1
k + · · · fnMn

k

▶ Therefore, for any v = e1a
1 + · · ·+ ema

m ∈ V ,

L(v) = L(e1a
1 + · · ·+ ema

m)

= L(e1)a
1 + · · ·+ L(em)e

m

= (f1M
1
1 + · · · fnMn

1 )a
1 + · · ·+ (f1M

1
m + · · ·+ fnM

n
m)a

m

= f1(M
1
1a

1 + · · ·M1
ma

m) + · · ·+ fn(M
n
1 a

1 + · · ·+Mn
ma

m)

= f1(Ma)1 + · · ·+ fn(Ma)n

▶ This defines a map JE ,F : Hom(V ,W ) → gl(n,m,F)
▶ JE ,F = I−1

E ,F and IE ,F = J−1
E ,F

▶ Therefore, dimHom(V ,W ) = dim gl(n,m,F) = nm
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Concrete to Abstract Notation

L(v) = L(e1a
1 + · · ·+ ema

m) = L

[
e1 · · · em

] a1

...
am




= L
([
e1 · · · em

]) a1

...
am

 =
[
L(e1) · · · L(em)

] a1

...
am


=

[
f1M

1
1 + · · ·+ fnM

n
1 · · · f1M

1
n + · · ·+ fnM

n
n

] a1

...
am


=

[
f1 · · · fn

] M
1
1 · · · M1

m
...

...
Mn

1 · · · Mn
m


a1

...
am

 = FMa
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Change of Basis Formula for Linear Map

▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fm) be another basis of V

▶ There is a matrix B such that F = EB, i.e.,

fk = ejB
j
k

▶ Consider a linear map L : V → V

▶ There is a matrix M such that

L(ek) = ejM
j
k , i.e., L(E ) = EM

and a matrix N such that

L(fk) = fjN
j
k , i.e., L(F ) = FN

▶ It follows that

FN = L(F ) = L(EB) = L(E )B = EMB = FB−1MB
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Change of Basis Formula for Matrix

▶ Let E = (e1, . . . , em) be the standard basis of Fm

▶ Let F = (f1, . . . , fm) be another basis of Fm

▶ There is a matrix B such that F = EB, i.e.,

fk = ejB
j
k

▶ Consider a m-by-m matrix M and the corresponding map

L : Fm → Fm

L(v) = (v1, . . . , vm) = Mv = EMv

▶ It follows that with respect to the basis F , if

Ev = v = Fw = EBw ,

then v = Bw and
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Composition is Matrix Multiplication

▶ Consider vector spaces U,V ,W and linear maps

K : U → V , L : V → W

▶ Let (e1, . . . , ek) be a basis of U
▶ Let (f1, . . . , fm) be a basis of V
▶ Let (g1, . . . , gn) be a basis of W
▶ There is an m-by-k matrix M such that

K (ej) = fpM
p
j , 1 ≤ j ≤ k

▶ There is an n-by-m matrix N such that

L(fp) = gaN
a
p , 1 ≤ p ≤ m

▶ There is an n-by-k matrix P such that

(L ◦ K )(ej) = gaP
a
j , 1 ≤ j ≤ k

▶ On the other hand,

(L ◦ K )(ej) = L(K (ej)) = L(fpM
p
j ) = L(fp)M

p
j = gaN

a
pM

p
j

▶ Therefore, Pa
j = Na

pM
p
j .
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