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1 Hirzebruch-Riemann-Roch Theorem

1.1 Statement and Examples

Recall the Riemann-Roch Formula

χ(C,E) = deg(E) + rank(E) · (1− g(C)) (1.1)

for a holomorphic vector bundle E and complex curve C, as well as for line bundles on surfaces. Here the
LHS is the Euler-Poincaré characteristic

χ(X,E) :=

dim(X)∑
i=0

(−1)ihi(X,E),

for a holomorphic vector bundle E on a compact complex manifold X.
The Hirzebruch-Riemann-Roch (HRR) formula generalizes this. The proof of HRR follows from further

generalizations, including the Grothendieck-Riemann-Roch formula and Atiyah-Singer index theorem.

Question 1.1. What is the degree of a vector bundle?
See p.88-89 for holomorphic line bundle, assuming X is projective. See ex.4.4.1 for the relation to Chern

class.
For a connected compact curve C, one has H2(C,Z) ∼= H0(C,Z) = Z by Poincaré Duality using

∫
C
.

Then for a complex line bundle L on C, its first Chern Class c1(L) ∈ H2(C,Z) = Z is defined as the degree
of L. For complex vector bundle E of higher rank, we define deg(E) := deg(detE).

Theorem 1.2 (Hirzebruch-Riemann-Roch). Let E be a holomorphic vector bundle on a compact complex
manifold X. Then its Euler-Poincaré characteristic equals

χ(X,E) =

∫
X

ch(E) td(X).

Indeed only the H2n(X,C) component of ch(E) td(X) contributes to the integral, where n = dimC(X).
This is

[ch(E) td(X)]2n =
∑
i

chi(E) tdn−i(X).

The formula agrees with the additivity of the Chern character. Recall that given any SES of holomorphic
vector bundles

0→ E1 → E → E2 → 0

one has
χ(X,E) = χ(X,E1) + χ(X,E2).



1 Hirzebruch-Riemann-Roch Theorem 1.1 Statement and Examples

Indeed we already know that

ch(E) = ch(E1 ⊕ E2) = ch(E1) + ch(E2).

As a consequence of HRR, ch(E) and hence χ(X,E) depends only on the underlying complex vector
bundle E, independent of its holomorphic structure. As a special case, for holomorphic line bundles L1,
L2 over X, if c1(L1) = c1(L2), then χ(X,L1) = χ(X,L1), even if different holomorphic structures give
h0(X,L1) ̸= h0(X,L2). Here H0(X,L) is the space of global holomorphic sections. The reason is the
Chern character can be computed from the Chern class (proof using formal Chern roots?),
and in the line bundle case ch(L) = exp(c1(L)) = 1 + c1(L) +

1
2c1(L)

2 + . . . .

Question 1.3. Does the Chern class uniquely determine the complex vector bundle, or the complex line
bundle?

Question 1.4. Can we relate the pullback vector bundle using HRR? The Chern class, Chern character, and
Todd class all respect pullback. Given (nice) holomorphic map f : Y → X, can we get

χ(Y, f∗E) =

∫
Y

f∗ (ch(E) td(X)) = deg(f) · χ(X,E)?

Answer: this is true for generic finitely-sheeted covering maps, where ”generic” implies f is covering map
except on a set of measure zero, so that it is ignored by the integral.

Example 1.5 (Line bundles on a curve). Let C be a connected compact curve and L ∈ Pic(C). Then HRR
gives

χ(C,L) =

∫
C

c1(L) +
c1(C)

2
= deg(L) +

deg(K∗
C)

2
.

In particular, if L = OC , the curvature on L vanishes so that

χ(C,L) =
deg(K∗

C)

2
.

Then
deg(KC) = −2χ(C,L) = 2(h1(C,L)− h0(C,L)) = 2(h1(C,L)− 1)

by maximum principle and compactness of C. If we define the genus of C as

g(C) :=
deg(KC)

2
+ 1, (1.2)

then
g(C) = h1(C,OC) = h0(C,KC)

by Serre duality h0,1 = h1,0. Therefore,

χ(C,OC) = −
deg(KC)

2
= deg(OC) + rank(OC) · (1− g(C)),

which yields the Riemann-Roch formula (1.1).

Remark 1.6. Note that Hi(C,OC) = H0,i(C) = 0 for i > 1, as dimC(C) = 1.

Question 1.7. Topological meaning of the genus of a complex curve defined in (1.2)?
We start from the topological equality H1(C,C) = C2g for a complex curve C of genus g. For example,

C = C/Λ is torus of genus 1. By Hodge decomposition, H1,0(C) = H0,1(C) = Cg. Since C has complex
dimension one, the holomorphic 1-form bundle is exactly the canonical bundle: ΩC = KC . Thus H

1,0(C) =
H0(C,KC), and g(C) = h0(C,KC). This agrees with the calculation above, and hence the genus is defined
more generally as above.
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1 Hirzebruch-Riemann-Roch Theorem 1.2 Application

Example 1.8 (Line bundles on a surface). Let X be a compact complex surface. First consider the trivial
bundle. In this case HRR gives Noether’s formula

χ(X,OX) = h0(X,OX)− h1(X,OX) + h2(X,OX)

=

∫
X

c1(X)2 + c2(X)

12

using ex.4.4.5. If L is any line bundle, then

χ(X,L) = h0(X,L)− h1(X,L) + h2(X,L)

=

∫
X

td2(X) + ch1(L) td1(X) + ch2(L)

= χ(X,OX) +

∫
X

c1(L)
c1(X)

2
+
c1(L)

2

2

= χ(X,OX) +

∫
X

c1(L)(c1(L) + c1(X))

2
,

also written as

χ(X,L) = χ(X,OX) +
L.(L−KX)

2
,

as c1(X) = c1(K∗
X) = −c1(KX).

Example 1.9 (Line bundles on a torus). Let X := Cn/Γ be a complex torus. Then all characteristic classes
of X are trivial, as X is flat and the curvature on TX vanishes. Then for any holomorphic line bundle L
over X,

χ(Cn/Γ, L) =

∫
Cn/Γ

c1(L)
n

n!
.

In particular, when n = 1, X is a complex torus of genus g(X) = 1, so

χ(X,L) = deg(L) = deg(L) + rank(L) · (1− g(X)),

which coincides with the Riemann-Roch formula.

Remark 1.10. Following the definition of genus above, when X = C/Γ, we have

deg(KX) = 0.

Indeed
KX = ΩX

∼= OX

under the map fdz ↔ f .

1.2 Application

We now consider an application of HRR. Let X be a compact complex manifold of dimension n. Define the
arithmetic genus of X as

pa(X) := (−1)n(χ(X,OX)− 1).

Indeed if X is a curve, by example 1.5 above, this agrees with the geometric genus:

pa(X) = 1− (1− h1(X,OX)) = g(X).

Another geometric quantity we have seen is

n∑
p,q=0

(−1)qhp,q(X) =

n∑
p=0

χ(X,Ωp
X),

3
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which equals sgn(X), the signature of the (non-degenerate) intersection form on the middle cohomology class
when dimX = n is even. Both expressions, χ(X,OX) and

∑
p χ(X,Ω

p
X), are evaluations of the Hirzebruch

χy-genus:

Definition 1.11. The Hirzebruch χy-genus of a compact complex manifold of dimension n is the poly-
nomial

χy :=

n∑
p=0

χ(X,Ωp
X)yp =

n∑
p,q=0

(−1)qhp,q(X)yp.

We can calculate the Hirzebruch χy-genus using HRR and Chern roots:

Proposition 1.12. Let γi denote the formal Chern roots of TX . Then

χy =

∫
X

n∏
i=1

(1 + ye−γi)
γi

1− e−γi
.

Proof. First, using HRR, we get

χy =

∫
X

(
n∑

p=0

ch(Ωp
X)yp

)
td(X)

=

∫
X

ch

(
n⊕

p=0

Ωp
Xy

p

)
td(X).

Now compute each term separately. By definition of Todd class,

td(X) =

n∏
i=1

γi
1− e−γi

under the diagonalization (γ1, ..., γn) of iF∇/2π. We claim that

ch

(
n⊕

p=0

Ωp
Xy

p

)
=

n∏
i=1

(1 + ye−γi),

which would complete the proof. This follows from the more general formula for the Chern character of the
exterior algebra.

Question 1.13. Chern character of the exterior algebra?
How does the diagonalization of iF∇/2π relate to the decomposition of the vector bundle into line bundles?

Hard question; save for later.
Let V be a holomorphic vector bundle of rank n. Since Chern character is local identity, we apply the

local splitting principle and assume wlog

V =
⊕
i

Li

for line bundles Li. Then the exterior algebra

∧
V :=

n⊕
p=0

∧p(V )

decomposes as ∧
V =

n⊗
i=1

∧
Li.

4



1 Hirzebruch-Riemann-Roch Theorem 1.2 Application

Hence the Chern character decomposes

ch(
∧
V ) =

n∏
i=1

ch(
∧
Li).

In our case V = ΩXy. The dual TX = Ω∗
X decomposes as a direct sum of line bundles whose curvature

iF∇/2π is given by the Chern roots γi. Thus ΩX decomposes as sum of line bundles Li with curvature −γi.
The Chern character for ∧Liy is thus

ch(
∧
Liy) = ch(OX ⊕ Liy) = 1 + y ch(Li) = 1 + ye−γi .

Therefore,

ch(
∧
V ) = ch

(
n⊕

p=0

Ωp
Xy

p

)
=

n∏
i=1

(1 + ye−γi).

Some important special values of the Hirzebruch χy-genus:

1. y = 0: χy=0 = χ(X,OX) =
∫
X
td(X) gives the arithmetic genus.

2. y = 1: χy=1 =
∑n

p,q=0(−1)qhp,q(X) = sgn(X) if X is compact Kähler of even dimension n, by
Cor.3.3.18 and complex conjugation hp,q = hq,p. Combining with the proposition above, we get
Hirzebruch signature theorem for compact Kähler manifolds of even dimension:

sgn(X) = χ

(
n⊕

p=0

Ωp
X

)
=

∫
X

ch

(
n⊕

p=0

Ωp
X

)
td(X) =

∫
X

L(X),

where L(X) is the L-genus. By proposition above, L(X) is given in terms of the Chern roots by

L(X) =

n∏
i=1

γi
(1 + e−γi)

1− e−γi
=

n∏
i=1

γi · coth
(γi
2

)
.

The same result holds for any compact complex manifold of even dimension.

Question 1.14. Proof for the non-Kähler case? Essentially it suffices to prove the first equality:

sgn(X) = χ
(∧

ΩX

)
≡
∫
X

L(X).

This follows from the general Atiyah-Singer index theorem.

Is there another defnition of the L-genus without using Chern roots? L-genus is usually defined this
way.

3. y = −1: Suppose X is compact Kähler manifold of dimension n. Then

χy=−1 =

n∑
p,q=0

(−1)p+qhp,q(X) =

2n∑
i=0

(−1)ibi(X) = e(X)

is the Euler characteristic of X, where bi are the Betti numbers. By proposition above and definition
of Chern class,

e(X) =

∫
X

n∏
i=1

γi =

∫
X

cn(X).

The equality

e(x) =

∫
X

cn(X)

5



1 Hirzebruch-Riemann-Roch Theorem 1.3 Generalizations

is the Gauss-Bonnet formula, which holds more generally for compact complex manifolds of dimen-
sion n.

∫
X
cn(X) also generalizes to Chern numbers for compact complex manifolds, which are of

form ∫
X

ci1(X) . . . cik(X)

such that i1 + · · ·+ ik = dim(X).

1.3 Generalizations

Theorem 1.15 (Grothendieck-Riemann-Roch formula). Let f : X → Y be a smooth projective morphism
of smooth projective varieties. Then for any coherent sheaf F (e.g. a vector bundle) on X one has

ch

(∑
i

(−1)iRif∗F

)
td(Y ) = f∗ (ch(F) td(X))

in the rational Chow group CH(Y )Q or in H∗(Y,R).

HRR is a special case of GRR above. Consider f : X → {pt} with a vector bundle F = E on X. Then
on RHS, f∗ =

∫
X
. On LHS, td({pt}) = 1, and Rif∗E = Hi(X,E) as a vector bundle, or simply a vector

space, over {pt}. Such a vector bundle is trivially flat, so its Chern character is the dimension of H∗(X,E).
Therefore, the LHS of GRR formula is

∑
i(−1)ihi(X,E) = χ(X,E).

Theorem 1.16 (Atiyah-Singer index theorem). Let D : Γ(E) → Γ(F ) be an elliptic differential operator
between vector bundles E and F on a compact oriented differentiable manifold M . Then the analytic index
of D equals the topological index of D. Here the analytic index is defined as dimkerD − dim cokerD.

Question 1.17. How is topological index defined in terms of the characteristic classes of E and F?
To deduce HRR from above, consider D = ∆∂E

with F = E?

Note that locally free coherent sheaves are exactly holomorphic vector bundles. HRR formula
computes the Euler-Poincaré characteristic of vector bundles. What about coherent sheaves that are not
locally free, e.g. the ideal sheaf IZ of a submanifold Z ⊂ X? We can utilize the following result:

Proposition 1.18. Any coherent sheaf F on a projective manifold has a finite resolution

0→ En → · · · → E1 → F → 0,

where Ei are locally free coherent sheaves, i.e. (holomorphic) vector bundles.

HRR formula computes χ(X,Ei), and for an exact sequence the Euler-Poincaré characteristic satisfies

χ(X,F) =
n∑

i=1

(−1)i−1χ(X,Ei).

See Cor.B.0.37 for the special case of a short exact sequence. Combining, we get

χ(X,F) =
∫
X

n∑
i=1

(−1)i−1 ch(Ei) td(X)
?
=

∫
X

ch(F) td(X)

Question 1.19. Can we define the Chern character of a coherent sheaf in this way using the locally free
resolution? How is ch(F) defined as in the statement of GRR? See ex.4.4.11 for the approach using Atiyah
class, but how to define Atiyah class for sheaves using Čech cocycle? Hard question. It is easier to consider
the first Chern class of a coherent sheaf.

The ideal sheaf is not locally free, because at a point z ∈ Z ⊂ X, any section takes only one value 0, so
that locally near z the sheaf cannot be trivialized as U ×Cr for any r > 0. However, the line bundle O(−Y )
is locally free, and by Lem.2.3.22, the image of O(−Y )→ OX is IY ?

6



2 Kodaira Vanishing Theorem

As another example, consider the Euler-Poincaré characteristic of the structure sheaf OY of a smooth
hypersurface Y ⊂ X. Recall the short exact sequence of sheaves

0→ O(−Y )→ OX → OY → 0,

which is a locally free resolution of OY . Then HRR gives

χ(Y,OY ) = χ(X,OX)− χ(X,O(−Y )) =

∫
X

(
1− e−[Y ]

)
td(X),

where we use that c1(O(−Y )) = −[Y ] by Prop.4.4.13. Thus we can consider ch(OY ) as 1 − e−[Y ], but the
second term is td(X) instead of td(Y )?

Question 1.20. The relation Cor.B.0.37 holds for short exact sequence of sheaves over different base man-
ifolds? This is true only in the special case above, where Y ⊂ X is smooth hypersurface. In this case,
H∗(X, i∗F) ∼= H∗(Y,F), where i∗ is the pushforward by inclusion Y ↪→ X.

See final paragraph of §5.1. HRR, GRR and AS all hold for arbitrary complex manifolds and coherent
sheaves?

2 Kodaira Vanishing Theorem

Kodaira Vanishing Theorem, combined with Hirzebruch-Riemann-Roch formula, yields bounds for the di-
mension of H0(X,L), the space of global holomorphic sections of a line bundle L over a compact Kähler
manifold X. Below L is always holomorphic line bundle, and E holomorphic vector bundle.

2.1 Statement and Proof of the Theorem

Definition 2.1. Let X be a complex manifold. A line bundle L on X is called a positive line bundle if
its first Chern class c1(L) ∈ H2(X,R) can be represented by a closed positive real (1, 1)-form.

Recall that a real (1, 1)-form α is called positive if for all holomorphic tangent vectors 0 ̸= v ∈ T 1,0X
one has

−iα(v, v) > 0.

Semipositivity is defined analogously with the ≥ sign.

We first list some easy observations.

• Writing a real (1, 1)-form locally as

α =
i

2

n∑
i,j=1

hijdzi ∧ dzj ,

where (hij) is hermitian matrix, the (semi-)positivity of α is equivalent to the (semi-)positive-definiteness
of (hij).

• Recall that we can recover the hermitian structure on X from the fundamental form and the almost
complex structure induced by X. Therefore, a complex manifold admitting a positive line bundle is
automatically Kähler. See Lem.3.1.7.

• By ex.4.4.10, if X is compact Kähler, then each closed real (1, 1)-form representing c1(L) is the
curvature of the Chern connection for some Hermitian structure on L. Therefore, a holomorphic line
bundle L on X is positive if and only if there exists a Hermitian structure on L whose induced curvature
is positive as a real (1, 1)-form. We always suppress the factor i/2π for curvatures.

7



2 Kodaira Vanishing Theorem 2.1 Statement and Proof of the Theorem

Theorem 2.2 (Kodaira Vanishing Theorem). Let L be a holomorphic positive line bundle on compact Kähler
manifold X of dimension n. Then

Hp,q(X,L) = Hq(X,Ωp
X ⊗ L) = 0, for p+ q > n.

We start from a few preliminary lemmas to prove the Kodaira vanishing theorem.
Let (E, h) be a holomorphic vector bundle over X with fixed Hermitian structure. Recall from §4.1 two

operators ∂E and ∂
∗
E on Ap,q(E). We also extend the Lefschetz operator L and dual Lefschetz operator Λ

to Ap,q(E) by acting on the (p, q)-form part, i.e. L = L⊗ 1, Λ = Λ⊗ 1. Since

[Λ, L] = (n− (p+ q)) · Id

on Ap,q(X) by Prop.1.2.26, the same relation holds after extension to E. Another Kähler identity extended
to E is

Lemma 2.3 (Nakano Identity). Let ∇ be the Chern connection on (E, h). Then

[Λ, ∂E ] = −i
(
∇1,0

E

)∗
,

where (
∇1,0

E

)∗
:= −∗E∗ ◦ ∇1,0

E∗ ◦ ∗E .

Compare this with the Kähler identity on Ap,q(X) (Prop.3.1.12):

[Λ, ∂] = −i∂∗.

Indeed Nakano identity reduces to this when E = OX , in which case ∇ = d.

Proof. The statement is local, so we can work under orthonormal trivialization

ψ : E|U ∼= U × Cr.

Then ∗E equals ∗, the complex conjugation of the C-linear Hodge operator. Write the connection on E with
respect to ψ as

∇E = d+A,

where A is r × r matrix of 1-forms s.t. A∗ = −A. We have the induced connection on E∗

∇E∗ = d+A∗ = d−At.

Then we compute
∂E = (∇E)

0,1
= ∂ +A0,1,

and (
∇1,0

E

)∗
= −∗ ◦

(
∂ −

(
A1,0

)t) ◦ ∗ = − ∗ ◦∂ ◦ ∗ − (A1,0
)∗

= ∂
∗ −

(
A1,0

)∗
.

Using Kähler identity from Prop.3.1.12, we have

[Λ, ∂E ] + i
(
∇1,0

E

)∗
= [Λ, ∂] + [Λ, A0,1] + i∂

∗ − i
(
A1,0

)∗
= [Λ, A0,1]− i

(
A1,0

)∗
.

Thus [Λ, ∂E ] + i
(
∇1,0

E

)∗
is a linear operator (over complex differentiable functions on X ). We

choose the orthonormal trivialization by Rem.4.2.5 such that A(x0) = 0, for each fixed point x0 ∈ U . Then

[Λ, ∂E ] + i
(
∇1,0

E

)∗
= 0 at x0. This completes the proof.
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2 Kodaira Vanishing Theorem 2.1 Statement and Proof of the Theorem

Remark 2.4. Calculate ∇E∗ . ∇∗(f)(s) = d(f(s))− f(∇(s)), for any section f of E∗, which can be identified
as a map into (Cr)∗ ∼= Cr. Note that f(s) = ⟨s, f⟩ for the inner product ⟨·, ·⟩ on Cr. Then

∇∗(f)(s) = d⟨s, f⟩ − ⟨(d+A)s, f⟩ = ⟨s, df⟩ − ⟨s,Atf⟩.

Therefore, ∇∗ = d−At. For line bundle indeed At = A.

The definition (
∇1,0

E

)∗
:= −∗E∗ ◦ ∇1,0

E∗ ◦ ∗E

makes sense as the formal adjoint of ∇1,0
E . To see this, as in Lem.4.1.12, we compute for α ∈ Ap,q(X,E), β ∈

Ap+1,q(X,E), (
α,−∗E∗ ◦ ∇1,0

E∗ ◦ ∗Eβ
)
= −

∫
X

α ∧ ∗E∗E∗∇1,0
E∗∗Eβ

= (−1)p+q−1

∫
X

α ∧∇1,0
E∗∗Eβ

= (−1)p+q−1

∫
X

α ∧
(
∂ − (A1,0)t

)
∗Eβ

=

∫
X

(∂ +A1,0)α ∧ ∗Eβ

=
(
∇1,0

E α, β
)
.

Another useful lemma.

Lemma 2.5. Let (E, h) be a Hermitian holomorphic vector bundle over compact Kähler manifold (X, g).
Let ∇ be the Chern connection on E, and α ∈ Hp,q(X,E) any harmonic form. Then

i

2π
(F∇Λ(α), α) ≤ 0,

and
i

2π
(ΛF∇(α), α) ≤ 0.

Proof. Since the Chern connection satisfies ∇0,1 = ∂E , and F∇ ∈ A1,1(X,End(E)), we get

F∇ = ∇1,0 ◦ ∂E + ∂E ◦ ∇1,0.

α is harmonic, meaning
∂Eα = ∂

∗
Eα = 0.

Then we compute

i (F∇Λ(α), α) = i
(
∇1,0∂EΛ(α), α

)
+ i
(
∂E∇1,0Λ(α), α

)
= i
(
∂EΛ(α),

(
∇1,0

)∗
α
)
+ i
(
∇1,0Λ(α), ∂

∗
Eα
)

=
(
∂EΛ(α),−i

(
∇1,0

)∗
α
)

∗E is C-antilinear

=
(
∂EΛ(α), [Λ, ∂E ]α

)
Nakano Identity

= −
(
∂EΛ(α), ∂EΛ(α)

)
≤ 0.
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2 Kodaira Vanishing Theorem 2.2 Applications of Kodaira Vanishing

Similarly,

i (ΛF∇(α), α) = i
(
Λ∂E∇1,0α, α

)
= i
(
∂EΛ∇1,0α, α

)
+
((
∇1,0

)∗∇1,0α, α
)

= i
(
Λ∇1,0α, ∂

∗
Eα
)
+
(
∇1,0α,∇1,0α

)
=
(
∇1,0α,∇1,0α

)
≥ 0.

Proof of Kodaira Vanishing Theorem. Since L is positive line bundle, as discussed above we can choose a
Hermitian structure on L whose induced curvature is closed positive real (1, 1)-form, i.e. (i/2π)F∇ is a
Kähler form on X. We fix this Kähler strcture. Then the Lefschetz opeartor L is simply the wedge product
by (i/2π)F∇. Using the Kähler identity

[Λ, L] = (n− (p+ q)) · Id

and the lemma above, we compute for any harmonic form α ∈ Hp,q(X,L),

(n− (p+ q))∥α∥2 = ([Λ, L]α, α) =
i

2π
([Λ, F∇]α, α) ≥ 0.

Therefore, 0 = Hp,q(X,L) ∼= Hp,q(X,L) ∼= Hq(X,Ωp
X ⊗ L) by Hodge Theory, for any p+ q > n.

2.2 Applications of Kodaira Vanishing

Example 2.6. Consider O(1) on Pn. It is a positive line bundle since

i

2π
F∇ = ωFS

once we fix the natural hermitian structure induced by the global sections z0, ..., zn on Pn. See Exa.4.3.12.
Recall that

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

for holomorphic line bundles L1 and L2. Thus O(m) is positive line bundle for each m > 0. By Kodaira
Vanishing Theorem,

Hq(Pn,Ωp
Pn ⊗O(m)) = 0

for all p+ q > n, m > 0. Prop.2.4.3 shows

Ωn
Pn = KPn ∼= O(−n− 1),

so in particular
Hq(Pn,O(m)) = 0

for all q > 0, m ≥ −n. By Serre duality (Prop.4.1.15),

Hq(Pn,O(m)) =


0 0 < q < n

0 q = 0,m < 0

0 q = n,m > −n− 1

.

For the first case, suppose m < −n. Then

Hq(Pn,O(m)) = Hn,q(Pn,O(m+ n+ 1)) ∼= H0,n−q(Pn,O(−m− n− 1))∗ = 0

10



2 Kodaira Vanishing Theorem 2.2 Applications of Kodaira Vanishing

from above as n− q > 0, −m− n− 1 ≥ 0. For the second case,

H0(Pn,O(m)) ∼= H0,n(Pn,O(−m− n− 1))∗ = 0

as n > 0, −m− n− 1 ≥ −n. The third case is trivial.
We try to gather all information about H0(Pn,O(m)). From above,

Hn(Pn,O(m)) ∼= H0(Pn,O(−m− n− 1))∗.

By Prop.2.4.1,
H0(Pn,O(m)) = C[z0, ..., zn]m,

the space of homogeneous polynomials in C[z0, ..., zn] of degree m.

Another consequence of the Kodaira vanishing theorem is the weak Lefschetz theorem.

Proposition 2.7. Let X be a compact Kähler manifold of dimension n, and let Y ⊂ X be a smooth
hypersurface such that the induced line bundle O(Y ) is positive. Then the canonical restriction map

Hk(X,C)→ Hk(Y,C)

is bijective for k ≤ n− 2 and injective for k ≤ n− 1.

Recall that c1(O(Y )) = [Y ] ∈ H2(X,R), so that ex.3.3.5 gives the injectivity part of weak Lefschetz
theorem.

Proof. Y inherits Kähler structure from X via the inclusion map. The pullback of forms by inclusion
preserves the type. Thus we have bidegree decomposition

Hk =
⊕

p+q=k

Hp,q

for both X and Y , and the restriction map Hk(X,C) → Hk(Y,C) is compatible with it. Thus we want to
show:

i) Hq(X,Ωp
X)→ Hq(Y,Ωp

Y ) is bijective for p+ q ≤ n− 2,

ii) Hq(X,Ωp
X)→ Hq(Y,Ωp

Y ) is injective for p+ q ≤ n− 1.

We use the structure sequence

0→ OX(−Y )→ OX → OY → 0,

and the dual of the normal bundle sequence

0→ N ∗
Y/X → (ΩX) |Y → ΩY → 0.

Y is defined by a section in H0(X,O(Y )), so by Prop.2.4.7, N ∗
Y/X

∼= OY (−Y ).

Twist the structure sequence by Ωp
X to get

0→ Ωp
X(−Y )→ Ωp

X → Ωp
X |Y → 0. (2.1)

Take the p-th exterior product of the dual of the normal bundle sequence to get (see ex.2.2.2)

0→ Ωp−1
Y (−Y )→ Ωp

X |Y → Ωp
Y → 0. (2.2)

11



2 Kodaira Vanishing Theorem 2.3 Variations of Kodaira Vanishing

(Recall from ex.2.2.3 that (Ωp
X)

∗⊗KX
∼= Ωn−p

X ). Then by positivity of O(Y ) and Kodaira vanishing theorem,

Hq(X,Ωp
X(−Y )) = Hn−p,n−q(X,O(Y ))∗

= Hn−q(X,Ωn−p
X ⊗O(Y ))∗

= 0

if n − p + n − q > n, i.e. p + q < n. Therefore, in the long exact sequence induced by (2.1), the natural
restriction map Hq(X,Ωp

X)→ Hq(Y,Ωp
X |Y ) is injective for p+ q < n, and bijective for p+ q < n− 1.

The map Hq(X,Ωp
X) → Hq(Y,Ωp

X |Y ) needs to be composed with the map Hq(Y,Ωp
X |Y ) → Hq(Y,Ωp

Y )
to get Hq(X,Ωp

X) → Hq(Y,Ωp
Y ). This part is taken care of by sequence (2.2) and its induced long exact

sequence. The restriction OY (Y ) of O(Y ) is still positive, as

c1(OY (Y )) = i∗c1(O(Y ))

where i∗ is the pullback induced by the inclusion i : Y → X, which preserves positivity, closedness,
and type. Thus by Kodaira vanishing theorem again,

Hq(Y,Ωp−1
Y (−Y )) = Hp−1,q(Y,OY (−Y ))

= Hn−p+1,n−q(Y,OY (Y ))∗

= Hn−q(Y,Ωn−p+1 ⊗OY (Y ))∗

= 0

if n− p+ 1 + n− q > n, i.e. p+ q − 1 < n. Therefore, the map Hq(Y,Ωp
X |Y ) → Hq(Y,Ωp

Y ) is injective for
p+ q − 1 < n, and bijective for p+ q < n. This completes the proof.

Remark 2.8. The composition of maps

Hq(X,Ωp
X)→ Hq(Y,Ωp

X |Y )→ Hq(Y,Ωp
Y )

consist of pullback and restriction. This coincides with the map Hq(X,Ωp
X) → Hq(Y,Ωp

Y ) in the bidegree
decomposition of Hk(X,C)→ Hk(Y,C), which is defined by pullback of forms.

2.3 Variations of Kodaira Vanishing

Slight modification of the proof of Kodaira vanishing theorem yields the following, called Serre’s vanishing
theorem.

Proposition 2.9 (Serre’s Vanishing Theorem). Let L be a positive line bundle on a compact Kähler manifold
X of dimension n. For any holomorphic vector bundle E on X there exists a constant m0 such that

Hq(X,E ⊗ Lm) = 0

for all m ≥ m0, q > 0.

Proof. Since L is positive, we fix Hermitian structure on L such that the curvature of the Chern connection
∇L on L satisfies

i

2π
F∇L

= ω,

where ω is a Kähler form. We endow X with the Kähler structure given by ω. Fix Hermitian structure on
E and let ∇E denote its Chern connection.

The induced connection ∇ on E ⊗ Lm is

∇ = ∇E ⊗ 1 + 1⊗∇Lm ,

12



2 Kodaira Vanishing Theorem 2.3 Variations of Kodaira Vanishing

where ∇Lm is induced by ∇L on L. By Lemma 2.5,

i

2π
([Λ, F∇]α, α) ≥ 0,

for any α ∈ Ap,q(X,E ⊗ Lm). The curvature on Lm is

i

2π
F∇Lm = m · ω,

and
i

2π
F∇ =

i

2π
F∇E

⊗ 1 +m(1⊗ ω).

Thus (Lω denotes the Lefschetz operator on X)

0 ≤ i

2π
([Λ, F∇]α, α) =

i

2π
([Λ, F∇E

]α, α) +m ([Λ, Lω]α, α)

=
i

2π
([Λ, F∇E

]α, α) +m(n− (p+ q))∥α∥2

Apply Cauchy-Schwarz to the first term:

|([Λ, F∇E
]α, α)| ≤ ∥[Λ, F∇E

]∥ · ∥α∥2.

The operator norm C := ∥[Λ, F∇E
]∥ < ∞ exists by compactness of X, and is independent of m. Thus if

C + 2πm(n− (p+ q)) < 0, then α = 0. In particular, fixing any m0 > C/2π, we have

Hq(X,KX ⊗ E ⊗ Lm) = 0

for all m ≥ m0 and all q > 0.
Now for any holomorphic vector bundle E, find m0 with respect to Ẽ := K∗

X ⊗E by the argument above.
Then we have

Hq(X,E ⊗ Lm) = 0

for all m ≥ m0 and all q > 0.

We can use Serre’s theorem to classify holomorphic vector bundles on P1.

Corollary 2.10 (Grothendieck Lemma). Every holomorphic vector bundle E on P1 is isomorphic to a direct
sum of line bundles

r⊕
i=1

O(ai),

where the integers a1 ≥ · · · ≥ ar are uniquely determined by E.

Proof. First suppose E is line bundle. We have shown in ex.3.2.11 that c1 : Pic(P1) → H2(P1,Z) is
isomorphism. H2(P1,Z) ∼= H0(P1,Z) = Z by integration over P1. We have seen in §4.4 that∫

P1

c1(O(1)) = 1.

Thus any holomorphic line bundle over P1 whose first Chern class is a ∈ Z must be O(a).
For arbitrary rank r we prove by induction. First choose a1 to be the maximal integer a such that

H0(P1, E(−a) = O(a)∗ ⊗ E) ̸= 0. Such a1 must exist. Since O(1) is positive line bundle, by Serre’s
vanishing theorem, H1(P1, E(−a)) = 0 for a≪ 0. By Riemann-Roch formula (1.1) for curves,

h0(P1, E(−a))− h1(P1, E(−a)) = χ(P1, E(−a)) = deg(E)− a+ rank(E) > 0

13



2 Kodaira Vanishing Theorem 2.3 Variations of Kodaira Vanishing

if a ≪ 0. Therefore H0(P1, E(−a) ̸= 0 for a ≪ 0. To see that the maximal a exists, by Serre’s vanishing
theorem again,

H0(P1, E(−a)) = H1,1(P1, E∗ ⊗O(a))∗ = H1(P1,ΩP1 ⊗ E∗ ⊗O(a))∗ = 0

for a≫ 0.
Now that we have fixed a1, pick a non-zero section 0 ̸= s ∈ H0(P1, E(−a1)). We can also view s as a

sheaf homomorphism s : O(a1)→ E. We claim that s is in fact a vector bundle homorphism, i.e. a map of
constant rank 1. Suppose otherwise s vanishes at some x ∈ P1. There is a section sx ∈ H0(P1,O(1)) which
defines x (e.g. if x = [0 : z1], then sx = z0 ∈ C[z0, z1]1). Then we can divide s by sx to get a non-zero
section in H0(P1, E(−a1 − 1)), contradiction to the maximality of a1. Therefore, the holomorphic vector
bundle morphism s induces a short exact sequence of holomorphic vector bundles

0→ O(a1)→ E → E1 = coker(s)→ 0. (2.3)

The sequence splits as complex differentiable vector bundles, and in particular rank(E1) = r − 1. By
induction hypothesis, we have E1 split as

E1 =
⊕
i>1

O(ai).

It remains to show that (2.3) splits as holomorphic vector bundles. First we claim that a1 ≥ ai for all
i > 1. Suppose otherwise, then E1(−a1 − 1) = ⊕iO(ai − a1 − 1) with ai − a1 − 1 ≥ 0 for some i. Hence
H0(P1, E1(−a1−1)) ̸= 0. By cor.2.4.2, H0(P1,O(−1)) = 0. Riemann-Roch formula gives χ(P1,O(−1)) = 0,
so

H1(P1,O(−1)) = 0.

Then the long exact sequence associated with the twist of (2.3) by O(−a1 − 1)

0→ O(−1)→ E(−a1 − 1)→ E1(−a1 − 1)→ 0

yields H0(P1, E(−a1 − 1)) ̸= 0, contradiction to the maximality of a1.
The spitting of (2.3) is equivalent to the splitting of the twist of its dual by O(a1):

0→ E∗
1 (a1)→ E∗(a1)→ OP1 → 0. (2.4)

Note that
H1(P1, E∗

1 (a1)) = H1(P1,⊕i>1O(a1 − ai)) = 0,

as a1 − ai ≥ 0. To see this, by Riemann-Roch, for each k ≥ 0,

k + 1 = χ(P1,O(k)) = h0(P1,O(k))− h1(P1,O(k)),

and
H0(P1,O(k)) = C[z0, z1]k ⇒ h0(P1,O(k)) = k + 1.

Thus H1(P1,O(k)) = 0 for each k ≥ 0. Then in the long exact sequence associated with (2.4), the map

H0(P1, E∗(a1))→ H0(P1,OP1))

is surjective. The lift of 1 ∈ H0(P1,OP1)) in H0(P1, E∗(a1)), considered as a vector bundle homomorphism
OP1 → E∗(a1), splits the sequence (2.4), because its composition with the map E∗(a1)→ OP1 is the identity
map on OP1 .

14



3 Kodaira Embedding Theorem

Remark 2.11. In ex.4.4.4 we compute that

c1(P1) = c1(TP1) = 2[ω].

Hence

c1(ΩP1) = −2[ω]⇒
∫
P1

c1(ΩP1) = −2.

Then by the proof above for the line bundle case,

ΩP1 ∼= O(−2).

Question 2.12. We use the following results from sheaf theory for holomorphic vector bundles in the proof
of Grothendieck lemma above.

i) Let f : E → F be a holomorphic vector bundle homomorphism over a complex manifold X, in
particular, f is of constant rank. Then Im(f) is a holomorphic vector subbundle of F , and we have
the short exact sequence of holomorphic vector bundles

0→ Im(f)→ F → coker(f)→ 0.

ii) A short exact sequence of holomorphic vector bundles

0→ E → F
f→ G→ 0

may not split. However, the sequence split if and only if there exists a holomorphic vector bundle
homomorphism g : G→ F such that f ◦ g = IdG.

Grothendieck lemma suggests that there are no interesting vector bundles on P1 other than line bundles.
The situation is more complicated for curves of positive genus and higher diemsnional projective spaces.

Question 2.13. Classification of line bundles, rank two vector bundles on Pn?
We know that Pic(Pn) ∼= H2(Pn,Z) ∼= Z by ex.3.2.11, and c1(O(1)) = [ωFS ]. The map H2(Pn,Z) → Z

can be realized as

[α] ∈ H2(Pn,R) 7→
∫
Pn

α ∧ ωn−1
FS

with ∫
Pn

ωn
FS = 1.

Then line bundles are also exactly O(k), k ∈ Z.
Why is the classification easier when n ≥ 5?

3 Kodaira Embedding Theorem

This section addresses the following question: when is a compact Kähler manifold projective?

3.1 Preliminaries and Outline of Steps

For preliminary setup of the Kodaira embedding theorem, recall §2.3. Let L be a holomorphic line bundle
over a compact complex manifold X. For each choice of basis {s0, ..., sN} of H0(X,L), there is a natural
rational map

φL : X \ Bs(X) 99K PN , x 7→ [s0(x) : · · · : sN (x)], Bs(X) :=

N⋂
i=1

Z(si).

When is φL a closed embedding of X? The choice of the basis only modifies φL by an intertible linear
isomorphism on Pn, so the answer does not depend on the choice of the basis. We address the question in
steps below.

15



3 Kodaira Embedding Theorem 3.1 Preliminaries and Outline of Steps

i) First we need Bs(X) = ∅. That is, for each x ∈ X, there exists a section s ∈ H0(X,L) such that s(x)
does not vanish at x. Equivalently, for each x ∈ X, the map

H0(X,L)→ L(x)

is surjective. Regarding L(x) as a vector bundle over the 0-dimensional manifold {x}, we have short
exact sequence of sheaves

0→ L⊗ I{x} → L→ L(x)→ 0

by twisting the structure sequence for {x} ⊂ X with L.

ii) Suppose criterion i) is satisfied and φL is defined on all of X. We also want φL to be injective. This
happens if and only if for any x1 ̸= x2 ∈ X, there exists a section s ∈ H0(X,L) with s(x1) = 0 and
s(x2) ̸= 0. We say that φL (or L) separates points.

Combining i) and ii), we see that φL is an injective morphism on X if and only if for any x1 ̸= x2 ∈ X,
the map

H0(X,L)→ L(x1)⊕ L(x2)
is surjective. As above, viewing {x1, x2} as a 0-manifold, and L(x1) ⊕ L(x2) a vector bundle over it,
we have short exact sequence of sheaves

0→ L⊗ I{x1,x2} → L→ L(x1)⊕ L(x2)→ 0.

iii) It remains to make sure that φL is an immersion. Indeed, recall that every continuous map from
a compact space to a Hausdorff space is both proper and closed; a proper injective
immersion is an embedding. Therefore, for each x ∈ X, we want to check that the differential

(dφL)x : TxX → TφL(x)PN

is injective. Choose a section s0 ∈ H0(X,L) with s0(x) ̸= 0, and extend it to a basis {s0, ..., sN} of
H0(X,L) such that si(x) = 0 for all i > 0. Then locally near x we can write φL in coordinates as

U ⊂ X → CN , y 7→ (t1(y), . . . , tN (y)) , ti :=
si
s0
,

where ti(x) = 0 for each i > 0. Thus (dφL)x is injective if and only if the 1-forms dt1, ..., dtN span the

cotangent space
∧1

xX at x.

We can further translate this condition. Note that the sections s1, ..., sN form a basis of the subspace
H0(X,L⊗ I{x}) ⩽ H0(X,L) of global sections of L that vanish at x. There is a natural map

dx : H0(X,L⊗ I{x})→ L(x)⊗
∧1

x
X

defined via any local trivialization ψ : L|U ∼= U × C: given s ∈ H0(X,L⊗ I{x}), define

ψx (dx(s)) = (d (ψs))x ,

where ψs : U → C. To see that dx is defined independent of the choice of ψ, suppose ψ′ = λψ is
another local trivialization, then we get the same definition for dx since s(x) = 0.

Now consider dti. Since ti(x) = 0, again by product rule we have

(dti)x = (ψs0)
−1

(d(ψsi))x .

Therefore, (dφL)x is injective if and only if dx : H0(X,L ⊗ I{x}) → L(x) ⊗
∧1

xX is surjective. As
before, dx is induced by a short exact sequence

0→ L⊗ I2{x} → L⊗ I{x} → L(x)⊗
∧1

x
X → 0.
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3 Kodaira Embedding Theorem 3.2 Statement and Proof

This is the twist by L of the short exact sequence

0→ I2{x} → I{x}
d→
∧1

x
X → 0.

Indeed, a holomorphic function f near x satisfies f(x) = df(x) = 0 if and only if it vanishes at x of

order at least 2. Thus there is canonical isomorphism I{x}/I2{x}
d∼=
∧1

xX.

In conclusion, the complete linear system H0(X,L) induces a closed embedding φL : X ↪→ PN if and
only if the global sections of L separates points and tangent directions in TxX.

Question 3.1. Why is H0(X,L ⊗ I{x}) the space of global sections of L that vanish at x? A section s

can be thought of as a map from each x ∈ X to its stalk. See def.B.0.25. The stalks are
(
L⊗ I{x}

)
y
=

Ly ⊗OX,y

(
I{x}

)
y
for each y. Then near x we can write s ∈ H0(X,L) as a product of a section of L with a

holomorphic function vanishing at x. This makes s a section of L⊗ I{x}.
Sheaves only concern what happens locally!

3.2 Statement and Proof

We are now ready to state and prove the Kodaira embedding theorem.

Definition 3.2. Let L be a holomorphic line bundle on a compact complex manifold X. L is called an
ample bundle if there exists some k > 0 such that H0(X,Lk) defines a closed embedding φLk : X ↪→ PN .

Theorem 3.3. Let X be a compact Kähler manifold. A line bundle L on X is positive if and only if L is
ample. If such a line bundle exists, then X is projective.

To prove the Kodaira embedding theorem, we first study the positivity of line bundles under blow-ups.

Lemma 3.4. Let X be a complex manifold of dimension n and L a postive line bundle on X. Let σ : X̂ → X
be the blow-up of X along a finite number of points x1, ..., xl ∈ X, and let Ej := σ−1(xj) ∼= P(TxX) be the
exceptional divisors for each j = 1, ..., l. Then for anu holomorphic line bundle M on X and integers
n1, ..., nk > 0, the line bundle

σ∗(Lk ⊗M)⊗O(−
∑
j

njEj)

on X̂ is positive for k ≫ 0.

Proof. For each j, we can pick a neighborhood xj ∈ Uj ⊂ X such that the blow up can be seen as the

incidence variety Ûj = O(−1) ⊂ Uj × Pn−1. Recall from prop.2.5.6 that O(Ej) is isomorphic to p∗jO(−1),
where pj : Ûj → Pn−1 is the second projection. More specifically, we can identify each fiber as

O(E)|(z,l) = {λ(l1, ..., ln) | λ ∈ C}.

Since we have the natural Fubini-Study hermitian structure on O(1), we endow O(−Ej) with the pullback
hermitian structure. Then by a partition of unity we can glue the nj-th powers of the hermitian structures
on O(−Ej) to get a hermitian structure on O(−njEj). Hence locally near each Ej , the curvature is

i

2π
F∇ = nj · p∗jωFS ,

where ωFS is the Fubini-Study Kähler form on Pn−1. Therefore, F∇ is locally semi-positive around each Ej ,
and strictly positive for all tangent directions of Ej , due to definition of pj .

Choose real (1, 1)-forms α and β such that [α] = c1(L) and [β] = c1(M), where α is positive by positivity
of L. Then the real (1, 1)-form

σ∗(k · α+ β) +
i

2π
F∇
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3 Kodaira Embedding Theorem 3.2 Statement and Proof

representing c1

(
σ∗(Lk ⊗M)⊗O(−

∑
j njEj)

)
is positive on X̂ for k ≫ 0 by compactness argument, as σ

is the first projection, which takes care of all tangent directions to X̂ away from Ej and does not
contribute to directions tangent to Ej .

Proof of the Kodaira Embedding Theorem. ⇒: Suppose L is ample, and for some k > 0 we have closed
embedding φLk : X → PN . Recall from §2.3 that φ∗

LkO(1) ∼= Lk, so

c1(L) =
1

k
[φ∗

LkωFS ],

where φ∗
LkωFS is positive because φLk is embedding. Therefore, L is positive line bundle.

⇐: Suppose L is positive. We first show the injectivity of φLk for some high power k. Let σ : X̂ → X
be the blow-up of X along x ∈ X, and let E := σ−1(x) be the exceptional divisor. We have commutative
diagram

H0(X,Lk) Lk(x)

H0(X̂, σ∗Lk) H0(E,OE)⊗ Lk(x)

σ∗ ∼=

The top horizontal map is evaluation at x. The left vertical map by pullback is injective since σ is surjective.
We claim that the left vertical map is in fact bijective. If dimCX = 1, then the blow up is trivial. If

dimCX ≥ 2, we decompose the map as

H0(X,Lk)→ H0(X \ {x}, Lk) ∼= H0(X̂ \ E, σ∗Lk)← H0(X̂, σ∗Lk).

The first map is bijective by ex.2.2.6. The third map is injective by Riemann extension theorem. Hence the
map H0(X,Lk)→ H0(X̂, σ∗Lk) is surjective.

Twisting the structure sequence for E ⊂ X̂ by σ∗(Lk), we have short exact sequence

0→ σ∗(Lk)⊗O(−E)→ σ∗(Lk)→ σ∗(Lk)|E ∼= Lk(x)⊗OE → 0.

Thus the cokernel of the bottom map H0(X̂, σ∗Lk) → H0(E,OE)⊗ Lk(x) can be viewed as contained in
H1(X̂, σ∗Lk ⊗O(−E)).

Let dimCX = n. Prop.2.5.5 shows

KX̂
∼= σ∗KX ⊗O((n− 1)E).

Thus by lemma above, the line bundle

L′ := σ∗Lk ⊗K∗
X̂
⊗O(−E) = σ∗(Lk ⊗K∗

X)⊗O(−nE)

is positive for k ≫ 0. Hence by Kodaira vanishing theorem, for k ≫ 0, we have

H1(X̂, σ∗Lk ⊗O(−E)) = H1(X̂,KX̂ ⊗ L
′) = H1(X̂,Ωn

X̂
⊗ L′) = 0.

In conclusion, the map
H0(X̂, σ∗Lk)→ H0(E,OE)⊗ Lk(x)

and hence the map
H0(X,Lk)→ Lk(x)

in the commutative diagram is surjective for k ≫ 0. By discussion i) in the beginning of this section,
x /∈ Bs(Lk) for k ≫ 0.
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3 Kodaira Embedding Theorem 3.2 Statement and Proof

We have not yet concluded that Bs(Lk) = ∅ for some k > 0, for in the above the number k may depend
on x. To see this, notice that there is a decreasing sequence (by compactness of X)

Bs(L) ⊃ · · · ⊃ Bs(L2l) ⊃ Bs(L2l+1

) ⊃ . . .

by the map

H0(X,L2l)→ H0(X,L2l+1

), s 7→ s⊗ s.

From last paragraph, we have
∞⋂
l=0

Bs(L2l) = ∅.

Thus by compactness of X, there exists some l≫ 0 such that Bs(Lk:=2l) = ∅. This checks step i): the map
φLk is defined everywhere on X for some k ≫ 0.

To check condition ii), we analogously blow up X along two distinct points x1 ̸= x2 ∈ X and consider
σ∗Lk ⊗O(−E1 − E2), to show that the map

H0(X,Lk)→ Lk(x1)⊕ Lk(x2)

is surjective for some k ≫ 0. Again by compactness of X (and hence X ×X), there is universal k ≫ 0 such
that H0(X,Lk)→ Lk(x1)⊕ Lk(x2) is surjective for all x1 ̸= x2.

It remains to check condition iii), that the map

dx : H0(X,L⊗ I{x})→ L(x)⊗
∧1

x
X

is surjective. Recall the short exact sequence

0→ I2{x} → I{x}
d→
∧1

x
X → 0. (3.1)

Twist the structure sequence for E ⊂ X̂ by O(−E), we get short exact sequence

0→ O(−2E)→ O(−E)→ OE(−E)→ 0. (3.2)

Recall by lem.2.3.22 the map O(−E) → OX̂ which is injective and whose image is isomorphic to the

ideal sheaf IE of holomorphic functions on X̂ vanishing on E. Each holomorphic function on X vanishing
at x pulls back by σ to vanish on E. Thus we have the vertical maps in the commutative diagram

σ∗I2{x} σ∗I{x}

O(−2E) O(−E)

∼=

connecting the two short exact sequences give above. Twisting sequence (3.1) by Lk and sequence (3.2) by
σ∗Lk, and passing to the quotients, we get a commutative diagram

H0(X,Lk ⊗ I{x}) Lk(x)⊗
∧1

xX

H0(X̂, σ∗Lk(−E)) Lk(x)⊗H0(E,OE(−E))

σ∗∼= ∼=

The top map evaluates the Lk part at x and takes differential operator d on the I{x} part. This map is well-

defined on the tensor Lk ⊗ I{x} because functions in I{x} vanish at x. For the left vertical map, recall that
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the map O(−E)→ OX̂ is the dual of the map OX̂ → O(E) defined by a non-zero section s ∈ H0(X̂,O(E))
with Z(s) = E. Thus the left vertical map essentially divides the pullback function by the
section s defining E. The bottom map is the restriction of a section in H0(X̂, σ∗Lk(−E)) to E. For
a neighborhood x ∈ U ⊂ X with local trivialization of Lk, we have the associated local trivialization of
σ∗Lk on Û := σ−1(U) ⊂ X̂ containing E. Then each section of σ∗Lk restricted to the compact set E is a
holomorphic function in the local trivialization, which must hence be a constant. This recovers the image in
Lk(x) by the local triviliazation of Lk, and the O(−E) part is simply restriction to E. For the right vertical
map, we claim that

H0(E,OE(−E)) ∼=
∧1

x
X. (3.3)

For each holomorphic function f defined near x and vanishing at x, σ∗f vanishes on E. Thus it defines a
section σ∗f⊗s∗ of O(−E) near E as in the vertical map. Then under the identification (3.3), (σ∗f ⊗ s∗) |E ∈
H0(E,OE(−E)) corresponds to the differential dfx ∈

∧1
xX. This is discussed in GH pg.185, and can be

proved using the local coordinates defined in that book, combined with the previous result that

H0(Pk,O(1)) ∼= C[z0, ..., zk]1.

Here E ∼= P (TxX) ∼= Pn−1, and OE(E) ∼= O(−1). Indeed this identification is exactly the combination of
the top, left, and bottom maps, and hence the diagram commutes.

The left vertical map is bijective, with analogous proof to the one for H0(X,Ll) ∼= H0(X̂, σ∗Lk) above.
Thus as above, the surjectivity of the top horizontal map

H0(X,Lk ⊗ I{x})
dx−→ Lk(x)⊗

∧1

x
X

is equivalent to the sujectivity of the bottom horizontal map

H0(X̂, σ∗Lk(−E))→ Lk(x)⊗H0(E,OE(−E)) = H0(E, σ∗Lk ⊗OE(−E)),

which is further equivalent to
H1(X̂, σ∗Lk ⊗O(−2E)) = 0

by the long exact sequence associated to the twist of (3.2) by σ∗Lk. Using

KX̂
∼= σ∗KX ⊗O((n− 1)E),

the lemma above, and Kodaira vanishing theorem again, we see that indeed

H1(X̂, σ∗Lk ⊗O(−2E)) = H1(X̂,KX̂ ⊗
(
K∗

X̂
⊗ σ∗Lk ⊗O(−2E)

)
)

= H1(X̂,KX̂ ⊗
(
σ∗ (Lk ⊗K∗

X

)
⊗O((−n− 1)E)

)
)

= 0

for k ≫ 0. Therefore, for each x ∈ X, there exists some k ≫ 0 such that dφLk satisfies condition i) and ii)
and is injective at x, or equivalently, the map

H0(X,Lk ⊗ I{x})
dx−→ Lk(x)⊗

∧1

x
X

is surjective.
We are left to prove the existence of universal k ≫ 0 for all x as above, with slight modification. Define

S(Lk) := {x ∈ X | (dφLk)x is NOT injective},

and consider the sequence

S(L2l0) ⊃ S(L2l0+1

) ⊃ . . .
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where we start from some l0 ≫ 0 such that conditions i) and ii) are satisfied for all higher powers L2l≥l0
. We

claim that the sequence is indeed decreasing. Suppose x ∈ S(L2l+1

) \ S(L2l) for some l ≥ l0. Then the map

H0(X,L2l ⊗ I{x})→ L2l(x)⊗
∧1

x
X

is surjective. We have commmutative diagram

H0(X,L2l)⊗H0(X,L2l ⊗ I{x}) L2l(x)⊗ L2l(x)⊗
∧1

xX

H0(X,L2l+1 ⊗ I{x}) L2k+1

(x)⊗
∧1

xX

evalx⊗dx

=

dx

where the left vertical map takes C-tensor product of sections to the section tensor product of those two
sections. The map

H0(X,L2l)
evalx−→ L2l(x)

is surjective (this is condition i) we checked above). Thus the top horizontal map in the diagram above is

surjective. By commutativity, the bottom map is also surjective. This yields a contradiction to x ∈ S(L2l+1

),

and we conclude S(L2l+1

) ⊂ S(L2l) for each l ≥ l0. Beyond this point we proceed exactly as above for Bs(L),

and conclude by compactness of X that S(L2l) = ∅ for some l ≥ l0.
For this l, we finally get a closed embedding

φ
L2l : X ↪→ PN .

Therefore, the positive line bundle L is ample.

3.3 Applications

As a first application, we can tell the projectivity of a compact Kähler manifold by the position of the
Kähler cone KX ⊂ H2(X,R) relative to the integral lattice H2(X,Z) ⊂ H2(X,R). Recall that we define the
Kähler cone to be the set of all classes of Kähler forms in H2(X,R). By Hodge theory, this is contained
in H1,1(X) ∩H2(X,R) if we embed all cohomology groups in H2(X,C).

Corollary 3.5. A compact Kähler manifold X is projective if and only if KX ∩H2(X,Z) ̸= ∅.

Proof. ⇒: Suppose X is compact Kähler and projective. Then there is closed embedding φ : X → PN . We
claim that the class of the pullback of the Fubini-Study metric on PN is contained in KX ∩H2(X,Z):

[φ∗ωFS ] ∈ KX ∩H2(X,Z).

To see this, let O(1) denote the dual bundle of incidence variety on PN . The pullback bundle φ∗O(1) is a
positive line bundle because

c1(φ
∗O(1)) = [φ∗ωFS ],

where φ∗ωFS is a closed, positive, real (1, 1)-form because φ is an embedding. Hence φ∗ωFS is a Kähler
form, and [φ∗ωFS ] ∈ KX . We know that first Chern classes are always contained in H2(X,Z) by prop.4.4.12.
This proves the claim.
⇐: Pick [α] ∈ KX ∩H2(X,Z). By Lefschetz theorem, the first Chern class map

c1 : Pic(X)→ H2(X,Z) ⊂ H2(X,C)

has image contained in

H1,1(X,Z) := Im
{
H2(X,Z)→ H2(X,C)

}
∩H1,1(X)
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and is surjective onto H1,1(X,Z). Thus picking a class c ∈ KX ∩H2(X,Z), we have c ∈ H1,1(X,Z), so that
c = c1(L) for some line bundle L on X. The class c = c1(L) can be represented by a Kähler form ω ∈ c that
is closed, positive and real of type (1, 1). Thus L is positive line bundle. By Kodaira embedding theorem,
X is projective.

Motivated by the corollary above, we define Hodge class to be any class in KX ∩H2(X,Z). Hence a
compact Kähler manifold is projective if and only if it admits a Hodge class.

For a special case, consider complex tori.

Corollary 3.6. Let X := V/Γ be a complex torus. Then X is projective if and only if X admits a Riemann
form, i.e. an alternating R-bilinear form ω : V × V → R such that

i) ω(iu, iv) = ω(u, v),

ii) ω(·, i(·)) is positive definite, and

iii) ω(u, v) ∈ Z if u, v ∈ Γ.

Proof. ⇐: Suppose we have a Riemann form ω. Extend this form trivially to be a constant real 2-form on
V under the trivial identification of TV = V × V . Since the 2-form is invariant under Γ, we get a closed
real 2-form α on X. V ∼= Cn has natural complex structure I, which coincides with multiplciation by i.
Thus condition i) implies that α is of type (1, 1). Condition ii) implies that α is positive real (1, 1)-form.
Hence α is a Kähler form. Condition iii) implies that [α] ∈ H2(X,Z), as we can identify the image of

H2(X,Z) ⊂ H2(X,R) using cellular cohomology: H2(X,Z) ∼= Z(
2n
2 ) is the space of Z-valued functions on

2-cells, so [α] ∈ H2(X,Z) as the element sending the 2-cells generated by ei, ej ∈ Γ to α(ei, ej). Therefore,
[α] ∈ H2(X,C) is a Hodge class, and by Corollary 3.5, X is projective.
⇒: Suppose X is projective, then we can pick a Kähler form α representing a Hodge class as in the

proof of Corollary 3.5. Then α is an alternating R-bilinear form satisfying i) and ii) at every point x ∈ X
under the global trivialization TX ∼= X × V . Endow X with the trivial hermitian metric g and associated
Kähler structure. For this metric the harmonic forms are constant linear combinations of dxI by maximum
principle. Thus we can represent the hodge class in H2(X,R) by a constant real harmonic 2-form β, and we
let ω = β(x) for any x ∈ X. Since α is of type (1, 1), by Hodge decomposition (Cor.3.2.12), β is of type (1,
1). Thus ω checks condition i).

To check condition ii), write α = β + dγ for some real 1-form γ. Then notice that∫
X

α(u, v)Vol =

∫
X

β(u, v)Vol⇐
∫
X

dγ(u, v)Vol = 0

for any constant vector fields u, v ∈ V . This can be easily checked using Stokes’ theorem and writing
γ = γidxi. Thus the positive definiteness of α ensures the positive definiteness of β everywhere.

Embedding H2(X,Z) ⊂ H2(X,R) as above, since [β] ∈ H2(X,Z), we see that β assigns integer value to
each 2-cell given by ei, ej ∈ Γ. This checks condition iii).

Example 3.7. Any compact complex curve is projective. Since dimCX = 1, we see that any Hermitian
metric on X is Kähler. Fix any x ∈ X, and consider the line bundle O({x}). We have

c1(O({x})) = [x] ∈ H2(X,R) ∼= R.

Thus [x] = c[ω] for some constant c ∈ R and a Kähler form ω. Then for the function f ≡ 1 on X,
f ∈ H0(X,R),

c|X| = c

∫
X

fω =

∫
X

f [x] =

∫
x

f = f(x) = 1.
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Indeed |X| =
∫
X
ω > 0, so c > 0. Therefore, O({x}) is a positive line bundle on X. By Kodaira embedding

theorem, X is projective.
Another proof uses Corollary 3.5. Since dimCX = 1, we have H1,1(X) = H2(X,C) = C. Recall from

ex.3.1.12 that KX is an open convex cone in H1,1(X) ∩ H2(X,R), which in this case is a real line in C.
H2(X,Z) is a lattice on this real line. Thus KX ∩H2(X,Z) is non-empty.

Example 3.8. As a generalization of the second proof above, every compact Kähler manifold X with
H0,2(X) = 0 is projective. Taking complex conjugate we see H2,0(X) = 0, and hence H2(X,C) = H1,1(X).
Thus KX is open convex cone in H2(X,R), which must intersect the lattice of image H2(X,Z)→ H2(X,R).

Combining Hirzebruch-Riemann-Roch, Kodaira vanishing, and Kodaira embedding, we answer a question
raised in §2.3:

Corollary 3.9. Let X be a projective manifold. Then the natural homomorphism

O : Div(X)→ Pic(X)

is surjective.

Proof. First observe that X is compact Kähler. For each ample line bundle L and any line bundle M , by
Serre vanishing theorem (Proposition 2.9), there exists a constant m0 such that

Hq(X,M ⊗ Lm) = 0

for all m ≥ m0, q > 0. Thus the Euler-Poincaré characteristic reads

χ(X,M ⊗ Lk) = h0(X,M ⊗ Lk)

for k ≫ 0. By Hirzebruch-Riemann-Roch, we compute

χ(X,M ⊗ Lk) =

∫
X

[ch(M) td(X)]ekc1(L)

=
1

n!

∫
X

c1(L)
nkn + αn−1k

n−1 + · · ·+ α1k + α0,

which is a polynomial in k of degree n = dimCX. The leading coefficient is positive, because L is positive
line bundle by Kodaira embedding theorem. More specifically, we can represent c1(L) by a positive real (1,
1)-form, and compute in local coordinates using the linear algebra lemma that the determinant of a positive
definite matrix is positve.

Therefore, H0(X,M ⊗Lk) ̸= 0 for k ≫ 0. In particular, for M = OX , we have H0(X,Lk) ̸= 0 for k ≫ 0.
Using the map

Z : H0(X,L) \ {0} → Div(X),

and prop.2.3.18, we see thatM⊗Lk and Lk are both contained in the image of O : Div(X)→ Pic(X). Since
O is homomorphism, M is also contained in the image of O.

Remark 3.10. 1. The fact H0(X,Lk) ̸= 0 for some k > 0 used in the proof above also follows immediately
from L being ample.

2. In the proof above we only use the easy direction of Kodaira embedding theorem: an ample line bundle
is positive on compact Kähler manifold.

3. Suppose 0 ̸= s1 ∈ H0(X,M⊗Lk), 0 ̸= s2 ∈ H0(X,Lk), such that O(Z(s1)) ∼=M⊗Lk, O(Z(s2)) ∼= Lk.
Then s1/s2 is a non-trivial global meromorphic section of M . Thus for a projective manifold, any
holomorphic line bundle admits a non-trivial meromorphic section.
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We can apply the corollary above to the Neron-Severi group

NS(X) = Im
{
Pic(X)

c1−→ H1,1(X,Z)
}
= H1,1(X,Z)

defined in §3.3. Suppose X is projective. Since c1(O(D)) = [D] for any divisor D ∈ Div(X), NS(X) is
spanned by the fundamental classes of divisors. We can further deduce that

NS(X) ∼= Pic(X)/NT (X)

where NT (X) ⩽ Pic(X) is the subgroup of numberically trivial line bundles: line bundles which are of
degree zero on any curve C ⊂ X. Indeed, for each L ∈ ker c1, by ex.4.4.1,

deg(L|C) = deg(i∗L) =

∫
C

c1(i
∗L) =

∫
C

i∗c1(L) = 0.

Hence ker c1 ⊂ NT (X).
We now show NT (X) ⊂ ker c1. Let L be a line bundle that is numerically trivial, i.e.∫

X

c1(L) ∧ [C] = 0

for any curve C ⊂ X. Let D ∈ Div(X) be any hypersurface. Let ω on X be the pullback of the Fubini-Study
metric on PN . Then there exists some non-zero integer 0 ̸= λ ∈ Z such that λ[ω]n−2 ∈ H2n−4(X,Z) is the
fundamental class of a closed analytic subvariety of dimension 2 transversal to D. To see this, recall that
[ωFS ]

n−2 is a generator of H2n−4(PN ,Z) ∼= Z, so that λ[ωFS ]
n−2 is the fundamental class of a subvariety

of codimension n − 2 (transversal to X) for some 0 ̸= λ ∈ Z. Then [D] ∧ λ[ω]n−2 ∈ Hn−1,n−1(X,Z) is the
fundamental class of their intersection, hence a curve on X. Thus we have∫

X

c1(L) ∧ [D] ∧ ωn−2 = 0, for any divisor D ∈ Div(X).

Since c1(L) ∈ H1,1(X,Z), by Hard Lefschetz, we can write

c1(L) = [α] + c[ω],

for some c ∈ R and [α] ∈ H1,1(X,R) primitive. Then c1(L) + n[ω] = [α] + (c + n)[ω] ∈ H1,1(X,Z), for an
integer n ∈ Z to be determined. By Corollary 3.9, there exists some divisor D such that [D] = c1(L) + n[ω].
Thus

0 =

∫
X

([α] + c[ω]) ∧ ([α] + (c+ n)[ω]) ∧ [ω]n−2

=

∫
X

[α] ∧ [α] ∧ [ω]n−2 + c(c+ n)

∫
X

ωn [α] primitive.

If we pick n ∈ Z such that c(c+n) ≤ 0, then we must have [α] = 0, for otherwise
∫
X
[α]∧ [α]∧ [ω]n−2 < 0 by

Hodge-Riemann bilinear relation. Now c(c+ n)
∫
X
ωn = 0 for all n ∈ Z such that c(c+ n) ≤ 0, so we must

have c = 0. Therefore, c1(L) = 0, and NT (X) = ker c1.
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