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1 Chapter 2: Elliptic Operators on Compact Manifolds

We collect some important analytic lemmas for future use.

Theorem 1.1. Let Ω ⊂ Rn be a bounded set, and uk : Ω → R a sequence of functions uniformly bounded in
Ck,α. Then there is a subsequence of uk which is convergent in Cl,β for any l, β such that l + β < k + α.

This is an easy consequence of Arzela-Ascoli.
From now on let L denote a uniformly elliptic second-order differential opeartor with smooth coefficients

on a bounded domain Ω ⊂ Rn

L(f) =
∑
j,k

ajk
∂2f

∂xj∂xk
+

∑
l

bl
∂f

∂xl
+ cf.

Uniform ellipticity means: there exists some λ,Λ > 0 such that

λ|v|2 ≤
∑
j,k

ajk(x)v
jvk ≤ Λ|v|2,

for all x ∈ Ω. Then we have Schauder estimates:

Theorem 1.2 (Local Schauder Estimates). Suppose Ω′ ⊂ Ω is a smaller domain with d(Ω′, ∂Ω) > 0. For
each k ∈ N and α ∈ (0, 1), there is a constant C = C(k, α,Ω′,Ω, L) such that if f, g : Ω → R satisfies

L(f) = g,

then
∥f∥Ck+2,α(Ω′) ≤ C

(
∥g∥Ck,α(Ω) + ∥f∥C0(Ω)

)
.

Remark 1.3. More precisely, C depends on the Ck,α-norms of the coefficients of L and the ellipticity constants
λ,Λ. Regularity theory ensures that if f ∈ C2(Ω) and the coefficients of L and g are in Ck,α(Ω), then
f ∈ Ck+2,α(Ω), so that the local estimate above makes sense.

We can also control the C0-norm of f by the L1-norm of f and the Cα-norm of g = L(f). Hence,

Theorem 1.4 (Local Schauder Estimates). Under the same conditions as above,

∥f∥Ck+2,α(Ω′) ≤ C
(
∥g∥Ck,α(Ω) + ∥f∥L1(Ω)

)
.

We now move on to compact manifolds. Let (M, g) be a compact Riemannian manifold. There are two
ways to define Hölder spaces Ck,α(M, g) for tensor fields on M .
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First, we can fix a priori a finite cover of M by coordinate charts, and treat each tensor T locally as a
collection of component functions in each coordinate chart. The Ck,α-norm of T is then the supremum of
the Ck,α-norms of the components of T over each coordinate chart.

To avoid using coordinate charts, we can define Cα-seminorm of a tensor T as

|T |Cα = sup
x,y

|T (x)− T (y)|
d(x, y)α

where the supremum is taken over all x ̸= y ∈ M that can be joined by a unique minimal geodesic, so that
|T (x)− T (y)| is the norm of the difference between T (x) and the parallel transport of T (y) to x along this
minimal geodesic. Then define

∥T∥Ck,α := ∥T∥C0 + · · ·+
∥∥∇kT

∥∥
C0 +

∣∣∇kT
∣∣
Cα .

Indeed, these two definitions are equivalent: they define the same space Ck,α(M, g) with uniformly
equivalent norms.

Using local estimates above and a suitably chosen coordinate chart cover, we get:

Theorem 1.5 (Schauder Estimates on Compact Manifold). Let (M, g) be a compact Riemannian manifold,
and L a second-order elliptic operator on M . For each k ∈ N and α ∈ (0, 1), there is a constant C =
C(k, α,M, g, L) such that if f, g :M → R satisfies

L(f) = g,

then
∥f∥Ck+2,α(M) ≤ C

(
∥g∥Ck,α(M) + ∥f∥L1(M)

)
.

Remark 1.6. By compactness, L is uniformly elliptic once we fix a cover of M by coordinate charts. As
above, C depends on the Ck,α-norms of the coefficients of L, and the ellipticity constants λ,Λ. By regularity,
f ∈ Ck+2,α if we only assume that f ∈ C2, and the coefficients of L and g are in Ck,α.

Corollary 1.7. Let (M, g) be a compact Riemannian manifold, and L a second-order elliptic operator on
M . Then

kerL := {f ∈ L2(M) | f is a weak solution of Lf = 0}
is a finite-dimensional space of smooth functions.

Indeed regularity theory implies that any weak solution to Lf = 0 is smooth.

Proof. Suppose fk ∈ kerL is a sequence with ∥fk∥L2(M) ≤ 1. By Schauder estimates above, ∥fk∥C2,α ≤ C

for some uniform constant C. By Arzela-Ascoli (see Theorem 1.1), fk has a subsequence convergent in C2,
say to f ∈ C2. Hence f ∈ kerL and ∥f∥L2(M) ≤ 1. We thus show that the closed unit ball in kerL is

compact (in L2(M)), so kerL must be finite-dimensional.

We now consider the Laplacian operator on Kähler manifolds. Let (Mn, ω) be a compact Kähler manifold.
Define the Laplacian with respect to metric ω in any holomorphic coordinate as

∆T :=
1

2
gkl

(
∇k∇l +∇l∇k

)
T.

In particular, for functions we have

∆f = gkl∇k∇lf = gkl∂k∂lf = trω(i∂∂f).

Stokes’ theorem shows that ∫
M

∆fωn =

∫
M

ni∂∂f ∧ ωn−1 = 0

for any smooth function f on M . Conversely, any smooth function with total mass zero is the Laplacian of
some smooth function.
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Theorem 1.8. Let (Mn, ω) be a compact Kähler manifold. Suppose ρ : M → R is a smooth function such
that ∫

M

ρωn = 0,

then there is a smooth function f :M → R such that ∆f = ρ.

More generally,

Theorem 1.9 (Elliptic Operators between Hölder Spaces). Let (M, g) be a compact Riemannian manifold,
and L a second-order elliptic operator with smooth coefficients on M . Fix any k ∈ N and α ∈ (0, 1). Suppose
ρ ∈ Ck,α(M) and ρ ⊥ kerL∗ with respect to the L2-product. Then there exists a unique f ∈ Ck+2,α(M) with
f ⊥ kerL such that Lf = ρ. Hence L is a Banach space isomorphism

L : (kerL)
⊥ ∩ Ck+2,α → (kerL∗)

⊥ ∩ Ck,α.

Compare this with Theorem 1.9 in notes on Calabi-Yau manifolds, where L is the Laplacian with respect
to a Kähler metric. In particular, when kerL = {0} and L is self-adjoint, we get an isomorphism L :
Ck+2,α → Ck,α.
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2 Chapter 4: Extremal Metrics

2.1 The Calabi Functional

Let M be a compact Kähler manifold. We are interested in finding nice Kähler metrics representing a given
Kähler class Ω ∈ H2(M,R).

Definition 2.1. An extremal metric on M in the class Ω is a critical point of the Calabi functional

Cal(ω) :=

∫
M

R2
ωω

n, ω ∈ Ω Kähler metric.

Rω denotes the scalar curvature of ω.

Variational method characterize extremal metrics as the following.

Theorem 2.2. A metric ω on M is extremal if and only if Grad1,0Rω is a holomorphic vector field.

Recall that we define Grad1,0 f to be
(
∂f

)#
, which is a section of T 1,0M . Similarly, Grad0,1 f = (∂f)

#
,

so that Grad f = Grad1,0 f +Grad0,1 f = (df)# is the Riemannian gradient vector field of f .

Proof. Fix a Kähler metric ω and any smooth real-valued function φ. Consider the variation

ωt = ω + ti∂∂φ

inside the class [ω] ∈ H2(M,R). Then
d

dt

∣∣∣∣
t=0

ωnt = ∆φ · ωn,

d

dt

∣∣∣∣
t=0

Ric(ωt) = −i∂∂∆φ,

d

dt

∣∣∣∣
t=0

Rωt = −∂p∂qφ ·Rpq −∆2φ.

Using 2nd Bianchi ∇mRijkl = ∇jRimkl, hence ∇kR
jk = gjk∇kR, we get

d

dt

∣∣∣∣
t=0

Cal(ωt) =

∫
M

(
−2R(∆2φ+Rjk∂j∂kφ) +R2∆φ

)
ωn

=

∫
M

φ
(
−2∆2R− 2∇j∇k

(
RjkR

)
+∆(R2)

)
ωn

=

∫
M

φ
(
−2∆2R− 2∇j

(
Rjk∇kR

))
ωn.

Since φ is arbitrary, extremality of metric ω is equivalent to the condition

∆2R+∇j

(
Rjk∇kR

)
= 0. (2.1)

We now try to simplify. For any function ψ, compute

∆2ψ +∇j

(
Rjk∇kψ

)
= gjkgpq∇j∇k∇p∇qψ +∇j

(
Rjk∇kψ

)
= gjkgpq∇j∇p∇k∇qψ − gjkgpq∇j

(
Rmq kp∇mψ

)
+∇j

(
Rjk∇kψ

)
= gjkgpq∇p∇j∇k∇qψ.
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2 Chapter 4: Extremal Metrics 2.1 The Calabi Functional

If we define D : C∞(M,C) → C∞(M,Ω0,1M ⊗ Ω0,1M) via

Dψ = ∇∇ψ = ∇k∇qψ · dzk ⊗ dzq,

then Stokes’ theorem yields its formal adjoint

D∗T = gjkgpq∇p∇jTkq.

Thus condition (2.1) is equivalent to
D∗DR = 0. (2.2)

Integrate its product with R to see its further equivalent to

DR = ∇2
R = 0. (2.3)

Finally, a simple calculation shows that (2.3) is equivalent to that Grad1,0R =
(
∇R

)#
be a holomorphic

vector field. More generally, for a tensor T ∈ C∞(M,Ω0,1M),

T# is holomorphic vector field ⇐⇒ ∇T = 0.

We call the fourth-order operator D∗D the Lichnerowicz operator. It follows from the proof above that
under the variation ωt = ω + ti∂∂φ, the scalar curvautre satisfies

d

dt

∣∣∣∣
t=0

Rωt
= −D∗Dφ+∇jR

jk · ∇kφ = −D∗Dφ+ gjk∇jR · ∇kφ = −D∗Dφ+ gjk∇jφ · ∇kR, (2.4)

using that the scalar curvature is real.

One important class of examples of extremal metrics are constant scalar curvature Kähler metrics (cscK).
IfM does not admit non-trivial holomorphic vector fields (which is usually the case), then an extremal metric
is necessarily cscK by computation above. Notice that KE metrics are cscK. Conversely, suppose ω is cscK
and c1(M) = λ[ω] for some λ ∈ R (this is necessary for ω to be KE), then ω is indeed KE. Indeed, write

Ricω = 2πλω + i∂∂F

for some real-valued smooth function F . Taking trω on both sides to get

R = 2πλn+∆F.

Thus ∆F is a constant, and by maximum principle, F is constant. Therefore,

Ricω = 2πλω.

Theorem 2.3 (LeBrum-Simanca ’93). Let M be a compact Kähler manifold. The set of Kähler classes
admitting an extremal metric is an open subset of H1,1(M,R).

Remark 2.4. The proof uses implicit function theorem to conclude the openness.

We now consider the relation between the Calabi functional, which is the L2-norm of the scalar curvature,
to L2-norms of other curvature tensors. Simple calculations are involved.

Lemma 2.5. Let α, β be real (1, 1)-forms. Suppose ω is a Kähler form, then

nα ∧ ωn−1 = trω α · ωn,

n(n− 1)α ∧ β ∧ ωn−2 = (trω α · trω β − ⟨α, β⟩ω)ωn.
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2 Chapter 4: Extremal Metrics 2.1 The Calabi Functional

Lemma 2.6. Let M be a compact Kähler manifold. For each Kähler class Ω and each ω ∈ Ω,∫
M

Rωω
n = 2nπc1(M) ∪ [ω]n−1,

∫
M

R2
ωω

n =

∫
M

|Ricω|2ωω
n + 4π2n(n− 1)c1(M)2 ∪ [ω]n−2,∫

M

|Ricω|2ωω
n =

∫
M

|Rmω|2ωω
n + n(n− 1)

[
4π2c1(M)2 − 8π2c2(M)

]
∪ [ω]n−2.

Proof. These are direct applications of Lemma 2.5. Recall that the Chern classes are defined via the curvature
tensor

F :=
i

2π
Rj
i kl

(
dzk ∧ dzl

)
⊗
(
dzi ⊗ ∂

∂zj

)
∈ C∞(M,Λ1,1T ∗M ⊗ End(T 1,0M)).

Then easy calculations show that

trF =
1

2π
Ric ∈ c1(M),

(
|Ricω|2 − |Rmω|2

)
ωn = n(n− 1)

(
i2Rj

i kl
Rij pqdz

k ∧ dzl ∧ dzp ∧ dzq
)
∧ ωn−2

= n(n− 1)
(
4π2 tr

(
F 2

))
∧ ωn−2

∈ n(n− 1)
[
4π2c1(M)2 − 8π2c2(M)

]
∪ [ω]n−2.

From above, we can define the average scalar curvature

R̂ :=
2nπc1(M) ∪ [ω]n−1

[ω]n
,

which is a constant depending only on the Kähler class [ω] and M . Thus writing the Calabi functional as∫
M

R2ωn =

∫
M

(R− R̂)2ωn +

∫
M

R̂2ωn,

we can equivalently define extremal metrics as critical points of the functional

ω 7→
∫
M

(Rω − R̂ω)
2ωn, ω ∈ Ω Kähler metric.

Also observe that if a cscK metric exists in a Kähler class, then it minimizes the Calabi functional over this
class. More generally:

Theorem 2.7. Let M be a compact Kähler manifold. Extremal metrics minimize the Calabi functional in
their respective Kähler classes.
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2.2 The Futaki Invariant

Let (M,ω) be a compact Kähler manifold. Let h denote the space of gradient holomorphic vector fields.
That is, each vector field X ∈ h can be written as

X = Xi ∂

∂zi

where Xi are holomorphic functions and Xi = gjk∂kf for some f :M → C. In other words,

h := {
(
∂f

)# | f :M → C with ∇2
f = 0}.

We call f a holomorphy potential for X. Recall from §2.1 that

∇2
f = Df = 0 ⇐⇒ D∗Df = 0.

It is also useful to think of sections of T 1,0M as real vector fields. This is achieved by defining the map
T 1,0M → TM , where TM denotes the real tangent bundle, mapping a vector field of type (1, 0) to its real
part. In coordinates, we describe this map over an R-basis:

∂

∂zi
7→ 1

2

∂

∂xi
, i

∂

∂zi
7→ 1

2

∂

∂yi
.

Then under this map,

X =
(
∂f

)# 7→ 1

2
(Grad(Re f) + J Grad(Im f)) ,

where J is the complex structure and Grad is the Riemmanian gradient of a real function.

Remark 2.8. This identification T 1,0M → TM respects Lie bracket for holomorphic vector fields, up to a
factor of 2. We shall use this fact below.

By maximum principle, each X ∈ h has a unique holomorphy potential up to adding a constant. We can
choose normalization condition that

∫
M
fωn = 0, so that

h ∼=
{
f :M → C | ∇2

f = 0 and

∫
M

fωn = 0

}
.

Observe that h is independent of the choice of metric ω in a fixed Käher class [ω]:

Lemma 2.9. Suppose ω̃ = ω + i∂∂φ for some φ. If X ∈ h has holomorphy potential f with respect to ω,
then f +X(φ) is a holomorphy potential for X with respect to ω̃.

Lemma 2.10. h is closed under the Lie bracket.

Proof. Indeed the space of holomorphic vector fields is a Lie algebra. Using holomorphicity, we find

[
(
∂F

)#
,
(
∂G

)#
] =

(
∂H

)#
,

where
H = {F,G} = gjk

(
∇jG∇kF −∇jF∇kG

)
is the Poisson bracket of F and G.

Next we show that h is independent of the choice of Kähler class, so that h is determined only by the
complex structure of M . Below are two ways to see this.

7



2 Chapter 4: Extremal Metrics 2.2 The Futaki Invariant

Theorem 2.11 (Lebrun-Simanca).

h := {X holomorphic vector field | X = (∂f)# for some smooth f :M → C}

= {X holomorphic vector field | Xp = 0 for some p ∈M}

= {X holomorphic vector field | α(X) = 0 for all holomorphic (1, 0)-forms α}

Proof. LetX be any holomorphic vector field. We first show that ifX is gradient, thenX vanishes somewhere
on M . Let f :M → C be a holomorphy potential for X. Then

X(f) = gij∂jf∂if = |X|2 =
∣∣∂f ∣∣2 ≥ 0.

Define c = minM X(f) ≥ 0, and C = maxM |f | ≥ 0. Let U, V ∈ X(M) denote the real and imaginary
part of X, respectively. By holomorphicity of X, we know that U, V are real holomorphic vector fields, and
easily compute that [U, V ] = 0. By compactness of M , each of U and V generates an R-parameter group
of biholomorphisms M → M , and any two of these biholomorphisms commute under composition since
[U, V ] = 0. We can thus compose these biholomorphisms to get a holomorphic action C ↷M , sending d/dz
to U + iV = X. Let F : C →M be an orbit of this action, and set g = f ◦ F . Then g : C → C is a smooth
function with dg/dz = X(f) ◦F ≥ 0. If Dr ⊂ C is the closed disk of radius r centered at 0, Stokes’ theorem
yields ∫

∂Dr

gdz =

∫
Dr

dg

dz
dz ∧ dz = 2i

∫
Dr

dg

dz
dx ∧ dy.

Thus
1

2π

∫ 2π

0

g(reiθ)eiθdθ =
1

2πir

∫
∂Dr

gdz ≥ cπr2

πr
= cr.

On the other hand ∣∣∣∣ 1

2π

∫ 2π

0

g(reiθ)eiθdθ

∣∣∣∣ ≤ C = max
M

|f |.

Letting r → ∞, we see that c = 0. Now we know that X(f) =
∣∣∂f ∣∣2 vanish at some point, hence X =

(
∂f

)#
vanish at the same point.

Next we show that Xp = 0 for some p ∈M ⇒ α(X) = 0 for all holomorphic (1, 0)-forms α. Note that in
this case α(X) = αiX

i is a holomorphic function on M vanishing at p, so α(X) = 0 by maximum principle.

Finally we show that α(X) = 0 for all holomorphic (1, 0)-forms α ⇒ X is gradient. Let φ = X♭, a
(0, 1)-form on M . Since dω = 0, an easy calculation shows that ∂φ = 0. Let α ∈ H0,1(M,ω) be an arbitrary
harmonic (0, 1)-form, and β = α. Then ∂α = 0, so that β is holomorphic (1, 0)-form, and

⟨φ, α⟩ = φiαjg
ji = Xkgkiβjg

ji = Xkβk = β(X) = 0.

Hence φ ⊥ H0,1(M,ω) with respect to the inner product on A0,1(M) induced from ω. Recall that Hodge
Theory gives orthogonal decomposition

A0,1(M) = H0,1(M,ω)⊕ ∂A0,0(M)⊕ ∂
∗A0,2(M).

Therefore, ∂φ = 0 and φ ⊥ H0,1(M,ω) implies that there exists a smooth function f : M → C such that

φ = ∂f . Then X = φ# =
(
∂f

)#
. This completes the proof.

We have thus defined h = h(M) for each compact Kähler manifold M .

Lemma 2.12. If c1(M) = 0, then h = 0.

8
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Proof. By Calabi-Yau, we fix a Ricci-flat Kähler metric ω. Let X ∈ h be any holomorphic vector field with
potential f . Then

0 = D∗Df = ∆2f +∇j

(
Rjk∇kf

)
= ∆2f.

Applying maximum principle twice, we see that f is constant, hence X = 0.

Example 2.13. Let M = Cn/Λ be a complex torus. The flat metric implies c1(M) = 0, so that h = 0.
Clearly there are non-trivial holomorphic vector fields on M , e.g. ∂/∂zi. Thus h in general does not contain
all holomorphic vector fields.

Lemma 2.14. If M is Fano manifold, i.e. c1(M) > 0, then h equals the space of all holomorphic vector
fields on M .

Proof. Recall that c1(M) = c1(K∗
M ), where KM = ΩnM is the canonical bundle of M . Thus K∗

M is ample line
bundle. Kodaira vanishing theorem yields

H0,1(M) = H1(M,OM ) = H1(M,ΩnM ⊗K∗
M ) = 0,

hence H1,0(M) = H0(M,ΩM ) = 0. M admits no non-trivial holomorphic (1, 0)-forms. Proposition ??
finishes the proof.

Now define Lie sub-algebra k ⊂ h by

k := {X ∈ h | X is Killing vector field under identification T 1,0M = TM}.

Lemma 2.15. Let (M,ω) be a compact Kähler manifold. Suppose X ∈ h. Then X ∈ k if and only if X has
a purely imaginary holomorphy potential.

Proposition 2.16. Suppose ω is a cscK metric on M . Then

h = k⊕ Jk.

Proof. Recall that

h ∼=
{
f :M → C | D∗Df = 0 and

∫
M

fωn = 0

}
=: ker0 D∗D.

Under this identification, k is the subspace of ker0 D∗D of purely imaginary functions by Lemma 2.15. Notice
that since ω is cscK, Bianchi identity yields

D∗D = ∆2 +Rjk∇j∇k,

which is a real operator. Thus f ∈ ker0 D∗D if and only if Re f, Im f ∈ ker0 D∗D. This completes the
proof.

Example 2.17. BlpP2 does not admit cscK metrics by Proposition 2.16. However, it does admit extremal
metrics in every Kähler class.

More generally, Bianchi identity yields(
D∗D −D∗D

)
φ = gjk

(
∇jR∇kφ−∇jφ∇kR

)
.

Suppose ω is extremal such that XR = gjk∂kR is holomorphic vector field. Let Xf ∈ h be given by a
holomorphy potential f , then

[XR, Xf ] =
(
∂{R, f}

)#
= gpq∇qg

jk
(
∇jf∇kR−∇jR∇kf

)
.

9
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Let hR ⊂ h denote the sub-algebra commuting with XR. Observe that k ⊂ hR since every Killing vector field
X preserves curvature: LXR = 0. Then we can apply the same idea in the proof of Proposition 2.16 (splitting
potential into real and imaginary parts, plus maximum principle and calculations above) to generalize it.
Indeed for cscK metrics, XR = 0.

Proposition 2.18. Let ω be an extremal metric on M . Then

hR = k⊕ Jk.

We can now define the Futaki invariant, which provides an obstruction to finding cscK metrics in a Kähler
class.

Definition 2.19. Let (M,ω) be a compact Kähler manifold. Define the Futaki invariant F : h → C by

F (X) :=

∫
M

f(R− R̂)ωn, X ∈ h,

where f is any holomorphy potential for X ∈ h, and R̂ is the average of the scalar curvature R.

Theorem 2.20. The Futaki invariant is independent of the choice of metric in each fixed Kähler class. In
particular, if [ω] admits a cscK metric, then F = 0.

Proof. Suppose ω+ i∂∂φ is another metric in the Kähler class [ω]. Then we have a family of Kähler metrics
ωt := ω + ti∂∂φ. Let Ft denote the Futaki functional with respect to ωt. By Lemma 2.6 and Lemma 2.9

Ft(X) =

∫
M

ft(Rt − R̂)ωnt ,

where
ft = f + tX(φ).

Our goal is to prove that
d

dt

∣∣∣∣
t=0

Ft(X) = 0.

Recall from (2.4) that

d

dt

∣∣∣∣
t=0

Rt = −D∗Dφ+∇jR
jk · ∇kφ = −D∗Dφ+ gjk∇jR · ∇kφ = −D∗Dφ+ gjk∇jφ · ∇kR,

and
d

dt

∣∣∣∣
t=0

ωnt = ∆φ · ωn.

Then compute

d

dt

∣∣∣∣
t=0

Ft(X) =

∫
M

X(φ)(R− R̂)ωn +

∫
M

f
(
−D∗Dφ+ gjk∇jφ · ∇kR

)
ωn +

∫
M

f(R− R̂)∆φωn

=

∫
M

[
gij∇j (f∇iφ)

] (
R− R̂

)
ωn +

∫
M

−D∗Df · φωn +

∫
M

f
(
gjk∇jφ · ∇kR

)
ωn

=

∫
M

gij∇j (Rf∇iφ)ω
n − R̂

∫
M

gij∇j (f∇iφ)ω
n

= 0,

using that Df = 0 and Stokes’ theorem.

10
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Remark 2.21. This definition generalizes the idea in Futaki’s original paper (1983), where the author considers
the Kähler class c1(M) > 0 of a Fano manifold. In that case we have seen in Lemma 2.14 that h is the space
of all holomorphic vector fields. Writing

Ric = 2πω + i∂∂F,

for any ω ∈ c1(M), we have

F (X) =

∫
M

f(R− R̂)ωn =

∫
M

f∆Fωn = −
∫
M

X(F )ωn,

which recovers Futaki’s definition.

Corollary 2.22. Let ω be an extremal metric on a compact Kähler manifold M . If the Futaki invariant
with respect to the Kähler class [ω] vanishes, then ω has constant scalar curvature.

Proof. The scalar curvature R is the holomorphy potential of its (1, 0)-gradient, since ω is extremal. Thus

0 =

∫
M

R(R− R̂)ωn =

∫
M

(R− R̂)2ωn ⇒ R = R̂.

11
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2.3 The Mabuchi Functional

The Calabi functional gives a variational characterization of extremal metrics. We now focus specifically on
cscK metrics, which can be characterized as critical points of the Mabuchi functional.

Let (M,ω) be a compact Kähler manifold. Define the space of Kähler potentials for the class [ω]:

K := {φ ∈ C∞(M,R) | ωφ := ω + i∂∂φ > 0}.

From now we give lower indices φ to objects associated with the Kähler metric ωφ.
For each φ ∈ K, the tangent space TφK at φ can be identified with C∞(M,R). Define a 1-form α on K

by

αφ(ψ) =

∫
M

ψ
(
R̂−Rφ

)
ωnφ, φ ∈ K, ψ ∈ TφK.

Remark 2.23. Consider K as an infinite-dimensional smooth manifold, so that the formal calculations below
involving the tangent space motivate the rigorous definition of the Mabuchi functional.

Lemma 2.24. The 1-form α on K is closed.

Proof. We aim to show that for any ψ1, ψ2 ∈ TφK,

d

dt

∣∣∣∣
t=0

αφ+tψ2(ψ1) =
d

dt

∣∣∣∣
t=0

αφ+tψ1(ψ2),

so that the coefficients for dα in components ψ2∧ψ1 and ψ1∧ψ2 are equal at each φ ∈ K, and hence dα = 0.
Compute

d

dt

∣∣∣∣
t=0

αφ+tψ2
(ψ1) =

∫
M

[
ψ1

(
D∗
φDφψ2 − gjkφ ∇jRφ · ∇kψ2

)
+ ψ1

(
R̂−Rφ

)
∆φψ2

]
ωnφ

=

∫
M

D∗
φDφψ1 · ψ2ω

n
φ + R̂

∫
M

∆φψ1 · ψ2ω
n
φ −

∫
M

ψ2

(
Rφ∆φψ1 + gjkφ ∇jψ1 · ∇kRφ

)
ωnφ

=
d

dt

∣∣∣∣
t=0

αφ+tψ1(ψ2).

Notice that both time derivatives are real by definition of α.

Note that K is convex and hence contractible, so α is exact. Let M : K → R denote the (unique) function
such that dM = α and M(0) = 0. We call M : K → R the Mabuchi functional or the K-energy.

We can compute M by integration of α. For any φ ∈ K and any path φt in K joining φ0 = 0 and φ1 = φ,
we have

d

dt
M(φt) = αφt

(φ̇t),

M(φ) =

∫ 1

0

d

dt
M(φt)dt =

∫ 1

0

αφt
(φ̇t)dt =

∫ 1

0

∫
M

φ̇t

(
R̂−Rφt

)
ωnφt

dt.

Note that d
dtM(φt) = 0 if φ̇t is a constant function on M . Therefore, by maximum principle, M can be

identified with its descension onto the space of Kähler metrics in a fixed Kähler class [ω].

Theorem 2.25. The critical points of the Mabuchi functional defined on the Kähler class [ω] are

{φ ∈ C∞(M,R) | ωφ := ω + i∂∂φ is cscK }.

12
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We can equip K with a Riemannian metric such that M is convex. This provides more constraint on
cscK metrics. Define the Riemannian metric on K by

⟨ψ1, ψ2⟩φ =

∫
M

ψ1ψ2ω
n
φ, φ ∈ K, ψ1, ψ2 ∈ TφK.

Given this metric, let us first consider the geodesics in K. Recall that (constant-speed) geodesics are critical
points of the energy of a path with prescribed endpoints.

Proposition 2.26 (Geodesic Equation). A path φt in K is a (constant-speed) geodesic if and only if

φ̈t − |∂φ̇t|2t = φ̈t − gjkt ∂jφ̇t∂kφ̇t = 0.

Proof. Assume wlog that t ∈ [0, 1]. The energy of the path φt with respect to this metric is

E(φt) =

∫ 1

0

∫
M

φ̇2
tω

n
t dt.

Then φt is geodesic if and only if
d

ds

∣∣∣∣
s=0

E(φt + sψt) = 0

for all closed curves ψt with ψ0 = ψ1 = 0 ∈ K. Compute

d

ds

∣∣∣∣
s=0

E(φt + sψt) =

∫ 1

0

∫
M

(
2φ̇tψ̇t + φ̇2

t∆tψt

)
ωnt dt

=

∫ 1

0

∫
M

(
−2φ̈tψt − 2φ̇tψt∆tφ̇t +∆t(φ̇

2
t )ψt

)
ωnt dt

= −2

∫ 1

0

∫
M

(
φ̈t − |∂φ̇t|2t

)
ψtω

n
t dt

and the claim follows.

Example 2.27. Fix a Kähler class [ω] onM . Suppose X ∈ h has real-valued holomorphy potential u :M →
R. Let XR denote the real part of X, i.e. the image of X under the identification T 1,0M = TM discussed
in §2.2. We know already that

XR =
1

2
Gradu,

and XR is a real holomorphic vector field, i.e. the 1-parameter group of diffeomorphisms ft : M → M
generated by XR preserves the complex structure J ∈ C∞(M,End (TM)) of M :

LXRJ = 0.

This is easily seen using Cauchy-Riemann equations for holomorphic functions. Now that f∗t preserves the
type, we are able to define the path of metrics

ωt := f∗t ω.

It is easy to verify that (take time derivative of ωt and integrate)

ωt = ω + i∂∂φt,

where
φ̇t = f∗t u, φ0 = 0.

13
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Then φt is a geodesic line in K. For example, at t = 0,

φ̈0 = LXRu = |∂u|2ω = |∂φ̇0|20.

The derivative of the Mabuchi functional along this geodesic is

d

dt
M(φt) =

∫
M

φ̇t

(
R̂−Rt

)
ωnt

=

∫
M

f∗t

[
u
(
R̂−R

)
ωn

]
=

∫
M

u
(
R̂−R

)
ωn

= −F (X),

where F : h → C is the Futaki invariant with respect to [ω]. Thus the Mabuchi functional is linear along
this geodesic φt. More generally,

Proposition 2.28. The Mabuchi functional M : K → R is convex along geodesics.

Proof. Let φt be any geodesic. Compute

d

dt
M(φt) =

∫
M

φ̇t

(
R̂−Rt

)
ωnt ,

using Proposition 2.26,

d2

dt2
M(φt) =

∫
M

[
φ̈t

(
R̂−Rt

)
+ φ̇t

(
D∗
tDtφ̇t − gjkt ∇jRt∇kφ̇t

)
+ φ̇t

(
R̂−Rt

)
∆tφ̇t

]
ωnt

=

∫
M

|Dtφ̇t|2tω
n
t +

∫
M

gjkt ∇j

(
φ̇t

(
R̂−Rt

)
∇kφ̇t

)
ωnt

=

∫
M

|Dtφ̇t|2tω
n
t

≥ 0.

Example 2.29. Suppose ω0, ω1 = ω0 + i∂∂φ are two cscK metrics in the same Kähler class on M , and there
is a geodesic path φt connecting φ0 = 0 and φ1 = φ in K. Then we claim that there is a biholomorphism
f :M →M such that f∗ω1 = ω0. To see this, note first that

d

dt
M(φt) = 0 for t = 0, 1,

as ω0 and ω1 are cscK. By Proposition 2.28, we see that M(φt) is constant for t ∈ [0, 1], and

Dtφ̇t = 0, t ∈ [0, 1].

Thus φ̇t is a real-valued holomorphy potential for its gradient vector field Xt = gjkt ∂kφ̇t ∈ h for all t. As in
Example 2.27, the real part of each Xt,

Xt,R =
1

2
Gradt φ̇t

is a real holomorphic vector field. Let ft be the family of biholomorphisms generated by −Xt,R, that is,

ft :M →M,
d

dt
ft(p) = −Xt,R(ft(p)).

Then f∗t ωt ≡ ω0 is constant Kähler metric, and hence f1 is the desired biholomorphism, because

LXt,Rωt = i∂∂φ̇t,

d

dt
(f∗t ωt) = f∗t

(
L−Xt,Rωt + i∂∂φ̇t

)
= 0.
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2.4 The Ding Functional

The Ding functional gives a variational characterization of KE metrics when M is Fano, i.e. c1(M) > 0.
The notations are ideas in this subsection are similar to the previous one.

Now suppose M is Fano and fix ω ∈ c1(M). For each Kähler potential φ ∈ K define the Ricci potential
hφ ∈ C∞(M,R) to be the unique function such that

Ric(ωφ) = ωφ + i∂∂hφ (2.5)

with normalization ∫
M

ehφωnφ =

∫
M

ωnφ. (2.6)

Lemma 2.30. Let φt be any curve in K. Then

ḣt + φ̇t +∆tφ̇t = Ct

for some constant function Ct on M for each t. Also,

Ct

∫
M

ωnt =

∫
M

eht φ̇tω
n
t .

Proof. Take time derivatives of (2.5) and (2.6).

Lemma 2.31. Define 1-form α on K via

αφ(ψ) =

∫
M

ψ
(
ehφ − 1

)
ωnφ.

Then α is closed, and hence exact.

Proof. Use the lemma above and the idea in §2.3. We eventually get

d

dt

∣∣∣∣
t=0

αφ+tψ2(ψ1) =

∫
M

(
−ψ1∆φψ2 − ψ1ψ2e

hφ
)
ωnφ +

(∫
M

ωnφ

)−1 (∫
M

ψ1e
hφωnφ

)(∫
M

ψ2e
hφωnφ

)
.

We can thus define the Ding functional F : K → R such that dF = α. The variation along any path is

d

dt
F(φt) = αφt

(φ̇t) =

∫
M

φ̇t
(
eht − 1

)
ωnt . (2.7)

Clearly, the critical points of F are Kähler potentials φ such that hφ = 0, which induce KE metrics.

Lemma 2.32. If f ∈ C∞(M,R) such that ∫
M

fehφωnφ = 0,

then ∫
M

f2ehφωnφ ≤
∫
M

|∂f |2φe
hφωnφ.

Proof. For details consult Futaki’s paper, Kähler Einstein Metrics and Integral Invariants, p.40. The essen-
tial idea is to observe that the operator

Lφ : C∞(M,C) → C∞(M,C),
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Lφu = −∆ωu− gij∇iφ∇ju = −∆ωu− ⟨∇φ,∇u⟩

is elliptic and self-adjoint with respect to the weighted inner product

(u, v)φ =

∫
M

uveφωnφ,

and
(Lφu, u)φ =

(
∇u,∇u

)
φ
≥ 0.

Hence Lφ has eigenvalues 0 = λ0 < λ1 ≤ . . . , tending to ∞, and calculation shows that λ1 ≥ 1. The claim
now follows by considering (Lφf, f)φ.

Theorem 2.33. The Ding functional F : K → R is convex along smooth geodesics in K.

Proof. Let φt be a geodesic in K. Using Proposition 2.26, Lemma 2.30, and (2.7), compute

d2

dt2
F(φt) =

∫
M

eht

(
φ̈t + φ̇tḣt + φ̇t∆tφ̇t

)
ωnt −

∫
M

(φ̈t + φ̇t∆tφ̇t)ω
n
t

=

∫
M

eht

(
|∂φ̇t|2t + φ̇tḣt + φ̇t∆tφ̇t

)
ωnt

=

∫
M

|∂φ̇t|2t e
htωnt +

∫
M

eht φ̇t (Ct − φ̇t)ω
n
t

=

∫
M

(
|∂φ̇t|2t − φ̇2

t

)
ehtωnt + C2

t

∫
M

ωnt

≥ 0.

Compared to the Mabuchi functional, the Ding functional can be defined for metrics with less regularity,
and the convexity of F along geodesics still holds in that case.
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