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1 Introduction

In this note we give an outline of the very basics of complex geometry. References:
1. Griffiths, Harris. Principles of Algebraic Geometry.
2. Huybrechts. Complex Geometry.
3. Voisin. Hodge Theory and Complex Algebraic Geometry.

2 Holomorphic Functions of Several Variables

2.1 Holomorphicity and Analyticity

Let f : U — C be a C' map on an open set U C C". For each u € U, there is canonical isomorphism
T.U =C".
Theorem 2.1. f is holomorphic if any of the following equivalent conditions holds.

e The (real) differential
df., € Hom(T,U,C) = Hom(C", C)

is C-linear at each u € U.

o f satisfies the Cauchy-Riemann equations

of 1 /of Of\ _ .
8Z¢_2<8:Bi+layi)_07 Vi=1,..,n.

e f admits a power series expansion in a neighborhood of each zy € U:
flz0+2) = Zoqzl,
I
and the series converges absolutely: ARy > 0, ..., R, > 0 such that

Z |oq|r1 < 00
T

for everyri < Ry, ...,7n < Ry.

o f satsifies the Cauchy integral formula: for each (open) polydisk D, (a) whose closure is contained in
U, one has for each z € D, (%),

1 d¢; d¢
() = o / noop
(2m)" J1 (@) ={¢lIci—as|=r:} G — 21 Cn — 2n
where the orientation on the torus T.(a) is the product of natural orientaions on circles.

AC'map f: U c C* = V C C™ is holomorphic if each component function fi,..., fm : U — C is
holomorphic.
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2.2 Properties of Holomorphic Functions

Using Cauchy’s integral formula, one gets

Theorem 2.2 (Maximum Principle). Let f : U C C* — C be holomorphic. If | f| admits a local mazimum
at some point u € U, then f is constant in a neighborhood of w.

Theorem 2.3 (Analytic Continuation). Let U C C™ be a connected open subset. If f : U — C is holomorphic
and vanish on an open subset of U, then f =0 on U.

Theorem 2.4 (Riemann Extension). Let f be a holomorphic function defined on U\ {z | z1 = 0} for some
open set U C C™. If f is locally bounded on U, then f extends (uniquely) to a holomorphic function on U.

Theorem 2.5 (Hartogs’ Extension). Let f be a holomorphic function defined on U\ {z | z1 = z2 = 0} for
some open set U C C™. Then f extends (uniquely) to a holomorphic function on U.

Theorem 2.6 (Global Extensions). On a complex manifold X, every holomorphic function that is defined
on the complement of an analytic subset of codimension > 1 and is locally bounded on X extends (uniquely)
to a holomorphic function on all of X. Similarly, every holomorphic function defined on the complement of
an analytic subset of codimension > 2 extends (uniquely) to a holomorphic function on all of X.

Theorem 2.7 (Weierstrass Preparation Theorem). Let f : D.(0) — C be a holomorphic function on a
polydisk D.(0). If f(0) = 0 and fo(z1) = f(21,0,...,0) £ 0, then there exists a smaller polydisk Ds(0) C
D.(0), and a Weierstrass polynomial g(z1,w) = gw(21) and a holomorphic function h on Ds(0) such that

f=g-h on Ds(0),
and h(0) # 0. Such Weierstrass polynomial g is unique.

Here a Weierstrass polynomial ¢ has the form g(z1,w) = 2¢ + ag_1(w)z{"* + - -

+ ag(w), where the
coefficients a;j(w) are holomorphic functions on the open subset C"~! N D4(0), and a;(0) = 0.

Theorem 2.8 (Inverse Function Theorem). Let f : U — V be a holomorphic map between open subsets
U,V C C". If fis reqular at z € U, then there exist open subsets z € U' C U and f(z) C V' CV such that
f:U — V' is biholomorphism.

Theorem 2.9 (Implicit Function Theorem). Let f : U C C™ — C™ be a holomorphic map, where m > n.
If 2y € U is a point such that

det (ajfi(zo)hgi’jgn # 0,

then there exists open subsets Uy C C™™", Uy C C", and a holomorphic map g : Uy — Uy such that
zo € Uy x Uy C U and
{ze Ui xUz| f(2) = f(20)} = {(w,g(w)) [ w € U1 }.

Corollary 2.10. Let f : U C C™ — C™ be a holomorphic map. Suppose f is regular at zg € U, i.e.,
rank J(f)(z0) = min(m, n). Then

o If m > n, then f is projection up to change of domain coordinate: there exists a biholomorphism
h:V = U for someV C C™ and zy € U' C U such that f(h(z1,...,2m)) = (21, ..., 2n) for all z € V.

e If m < n, then f is inclusion up to change of image coordinate: there exists a biholomorphism h :
V = V' for some f(z9) € V C C"™ and V' C C" such that h(f(z1,...,2m)) = (21, -+, 2m, 0, ..., 0) for all

ze fYV).

Theorem 2.11. The Jacobian of a biholomorphism is everywhere invertible.
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More local theory of holomorphic functions are given in the language of the stalk of sheaf of holomorphic
functions.

Theorem 2.12 (Weierstrass Division Theorem). Let f € Ocn g and g € Ocn-10[21] a Weierstrass polyno-
mial of degree d. Then there exists r € Ogn-1o[21] of degree < d and h € Ocn o such that

f=g-h+r,
and such functions h and r are uniquely determined.
As a consequence,

Theorem 2.13. Ocn g is a local UFD: every element in Ocn o can be factorized (up to a unit) as a product
of Weierstrass poynomials irreducible in Ogn-1 g[z1], which are also irreducible in Ocn . The local UFD
Ocr o is Noetherian.

Theorem 2.14. Let g € Ocn o be irreducible. If f € Ocn o such that f vanishes on Z(g), then g | f.

Definition 2.15. A germ X C C” in 0 is analytic if there exists f1, ..., fx € Ocn o such that X = Z(f1, ..., fx)
as germs. An analytic germ X is irreducible if whenever X = X; U X5 where X7, X are germs, then X = X3
or X = Xo.

Proposition 2.16. For each ideal I C Ocn o, Z(I) is analytic. An analytic germ X is irreducible if and
only if I(X) C Ocn o is a prime ideal.

Theorem 2.17 (Nullstellensatz). For each ideal I C Ocn o, VI = I(Z(I)).

When an analytic germ X has codimension 1, i.e. X = Z(f) for a single non-trivial function f € Ogn g,
we have I(X) = /(f) = (g), where g is the product of irreducible factors of f € Ocn . We call g the
defining function for the analytic germ X.

Proposition 2.18. Let f € Og¢n o be irreducible. Then for all z € C™ sufficiently close to 0, f € Ocn . is
irreducible.
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3 Complex Manifolds

3.1 Manifolds and Tensor Bundles

Definition 3.1. A complex manifold is a differentiable manifold of even real dimension equipped with a
complex structure: there exists a covering by open sets, which are diffeomorphic to open sets of C", such
that the transition diffeomorphisms are holomorphic.

Definition 3.2. An almost complex structure on a differentiable manifold is a vector bundle morphism
I:Txr — Txr such that I 2 = —1d. Equivalently, it is the structure of a complex vector bundle on Tx R

Let (X,I) be an almost complex manifold. Then there is decomposition of Tx ¢ into eigenspaces of I
with eigenvalues =i:
Txc=Ty ®Ty,

. (u—é](u)7u+él(u))-

Proposition 3.3. Let X be a complex manifold. Then T)l(’O is isomorphic to the holomorphic tangent bundle
Tx as complex vector bundles.

Every complex manifold induces an almost complex structure. In holomorphic coordinates (z; = x; +1iy;),
I is multiplication by %, or equivalently I sends d,, to d,, and 0, to —0,,. We can thus identify the complex
vector bundles
(TX,]Ry I) =~ T)l(’o = Tx,

(a”ﬂq,/Z’ 83}7/2) A (8Zi’ Zazq) A (azm 2327) .

Theorem 3.4 (Newlander-Nirenberg). Let (X,I) be an almost complex manifold. The almost complex
structure I is integrable, i.e. induced by a complex structure on X, if and only if one of the following
equivalent conditions holds:

o [T 7

e da = da + da for all a € A*(X), i.e. d maps AP9(X) into APT19(X) @ APIHL(X)
e da has no (0,2)-part for all « € AM9(X).

¢« Da=0 for all o« € A*(X).

Here AP-? denotes the sheaf of (differentiable) sections of the complex vector bundle Q7. See below. Some
objects defined with respect to the real tensor bundles, e.g. complex structure, metric, exterior derivative,
covariant derivative, connection, Lie bracket, has natural C-linear extensions to complexified bundles (-)®gC,
and in the sequal we use them without furthur notice.

Let (X, I) be an almost complex manifold. Dual to the decomposition of Tx ¢, we have

QX,(C = Q‘IX)O 2] Qgéla
and hence the decomposition of complex k-forms:
k p 0 q o
Nove= @ - @ (Aoke o),
p+q=Fk p+q=Fk

Definition 3.5. Let X" be a complex manifold. Define the holomorphic cotangent bundle Q2x as the dual
of the holomorphic tangent bundle T'x. Define the holomorphic vector bundle of holomorphic p-forms as
Q% = APQx. The canonical bundle is Kx := A"Qx = det(Qx).
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Definition 3.6. A complex submanifold Y of a complex manifold X is a differentiable submanifold whose
tangent space, identified with a subspace of the tangent space of X, is stable under the almost complex
structure on X.

By Newlander-Nirenberg and theory of holomorphic functions, this is equivalent to defining complex
submanifolds of codimension k as subsets Y C X such that for each y € Y, there exists a neighborhood of y
in Y that equals the vanishing set of £ holomorphic functions defined in a neighborhood of y in X with C-
linearly independent differentials. When Y is embedded, this is equivalent to the existence of a holomorphic
atlas {(U;, ¢;)} on X such that @; : U; NY =2 ;(U;) N C" ¥ for each i.

Proposition 3.7 (Adjunction Formula). Let Y C X be a complex submanifold. Then there is natural
isomorphism
Ky = (Kx)|y & det(Nyp()

Theorem 3.8 (Construction of Complex Manifolds via Quotient). Let G ~ X be a free and proper action
by a complex Lie group G on a complex manifold X. Then X/G is a complex manifold such that the quotient
map X — X/G is holomorphic.

Definition 3.9 (Analytic Subvariety). An analytic subvariety of a complex manifold X is a closed subset
Y C X such that for each x € X, there exists a neighborhood z € U C X such that Y NU = Z(f1, ..., fx)
for some f1,..., fr € Ox(U). y € Y is regular if the holomorphic map (fi, ..., fx) : U — CF is regular at y.

Theorem 3.10. The regular part of an analytic subvariety of X is a complex submanifold of X. The singular
part of an analytic subvariety is also an analytic subvariety of X, of strictly smaller dimension.

Theorem 3.11. An analytic subvariety Z C X can be locally written as a finite union of irreducible analytic
subsets. If Z is compact, then Z can be written as a finite union of irreducible analytic subvarieties.

Theorem 3.12. FEvery analytic hypersurface Y C X can be written uniquely as the union of irreducible
analytic hypersurfaces Y = Y1 U---UY,,, where Y; are closures of the connected components of Y, egq.

Theorem 3.13. An analytic subvariety Y C X is irreducible if and only if Y,eq is connected.

Theorem 3.14 (Proper Mapping Theorem). Let f : X — Y be a holomorphic map between complex
manifolds. Suppose V. C X is an analytic subvariety and f|y is proper map, then f(V) C Y is analytic
subvariety.
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3.2 0O-Poincaré and Dolbeault Complex

First recall the d-Poincaré:

Theorem 3.15 (d-Poincaré). Let a be a d-closed differentiable form of strictly positive degree on a differ-
entiable manifold. Then locally there exists a differential form B such that dB = a.

Theorem 3.16 (0-Poincaré). Let a € AP9(X) be a O-closed differential form of type (p,q) on a complex
manifold X, where ¢ > 0. Then locally there exists a differential form B of type (p,q — 1) such that 08 = «.

Let A%? denote the sheaf of differentiable sections of Q%? ® E, where E — X is any holomorphic vector
bundle. There is Dolbeault operator
O : ADT 5 APt
defined such that L
0 =0,
Tp(fa) = 3f Aa + fs(a)

for all smooth function f : U — C and section o € AR(U), for all open sets U C X. For any local
holomorphic frame e; of E, one has B B
Op(a; @ ej) = (o) ® ;.
The Dolbeault complex
0—>A%’0—>A%1 —>A%2—>...
is thus a resolution of the sheaf E by d-Poincaré.

Theorem 3.17. Let E be a complex vector bundle over a complex manifold X. A holomorphic structure
on E is uniquely determined by a C-linear operator Op : A%O — A%’l satisfying the Leibniz rule and the

=2
integrability condition 0 = 0.
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3.3 Kahler Metrics

Let X be a complex manifold with induced almost complex structure I.

Definition 3.18. A Hermitian metric h on X is a collection of (positive definite) Hermitian metrics h, on
complex vector spaces (T g, ;) that varies smoothly on .

In coordinates, using C-basis {9y, } for (T r,I), we can represent h by
hij = h(arlaazj)7

where (h;;) is a Hermitian matrix and h;; are smooth C-valued functions. The associated fundamental form
is defined as
w=-ImheQy' NQ%kp.
In coordinates above, .
w= %hijdzi Adz.
w is Kahler if it is d-closed. Similarly,

g=Reh,

defines a Riemannian metric
g = Re(hij)dz’ @ dz? + Tm(h;;)dz’ @ dy? — Tm(hij)dy' @ da? + Re(hq;)dy’ @ dy’.
Moreover, h, w, g are compatible with the almost complex structure, and
g(Tu,v) = w(u,v), glu,v)=wu,Iv), Yu,veT,xg.

The volume form is "

Vdet(g)dzt Adyt A Ada™ A dy™ = %

Theorem 3.19 (Existence of Normal Coordinate). Let (X,w) be a Kdhler manifold. For each x € X, there
ezists a normal holomorphic coordinate near x, where w is given by

1

)

wﬁdzi AdZ,
such that
wiz () = dij,
Oow= Ow,.=

3 _ 9 _
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3.4 Connections
Let £ — X be a holomorphic vector bundle. A connection on F is an operator
V:AY — AL

satisfying the Leibniz rule:

V(fo)=df ® o+ fV(0)
for all smooth function f : U — C and section o € A%(U), for all open sets U C X.

Theorem 3.20 (Chern Connection). Let (E,h) — X be a holomorphic vector bundle equipped with a
Hermitian metric h. There exists a unique connection V on E satisfying:

e V is compatible with h, i.e.

d(h(o,7)) = h(V(0),7) + h(o,V (1)), Vo,7c A%,

o VOl =05 : Ay — AR

Theorem 3.21. Let h be a Hermitian metric on the holomorphic tangent bundle Tx. The following are
equivalent:

e h is Kdhler,

o The almost complex structure I is flat for the Levi-Civita connection:

V(IV)=1VV, YV ecA)

Tx r?

e The Chern connection and the Levi-Civita connection coincide under identification Tx = (Txg,I),
identified via the map taking the real part.
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4 Sheaf and Cohomology

4.1 Presheaf and Sheaf

Definition 4.1. Let X be a topological space. A presheaf F of abelian groups over X is given by an abelian
group F(U) for each open set U C X, together with a restriction morphism pyyv : F(U) — F(V) for each
pair of open sets V' C U, such that for each triple of open sets W C V C U, one has pyw = pvw © puv.

A presheaf morphism consist of group morphisms over sections which commute with restrictions.

Definition 4.2. A sheaf of abelian groups is a presheaf satisfying the gluing condition: for each open set
U C X and each covering of U by open sets V € V), the natural map

[Loov:7U) = [F(V)
v v

induces an isomorphism of F(U) onto

{(ov)vev | ovlwnv = ow|wrvy VW,V € V}.

Proposition 4.3 (Universality of Sheafification). For each presheaf F, there exists a unique sheaf Fy such
that

e There is a presheaf morphism
d) F = ]:f

e For every presheaf morphism
v:F—=G

where G is a sheaf, there exists a unique sheaf morphism ¥ : Fy — G such that
Fy
q{ x
Fig
In this case the sheafification induces isomorphisms on stalks:
¢m:fngfw, Vo € X.
Definition 4.4. Let A be a sheaf of rings over X. A sheaf F of A-modules is a sheaf such that

e cach F(U) is equipped with the structure of an A(U)-module compatible with its group structure

e the restriction morphisms F(U) — F(V) are morphisms of A(U)-modules, where F(V') is equipped
with the structure of an A(U)-module via the restriction morphism A(U) — A(V).

Definition 4.5. A sheaf F of A-modules is a sheaf of free A-modules of rank n if there exists a covering of
X by open sets U and isomorphisms of sheaves of A-modules 7y : Fly = Al|f; over each U.

The correspondence between a vector bundle and the sheaf of its sections establishes a bijection (in fact
an equivalence of categories) between vector bundles and sheaves of free .A-modules, for some appropriate
choice of the type of vector bundles and A. For example, between holomorphic vector bundles over complex
manifold X and sheaves of free O x-modules.

Proposition 4.6 (Injective Sheaf Morphism). Let ¢ : F — G be a morphism of sheaves. The following are
equivalent:



4 Sheaf and Cohomology 4.1 Presheaf and Sheaf

e ¢ is injective
o the kernel sheaf ker ¢ is zero
e the morphisms on stalks ¢y : Fr — Gy is injective for all x € X.

Moreover, the natural inclusion i : ker ¢ — F always induces isomorphisms
iy (ker @), = ker(¢,), VrelX.

Proposition 4.7 (Surjective Sheaf Morphism). Let ¢ : F — G be a morphism of sheaves. The following are
equivalent:

e ¢ is surjective
e the image sheaf Im ¢ (sheafification of the image presheaf) is equal to G
e the morphisms on stalks ¢y : Fp — G, is surjective for all x € X.

The inclusion j : Im ¢ — G induced by the inclusion of the image presheaf into G always induces isomor-
phisms

Ja - (Im¢)x = Im(¢az>7 Vr € X.

There is sheaf isomorphism

F/ker ¢ = Im ¢.

The cokernel sheaf coker ¢ of ¢ : F — G is the sheafification of the cokernel presheaf. We have
coker ¢ = G/Im ¢,
(coker @), = G,/ Im(¢y).

The exactness of a sequence of sheaves

at G means Im ¢ = ker ¢, or equivalently the exactness of sequences

for all z € X.

These definitions make the category of sheaves of abelian groups an abelian category, and we can treat
them just like the category of abelian groups when we talk about sequences, complexes, resolutions, etc.

10
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4.2 Examples of Resolutions

Define the Cech resolution of a sheaf F as follows. Fix a countable open covering U = {U;} of X. For each
finite set I C N, let U; := N, U;. Define sheaves

ctwu,F) =[] Fn
[T|=k+1

where the sheaves F7 are defined via F;(U) := F(UNU;). Define sheaf morphisms d : C* (U, F) — C*1(U, F)
by

(do—)jOv---vjk+1 = Z (_1)1 T oreerdineednt |UﬁUﬂ'0 ----- Jkt1? Jo <+ < Jrat,

for each section o = (o7), I CN, [I| =k + 1, o1 € Fr(U) = F(UNU;). We then have the Cech resolution
0—— F 25 oW, F) —2 C'U,F) —2 C2UF) — ...
for F, where the injection j : F — C°(U, F) is given by

jlo)i=oclvau,, o€ F).

Define the de Rham resolution as follows. Let X be a differentiable manifold, and R denote the sheaf of
locally constant real-valued functions. Then we have de Rham resolution of R:

J 0 d 1 d 2
0 R Qx r Qxp — Qg — ...
where j is the natural inclusion, and d are exterior differentials. The exactness is given by d-Poincaré.

Define the Dolbeault resolution as follows. Let E be a holomorphic vector bundle over complex manifold
X. Using the definition of g and 0-Poincaré, we have a resolution for E, the sheaf of holomorphic sections
of E:

O

j 9
0 E —— Ay’ At — A ——

More generally, we have resolutions for holomorphic vector bundles Q% ® E:

J 0 0 1 0
0— QX ®F ApS — A —

p,2
AE

11



4 Sheaf and Cohomology 4.3 Functors and Derived Functors

4.3 Functors and Derived Functors

Here are some abstract theory for the abelian category useful to the construction of sheaf cohomology.

Definition 4.8. An object I of an abelian category is injective if for every injective morphism j : A — B
and for every morphism ¢ : A — I, there exists a morphism v : B — I such that ¢ o j = ¢.

An abelian category has sufficiently many injective objects if every object A admits an injective morphism
j : A — I for some injective object I.

Proposition 4.9. In an abelian category having sufficiently many injective objects, every object admits an
injetive resolution, i.e. a resolution I' consisting of injective objects.

Injective resolution is unique up to homotopy equivalence.

Proposition 4.10. Let (I',i : A — I°) and (J',j : B — J°) be resolutions of A, B respectively. Let
¢ : A — B be a morphism. If the second resolution is injective, there exists a morphism of complezres
¢ I = J such that $° 0i = jo ¢:

0 A—L5 0 It I2
¢ ¢0l <z>1l q%
0 B JO J! J?

J

Moreover, if we have two such morphisms ¢ and 1", then there exists a homotopy H' between ¢ and 1.

From now on, let C,C’ be two abelian categories. Assume C has sufficiently many injective objects. Let
F be a left-exact functor from C to C'.

Theorem 4.11 (Derived Functor). For every object M of C, there exist objects R'F(M), i > 0, in C',
determined up to isomorphism, satisfying the following conditions:

o ROF(M) = F(M)

e For each short exact sequence

0 A—2sB-YsC 0
in C, we can construct a long exact sequence in C':

¢

0 —— F(A) —2 F(B)

F(C) R'F(A) — R'F(B) —— R'F(C) — ...

e For every injective object I of C, we have R'F(I) =0 for all i > 0.

In this case, we can define R'F(A) = HY(F(I')), the cohomology of the complex F(I'), where I" is any
injective resolution of A.

Proposition 4.12 (Functoriality of R'F). If ¢ : A — B is a morphism in C, and I', J are injective
resolutions of A and B respectively. Then there exists a canonical morphism induced by ¢,

R'F(¢): R'F(A) — R'F(B),
where R'F(A), R'F(B) are given by I", J  respectively.
We can use acyclic resolutions (weaker than injective) to compute the cohomology.
Definition 4.13. An object M of C is acyclic for the functor F if RF(M) = 0 for all i > 0.

Proposition 4.14. Let (M',i: A — M) be a resolution of A, where M* are F-acyclic. Then R'F(A) =
HY(F(M)).

12
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4.4 Sheaf Cohomology

We now consider the category C of sheaves of abelian groups over a topological space X, and the category
C’ of abelian groups.

Lemma 4.15. The following are true:

e C is an abelian category.

e C has sufficiently many injective objects.

o The functor T : C — C’ taking the global section is left-exact. Hence write R'T'(F) =: H'(X, F).
Definition 4.16. A sheaf F is flasque if all restriction maps F(U) — F(V) are surjective.
Proposition 4.17. Flasque sheaves are I'-acyclic.

Definition 4.18. A fine sheaf F is a sheaf of A-modules, where A is a sheaf of rings over X satisfying the
partition of unity property: for each open cover {U;} of X, there exists f; € A(X) with compact support
inside Uj, such that ), f; = 1 and the sum is locally finite.

Proposition 4.19. A fine sheaf F is I'-acyclic, i.e. H(X,F) =0 for all i > 0.
Theorem 4.20 (De Rham Cohomology). Let X be a C* manifold. Then

Hk(X R) = ker (d : Q%R(X) — Q’?"ﬂi (X))

Im (d LR (X) — Q’?g,R(X)) .

A similar equality holds for H*(X,C). Hence H*(X,C) = H*(X,R) ® C.

Theorem 4.21 (Dolbeault Cohomology). Let E be a holomorphic vector bundle over a complex manifold
X. Then

ker (5,; L ARI(X) - quﬂ(X))
HP(X,E):=HI(X,0% ® F) =

Im (EE AR X) Af;;q(X)) '

In particular, B
ker (9 : AP1(X) — APITL(X))

Im (9 : AP9~1(X) — AP4(X))

HP9(X) = HP9(X,0x) =

Cohomology for general sheaves can be computed via Cech cohomology as follows. Let U = {U;} be a
countable ordered open covering of X.

Theorem 4.22 (Cech Cohomology for Nice Covering). If for each I C N, |I| < oo, the open sets Us satisfy
HY(U;,F) =0 for all ¢ > 0, then

HYX,F)=HYU,F):=H(CU,F)X)),
where C' (U, F) is the Cech resolution for F with respect to U constructed above:

cu,FX)= [[ Fwn).
[T|=q+1

When the open cover U does not satisfy the assumption above, note that by choosing an injective
resolution for F, Proposition [£.10] gives a canonical morphism

HYU,F) — HI(X, F).

Ordering open covering by refinement, we have

13
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Theorem 4.23 (Cech Cohomology for Arbitrary Covering). If X is separable, the morphisms HY (U, F) —
HY(X,F) for each open covering U induce an isomorphism

lim H(U, F) = H(X, F).
u

Theorem 4.24 (De Rham Theorems). Let X be a locally contractible topological space. There is canonical
isomorphism
Hq

sing

(X,2) = HY(X,Z),

and the same result holds with Z replaced by any commutative ring R, identified with the locally constant
sheaf R.

Moreover, when X is a differentiable manifold, there is isomorphism

Hq

sing

(X,R) > HI,(X,R) = Hom(H;ing(X, 7),R),

and the second isomorphism is induced by sending a closed q-form w to the linear form

Jorem [ o

for each singular q-chain ¢ : Ay = X.

14
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4.5 The Group H' and Cocycle

Let F be a sheaf of abelian groups over a separable topological space X. Then every element of H'(X, F)
can be represented by a Cech cocycle for a suitable open covering of X. To see this, fix an injective sheaf
morphism F — I, where [ is injective. Then there is a short exact sequence

0>F—=1—-G—0,
whose associated long exact sequence of cohomology gives isomorphism
H'(X,F) = coker (H*(X,I) — H°(X,G)),

since HY(X,I) = 0. Fix o € HY(X,F), which thus can be represented by a global section 8 € G(X). By
surjectivity of I — G, there exists a countable open covering U = {U;} of X such that g lifts to sections
B; € I(U;). By exactness, B;; := f; — B, is a section of F over U;;. Then {f;; € F(U;;)} is a cocyle in
CH (U, F)(X),

Bij — Bir. + Bijr. = 0 € F(Uijk),

and thus determines a class y € H* (U, F). This class does not depend on the liftings or on the representative

3.

Theorem 4.25. Let A be one of the sheaves of rings C, Cf;(’(c, Ox (the last one in the case where X is

a complex manifold), and A* the sheaf of corresponding multiplicative groups. The group H'(X,A*) is in
bijection with

e the set of isomorphism classes of sheaves of free A-modules of rank 1, and also with

e the set of isomorphism classes of complex line bundles equipped with flat, continuous, or holomorphic
structures according to A.

In particular, this bijection is a group isomorphism Pic(X) = H'(X, 0%), where Pic(X) is the group of
isomorphism classes of holomorphic line bundles over X with group operation ®.

Theorem 4.26. Let E be a holomorphic vector bundle over a complex manifold, identified with the sheaf of
its holomorphic sections. Then group H' (X, E) is in bijection with the isomorphism classes of extensions of
E by the trivial bundle, i.e. of holomorphic vector bundles F' containing E as a holomorphic vector subbundle
such that the quotient bundle is the trivial line bundle Ox :

0>F—F—0x—0.
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5 Holomorphic Vector Bundles

5.1 Divisors and Line Bundles
Let X be a complex manifold.

Definition 5.1. The (Weil) divisor group Div(X) is the set of locally finite formal Z-linear combinations
of irreducible analytic hypersurfaces of X, equipped with the natural group structure. Locally finite means:
writing D € Div(X) as D = ) a;Y;, then for each x € X, there exists an open neighborhood z € U C X
such that there are only finitely many coefficients a; # 0 such that Y; N U # ().

Definition 5.2. A divisor D =} a;Y; is effective if a; > 0 for all 7.

Let Y C X be any irreducible analytic hypersurface, and y € Y any point. Pick any local defining
function g € Ox 4 for Y near y, which is unique up to a unit. Then the order along Y at y of a holomorphic
function f defined near y, ordy,,(f), is the largest integer a such that g% | f in Ox . This order is locally
independent of the point y, so that by connectedness of Y,.,4, ordy (f) is well-defined for any f € Ox(X).
Similarly, there is well-defined order along Y for each global meromorphic function f € Kx(X), such that

Ordy(flfg) = Ordy(fl) + Ol"dy(fg), Vfl, f2 S ’Cx(X)

For each f € K% (X), the associated divisor is

(f) = _ordy(f) Y € Div(X),

where Y ranges over all irreducible hypersurfaces of X.
The connection between meromorphic functions and irreducible hypersurfaces via order gives

Proposition 5.3 (Cartier Divisor and Weil Divisor). There exists a natural isomorphism
HY(X, K% /O%) = Div(X).
The exact sequence
0—-0% - Kx - K%/O0%x =0
gives the natural group homomorphism
O : Div(X) — H' (X, 0%) = Pic(X),
whose kernel, called principal divisors, is the image of
K% (X)=HX,K%) = H*(X,K%/O%).

The map O takes a global section of K% /O% represented by f; € K% (U;) to the line bundle given by
transition maps {y;; = fi/f; € O%(Ui;)}.

From above, principal divisors consist exactly of (f) € Div(X) where f € K%(X). Two divisors are
linearly equivalent if their difference is principal.

Proposition 5.4 (Pullback of Divisors). Let f: X — Y be a holomorphic map between connected complex
manifolds, and suppose that [ is dominant, i.e. f(X) is dense in Y. The the pullback defines a group
homomorphism

f*:Div(Y) — Div(X),

such that the diagram commutes:
Div(Y) —2 Pic(Y)

f*l lf*

Div(X) - Pic(X)
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5 Holomorphic Vector Bundles 5.1 Divisors and Line Bundles

Similarly, viewing a non-zero global section of a holomorphic line bundle as a global section of K% /O%
via line bundle trivialization, we have a map

Z:H°(X, L)\ {0} = Div(X)
for each holomorphic line bundle L — X, such that each Z(s) is effective divisor, and
Z(s1®82) = Z(s1) + Z(s2), Vs; € H'(X, L)\ {0}.
Proposition 5.5. Let 0 # s € H°(X, L), then O(Z(s)) = L.

Proposition 5.6. For any effective divisor D € Div(X) there exists 0 # s € H°(X,O(D)) such that
Z(s) =D.

Corollary 5.7. Non-trivial sections s; € H°(X,L1) and sy € H°(X, Ly) define linearly equivalent divisors
Z(s1) ~ Z(s2) if and only if L1 = Lo.

Corollary 5.8. The image of O : Div(X) — Pic(X) is generated by line bundles L € Pic(X) with
HO(X,L) #0.

Proposition 5.9. Let Y be a smooth hypersurface of a complex manifold X, defined by a section 0 # s €
H°(X,L) for some holomorphic line bundle L — X. Then Ny|x = Lly and thus Ky = (Kx ® L) |y .

Proposition 5.10. Let Y C X be an irreducible hypersurface. For any 0 # s € H°(X,O(Y)) such that
Z(s) =Y, the sheaf morphism O(=Y) — Ox given by () ® s is injective, and the image is the ideal sheaf
Ty of holomorphic functions vanishing on Y .

Combined with the short exact sequence
0—-Zy -0x -0y —0

defining Oy, we have
0—-0(-Y)—= Ox —- Oy — 0.

More generally, for each effective divisor D = 3 a,;Y;, we have short exact sequences
0—-Zp —0Ox - 0Op —0,
0—0O(-D)— 0Ox - 0Op —0,
where Zp is the ideal sheaf of holomorphic functions vanishing of order at least a; on Y; for each 1.

Proposition 5.11. Suppose L — X is a holomorphic line bundle and sy, ..., sny € H°(X, L) is a basis. Then
the holomorphic map
or: X\ Bs(L) = PV, 2 [so(z):-:zn(z)]

satisfies
©1.0pn (1) = Lx\Bs(1)-

L is called very ample if Bs(L) = () and the map ¢, : X — P¥ is a holomorphic embedding. L is called
ample if L* is very ample for some k > 0.
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5.2 Example: Projective Space and Blow-up

In this note the transition maps for a vector bundle is always written by ¢;; = ; owjfl :U;NU; — GL(n,C).
Let P* = C™*!/C* be the projective space with standard coordinate charts U;, i = 0, ...,n. The tauto-
logical line bundle is
Opn(—1) ={(l,2) eP" x C" ™' | z € 1},

with transition function .
(]
i =—, onU;.
Pij 2 ij
The Fubini-Study metric on P is given in each coordinate U; by

1 = 1
= —00log| ———— | .
Ui T oin g<1+2?_1|zi2>

More generally, given a holomorphic vector bundle E of rank r 4 1, define the projective bundle over X
associated to E:

w

P(E) = (E\ 00)/C,

where o¢ C E is the zero section and C* acts on each fiber of E. P(E) inherits trivializations and transition
maps from E via the quotient C"*1\ {0} — P". Now we have

B E
ql lp
P(E) —/— X

and define the tautological bundle Op(g)(—1) over P(E) to be the line subbundle of 7*E whose fiber at
(z,l C E;) is the line [ C E,. Then Opgy(1) is the dual of Opgy(—1). The restriction of Op(gy(1) to each
fiber 771(x) & P" is naturally isomorphic to Opr(1).

Proposition 5.12. If X is compact Kahler and E — X is holomorphic vector bundle. Then P(E) is compact
Kdhler.

Proposition 5.13 (Global Sections of O(k)). For each k > 0, H°(P", O(k)) = Clzo, ..., o]k, the space of
homogeneously polynomials of degree k. These vector space isomorphisms combine to give a ring isomorphism

@ H (P, 0(k)) = Clzo, ..., z].

k>0
Corollary 5.14. For k <0, H°(P", O(k)) = 0.
Proposition 5.15. The canonical bundle of the projective space is Kpn = O(—n — 1).

Proposition 5.16. Let Y C P™ be a smooth hypersurface of degree k, i.e. defined by a section 0 # s €
HO(P™, O(k)). Then Ky =2 O(k—n—1)|y.

Proposition 5.17 (Euler Sequence). On P™ there is a natural short exact sequence of holomorphic vector
bundles
0— 0= a7_(0(1) = Tpn — 0.

Equivalently,
0— Qpn — @7_(O(=1) = 0 =0,

or twisted by O(1):
0 — Qpn (1) = BF_,O — O(1) — 0.
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Here the map O — @%_,O(1) is induced by the standard basis {zo, ..., z, } of H(P™, O(1)) & Clxo, ..., Zn]1 .

The map ®7_(O(1) = Tpn sends a section o = (0y, ..., 5,) to

0
T (; JZ%) P

where 7 : C"*1\ {0} — P", and o;, which sends each point [ € P" to a linear functional on I C C"*1 extends
naturally to a linear function X € C"*1\ {0} — o;(7(X))(X) € C. In particular, z;(X) = X;.

More generally, given holomorphic vector bundle F — X, there is relative Euler sequence of holomorphic
vector bundles over P(E):

Here Q. = T} is the relative cotangent bundle, defined such that T is the kernel of the vector bundle
morphism Tpgy — 7T, i.e. directions along fibers 7~ (x).

Let Y C X be a complex submanifold of codimension k. Locally there are functions fi, ..., fr € Ox(U)
with independent differentials such that Y NU = Z(f1, ..., fx). Define the local blow-up along Y on U to be

Uy ={(Z,2) eP" ' x U | Zi f;(2) = Z; fi(2) Vi, j <k}
The local blow-ups glue together to give a complex manifold Xy, called the blow-up of X along Y.
Proposition 5.18. The following holds for a blow-up along Y C X:
o The blow-up map 7 : Xy — X is holomorphic, and biholomorphic above X — Y.
e The exceptional divisor D := 7~ 1(Y) = P(Ny/|x).

° OXY(_D)|D = OIP’(NY‘X)(l)'

o If X is Kihler and Y is compact complex submanifold of X, then Xy is Kihler. Moreover, Xy is
compact if X is.

If Y = {x} is a point, we have
o Ky, =7 Kx®0 ((n—1)D).

e On the blow-up neighborhood U of x € X, we have O (D)’rl(U) = p*Opn-1(—1), wherep : 7= 1(U) C
P~ x U — P! is the projection.

o X, is diffeomorphic as an oriented differentiable manifold to the connected sum X #P".
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5.3 Holomorphic Vector Bundles

Lemma 5.19. Let f : E — F be a holomorphic vector bundle homomorphism over a complex manifold X,
in particular, f is of constant rank. Then Im(f) is a holomorphic vector subbundle of F', and we have the
short exact sequence of holomorphic vector bundles

0 — ker(f) = E — Im(f) = 0,

0 — Im(f) = F — coker(f) — 0.

Lemma 5.20. Let X be a complex manifold. Suppose there is a short exact sequence of holomorphic vector
bundles

0-ESFLaoo
Then:

1. F2 E® G as complex (smooth) vector bundles.
2. F =2 E®G as holomorphic vector bundles if and only if either of the following holds:

(a) There exists a holomorphic vector bundle homomorphism ¢ : G — F such that f o p = Idg.

(b) There exists a holomorphic vector bundle homomorphism € : F — E such that e o e = Idg.
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6 Hodge Theory

6.1 Laplacians

Let X™ be a compact oriented differentiable manifold with metric g. The induced metric on tensor bundles
and the identification of R with A"Qx , via the volume form defines the Hodge *-operator

* Q])C(,JR = Q?(_ng
as an isomorphism of vector bundles (or sheaves). We use the same notation for the isomorphism on sections:
*: A%(X) 2 AVH(X).

Lemma 6.1. 1. For o, 8 € A*(X), we have

(a,B):/X(a,ﬁ)volz/ a A *f.

X

2. %2 = (=1)F=F) on AF(X).

3. The operator d* : AF(X) — AF=Y(X) defined by d* := (—1)F «~1 dx = (=1)"*+D+1 s dx s the formal
adjoint of d:
(a,d"B) = (da, B), Vae AHX), B € AMX).

4. The Laplacian Ag := dd* + d*d is self-adjoint, and

(@, Aga) = [|dar|® + |||,

From now assume X is compact complex manifold with dim¢ X = n, equipped with metric g compatible
with the almost complex structure I. The associated Hermitian metric on (T'x g, I) extends to L? Hermitian
metrics on the complexified tensor bundles QI;{,C’ Extend Hodge *-operator C-linearly to Q’}QC as well and
we have

w o QR > QTP

(a,ﬂ):/x(oz,ﬂ)\/olz/ aNx*f, Va,B e AP(X).

X

Lemma 6.2. The operators 7
O* 1= — % Ok 1 APTHI(X) - AP(X)

9" = = 0 s APITH(X) = APY(X)

are formal adjoints of O and O respectively:
(@,0"8) = (9, B), Va € API(X), 5 € APTHIX),

0,0 B) = (0o, B), Va € API(X), € APIH(X).
( ) (0, B)

Hence the Laplacians

Ay = 00" 4+ 070,
Ay =30 +3°,
are self-adjoint. Also, ker Ay = ker 0 Nker 0%, and ker Az = ker @ Nkerd .
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6 Hodge Theory 6.1 Laplacians

Suppose (E,h) — X is a holomorphic vector bundle equipped with a Hermitian metric h. We can then
use g and h to define the C-antilinear isomorphism

¥ ORI EX2QYy PR B,
a®o— (xa) ® ({-,0)).

We thus have L? Hermitian metric on A%

(a,ﬁ):/x(a,ﬁ)\/olz/xa/\¥p;6, Vo, f € ARY(X).

Lemma 6.3. The operator
* % T - AP p,q—1
8E = *E*an*O*E'AE —>AE

is formal adjoint of Op:
(0.958) = @ra.B), Vo€ LX), B e AR (X).
Hence the Laplacian e o
Ap =00 +0glg

is self-adjoint and satisfies analogous properties as other Laplacians above.
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6.2 Hodge Decomposition for Elliptic Differential Operators

Let E, F be two real differentiable vector bundles over differentiable manifold M. Let A% denote the sheaf
of smooth sections of E. For each differential operator

P: A% — A%

of order k, we associate a global section op of Hom(E, F) ® Sym” T'x, called the symbol of the operator
P, which depends only on the k-th order partial derivatives in P. P is elliptic if for every m € M, and
0 # am € Qarym, the homomorphism op ., (a) : E,, — F), is injective.

Lemma 6.4. Let X be a compact complex manifold with Hermitian metric g and Hermitian holomorphic
vector bundle (E,h). The Laplacians A, Ay, Az, A are elliptic operators. All symbols op, have the form

2
Qy € Qx o — —|lag]”1d
except for a constant % for Ay and Ay.

Theorem 6.5 (Demailly). Let (X,g) be a compact oriented manifold. Let P : A% — A% be an elliptic
differential operator between vector bundles E and F' of equal rank and equipped with metrics. Let P* denote
the formal adjoint of P. Then

1. P*: A% — AY is a differential operator of the same order as P.
2. ker P C A%(X) is finite-dimensional.
3. P(A%(X)) € A%(X) is closed and of finite codimension.
4. There is orthogonal decomposition with respect to the L? metric on A%(X):
A%(X) =ker P & P* (A%L(X))
The main step in the proof is to prove the regularity: if P*«a = 8 in the sense of distributions and S is
smooth, then « is smooth.

Theorem 6.6 (Hodge Decomposition: Riemannian Manifold Case). Let (X, g) be a compact oriented man-
ifold. Let H*(X,g) denote the vector space of Aq-harmonic real differential forms of degree k. There is
orthogonal decomposition

ANX) =HNX,g) @ d (A"(X)) @ d* (AR (X))

Then we have an isomorphism
H"(X,g) = H*(X,R)

induced by each sending harmonic form to its class in the de Rham cohomology. Similarly, the complex
harmonic forms HE(X, g) = H*(X,C). H*(X,g) is finite dimensional.

Note that in this case *Ag = Agx*, so there is isomorphism

«: HA(X, g) = H"H(X, g).

Theorem 6.7 (Hodge Decomposition: Hermitian Manifold Case). Let X be a compact complex manifold
equipped with a Hermitian metric g. Let H5*(X,g), H%’q(X, g) denote the vector space of Ap- and Ag-
harmonic forms in AP1(X), respectively. There are orthogonal decompositions

API(X) = HDU(X, g) & 0 (AP (X)) @8 (APT1(X)),
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API(X) = HEI(X, g) @ 0 (AP~19(X)) @ 0* (APH19(X)) .

Then we have an isomorphism
HEY(X, g) = HPI(X)

induced by sending each harmonic form to its class in the Dolbeault cohomology. H%q (X,g) and HYY(X, g)
are finite dimensional.

Note that in this case *Az = Ay, so there is isomorphism

« HEN(X, g) = Hy "M (X, g).

Theorem 6.8 (Hodge Decomposition: Holomorphic Vector Bundle Case). Let (E,h) be a Hermitian
holomorphic vector bundle over a compact compler manifold X equipped with a Hermitian metric g. Let
HP (X, E) denote the vector space of Ag-harmonic sections in AR (X). There is orthogonal decomposition

ABI(X) = HPI(X, E) @ O (Ay*l(X)) 7, (A’gq“(X)) .

Then we have an isomorphism
HPYX,E) 2 HPY(X, E)

induced by sending each harmonic section to its class in the Dolbeault cohomology. Both spaces are finite
dimensional.
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6.3 Duality Theorems

Let F and G be sheaves of A-modules over a topological space X, where A is a commutative ring with unit.
There is natural A-module morphism

HP(X,F)®4 HY(X,G) — H"" (X, F24G).
When F = G = A is a sheaf of rings and A = Z, the map given by the product
A A— A
induces homomorphisms H*(A®.A) — H*(A), which, composed with the map above, give the cup product
HP (X, A) @ HY(X,A) — H"TI(X, A),

(o, B) = a U B.

If (X, g) is an n-dimensional connected compact oriented manifold, the cup product
HP(X,R) @ H" P(X,R) - H"(X,R) ZR
is induced by the bilinear map
(v, B) = / anp
M
for closed p-form v and closed (n—p)-form 3, once we identify H*(X,R) & H% (X, R). This bilinear pairing
HP(X,R) x H" P(X,R) - R
is non-degenerate. The key observation is that * commutes with A,, and hence
*: HP(X, g) = H"P(X, g).
Therefore we have a natural isomorphism
H,(X,R)" 2 HP(X,R) = H"P(X,R)".
In fact, the Poincaré duality gives a canonical isomorphism
H,(X,Z)= H"?(X,Z).

Theorem 6.9 (Serre Duality). Let (E, h) be a Hermitian holomorphic vector bundle over a compact complex
mamnifold X equipped with a Hermitian metric g. The bilinear pairing

HP(X,E) x H" P~ 9(X, E*) = C

induced by
(@, B) / aAB, acAYX)Nkerdg, B € ANPTUX) A ker O
X

is non-degenerate. Moreover, we have C-antilinear isomorphism
¥ HPUX,E) X HPTIU(X, EY),
and natural C-linear isomorphism

HP4(X,E) = H" P"4(X, E*)*.
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6.4 Hodge Theory on Kahler Manifolds
In this section let (X,w) be a Kéhler manifold with complex dimension n.
Definition 6.10. The Lefschetz operator L : A* — A**2 is defined such that Lo = o A w.
Lemma 6.11. The dual Lefschetz operator
A AR AFT2
A= (=1)%% Lx =« 1L
is the formal adjoint of L with respect to the Hermatian metric on each ¥ ¢ . induced by w.

Proposition 6.12 (Kahler Identities). Let (X,w) be a Kdhler manifold. Then

[0,L]=[0,L] =0
[@,A]=[0",A] =0
[@,L]=id, [0*,L]=—id
[0,A] =i0*, [0,A] = —iD
Ap=N0y= %Ad

and Ay commutes with , 9, 0, 8*,5*, L, and A.

Proof Idea. Compute in normal coordinate at a point. For line 3 and 4, it is equivalent to proving the
equality of the symbols of the corresponding 1-st order differential operators, since they have no zero-order
terms. O

Corollary 6.13. Let (X,w) be a Kdhler manifold. Then
Hi(X,9)= P H(X,9)
p+q=Fk
given by the bidegree decomposition.

Theorem 6.14 (Hodge Decomposition: Ké&hler Case). Let (X,w) be a compact Kihler manifold. The
decomposition

H*(X,C)= € H"(X)

p+q=k
induced by the isomorphisms given above:
H"(X,C) = H*(X, g)
HP(X) = WX, g)
HH(X,9)= P H"(X,9)

p+q=k

does not depend on the choice of Kdhler metric w.

The Hodge decomposition of cohomology depends essentially on the 00-Lemma, which follows from the
Hodge decomposition for forms.

Lemma 6.15 (00-Lemma). Let (X,w) be a compact Kihler manifold. Let o € AP9(X) be d-closed. TFAE:

1. « is d-ezact, i.e. o= dB for some 3 € APTI71(X).
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2. « is O-ezact, i.e. o= O for some € AP~1LI(X).
3. « is 0-ezact, i.e. o = 0B for some € API71(X).
4. ais 90-ezact, i.e. o = 00 3 for some € AP~1471(X).

By Hodge decomposition, the complex conjugation of forms induces natural maps on H*(X,C) such

that HP4(X) = H?P(X). We can represent each class [a] € HP9(X) by a d-closed (p, ¢)-form «, and then
[a] =[] € HT?(X).

Proposition 6.16. Let X be a compact Kdhler manifold. Then

HU(X,R) & {d—closedjeal (1, 1)-forms}
’ 190 C>(X,R)
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6.5 Lefschetz Theorems

Let (X,w) be a Kdhler manifold with complex dimension n. Let L, A denote the corresponding Lefschetz
and dual Lefschetz operators on the real and complexified tensor bundles. L is real operator of bidegree
(1,1) in the bidegree decomposition of complexified bundles.

Lemma 6.17. [L,A] = (k —n)1d, and [L,A] = i(k —n+i—1)L"~! on A”.
Lemma 6.18. The vector bundle morphism
—k . Ok —k
L" : QX,R — Q%’;R
or equivalently, the operator of order zero
Lnfk . Ak N A2n7k
is an isomorphism. In the complezified case, there is isomorphism
Lk AP 5 gn—anp
for each p+ q =k < n, and hence isomorphism
LR HPU(X, g) = H TP (X g).
Definition 6.19. An element o € Q% . (or Q% ¢ ) is primitive if Ao = 0. Define Q% ,  to be the
primitive elements in Q’)“(,R,x.
Proposition 6.20 (Lefschetz Decomposition on Forms). For each k, there is orthogonal decomposition
QIJCQRJ = @ LTQ’;D%;J?
r>0
with respect to the induced metric on forms. Moreover,
1. Q% g, =0ifk>n
2. Q?(,R,x,p =ker L" " if k < n.
Therefore, we have orthogonal decomposition
kE_ k—2
A" = @LTAP "
r>0
In the complezified case, we have orthogonal decomposition
AP = @LTAZ_NJ—T.
r>0
Assume now (X,w) is comapct Kéhler manifold of complex dimension n. Let
L: H*(X,R) - H"*%(X,R)
A: H¥(X,R) —» H*2(X,R)

denote the Lefschetz and dual Lefschetz operators on cohomology. Then L[a] = [a A w] for each d-closed
a € A¥(X). Ala] = [Aa] for each harmonic a € H¥(X, g). These operators depend only on the cohomology
class [w] € H?(X,R). By Hodge decomposition, in the complexified case,

L: HP9(X) — HPThar(X)
A HP(X) — HP LX)
Let H*(X,R),, H*(X,C),, H?(X),, HP?(X,R), denote the primitive classes, i.e. kernel of A. Then

H*(X,C), = H*(X,R), @ C= @ H"(X),.
p+q=k
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Theorem 6.21 (Hard Lefschetz). For each k < n,
Lk H*(X,R) —» H*"*(X,R)
is an isomorphism. For any k, there is decomposition

H*(X,R) =@ L"H" ' (X,R),

r>0

H*(X,C) =@ L"H**(X,C),

r>0
HP(X) =@ L H 7" (X),
r>0
HP?(X,R) = (P L' H" """ (X,R),
r>0

Proposition 6.22. For each primitive element o € QY% C Q?(,C,x’ we have

A

Define the intersection form @ on H*(X,R) for each k < n:

Q(a, B) = (L"*a, ) = / WF AN B.

X
Then Hy(a,B) = i*Q(a, ) is a Hermitian form on H*(X,C).

Proposition 6.23. The Hard Lefschetz decomposition

HMX,C) =@ L"H*(X,C),
r>0
is orthogonal with respect to Hy for each k < n.
Theorem 6.24 (Hodge-Riemann Bilinear Relation). The Hodge decomposition
H*(X,C)= @ H"(X)
p+q=k
is orthogonal with respect to Hy for each k < n. Moreover, for each p+ q =k < n, the form

(=1

kk=1)
2 quka

is positive definite on HP1(X),,:

k(k—1) |

(=1)" = zp*q/ W FAaana>0, Y0 # o € HP(X),.
X
Proof Idea. A cohomology class [a] is primitive if and only its unique harmonic representative « is primitive
form. Relate the form to [|af; = [y a A *@. O

Corollary 6.25 (Hodge Index Theorem). Let X be a compact Kihler surface. The intersection form Q on
H?(X,R):

Q(a,ﬁ)z/XaAﬁ

has index (2h*°(X) + 1,21 (X) —1). The restriction to H'(X,R) is of index (1,h11(X) —1).
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6 Hodge Theory 6.5 Lefschetz Theorems

Corollary 6.26. Let X be a compact Kdhler manifold of even complex dimension n. The signature of the
intersection form @ on H™"(X,R) is

n

sgn(Q) = ) (~1)PhPI(X).

P,g=0

On a compact Kéhler manifold (X™, w), some useful relations between (primitive) Hodge numbers include:

1. h?9 = h?P by complex conjugation,

2. hP4 = p"P"74 by Serre duality,

3. hP1 = p"~9"~P by Hodge *-operator,

4. P9 =357 oo hpm97" for p+ q < n by Hard Lefschetz.
Proposition 6.27. Let X be a compact Kdhler manifold. The two maps

H*(X,C) —» H*?(X) = H*(X,Ox)

induced by

e sheaf inclusion C — Ox

e projection via Hodge decomposition
coincide.

Proof Idea. The map on cohomology induced by morphism of sheaves can be described by any morphism
of resolutions between these sheaves. Use de Rham resolution for C and Dolbeault resolution for Ox with
morphism of resolution I1%* : 4 — A0k, O

Theorem 6.28 (Lefschetz Theorem on (1,1)-Classes). Let X be a compact Kahler manifold. The image
NS(X) (Neron-Severi group) of map c; : Pic(X) = HY(X,0%) — H*(X,Z) — H*(X,C) induced by the
short exact sequence

0—-Z—0x —>0% —0

equals H-'(X,Z) = H*Y(X)NIm (H?*(X,Z) — H*(X,C)).
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7 Connection and Curvature

7 Connection and Curvature

7.1 Connection

Let (E, h) be a Hermitian vector bundle of (complex) rank r over a smooth manifold X. In local trivialization
of EF over U C X, h is given by a Hermitian matrix Hy : U — GL(r,C). Let vyy : UNV — GL(r,C)
denote the transition maps of E from V to U, then

Hy =gy Huduv .
The following are basic constructions of Hermitian structures.

1. If E, F are Hermitian vector bundles, then there are natural Hermitian structureson E® F, E® F,
Hom(E, F). In particular, (E*, g) induced from (F, h) is given locally by Hermitian matrix

1

Gu ZHiUi = HET.

There is natural C-antilinear isomorphism F = E* as real vector bundles.

2. If (X,g) is Hermitian manifold, then the Hermitian metric g on (T'x g, ) induce natural Hermitian
metrics on all complexified tensor bundles of X, e.g. A”? X.

3. If (E, h) is Hermitian vector bundle and F C E subbundle, then A restricts to a Hermitian metric on
F and its orthogonal complement F- with respect to h. Since £ = F @ F+ and F+ = E/F, h induces
Hermitian metric on E/F.

4. Let f: X — Y be a smooth map and (E,h) — Y. Then f*E — X has natural Hermitian structure
J[*h given by (f*h). = hfg) on (f*E), = Ej@y). In local trivialization, the Hermitian matrix is
f*Hy : f71(U) — GL(r,C) for each U C Y.

5. Let L — X be a holomorphic line bundle. Suppose L is globally generated by sections sy, ...,sy €
H°(X, L), then these sections induce a Hermitian structure on L, given in each local trivialization

’(/JUZLU—>UX(be
1

S lvu (sl
An important example is Opn (1) globally generated by zo, ..., z, € H°(P", O(1)).

Hy

Assume 7 : E — X is a complex vector bundle over a real manifold X.
Definition 7.1. A connection on F is a C-linear sheaf morphism
VALY = AL

satisfying the Leibniz rule:
V(fo)=df ® c+ fVo

for all U C X open, o € AL(U), f € A°(U). A section o of E is parallel if V(o) = 0.
As a sheaf morphism, V(o)(z) € QL ® E, depends only on the germ of o at z.

Proposition 7.2. The set of all connections on a vector bundle E is naturally an affine space over the
complex vector space Aénd(E)(X).

Proof Idea. The difference between any two connections is A%-linear. Use local frame for E to find the
representation of V — V’ in .AlEnd(E) (X). O

31



7 Connection and Curvature 7.1 Connection

Locally choose frame o7, ..., 0, for E on U C X. Then we can write V = d+ A with respect to this frame,
i.e.
V(flUl):dfz(X)O'i-’-flAng, Ag EAl(U), VJi:Ag(@Uj.
Some contructions of connections:

1. Given (E;,V;) for i = 1,2, define connection on E; & E3 by

V(Sl ) 82) = Vl(sl) ) VQ(SQ).

2. As above, define connection on Ey ® Ey by

V(Sl X 82) = Vl(sl) X S9 + S1 X VQ(S2).

3. As above, define connection on Ef ® Es by

V(f)(s1) = Va(f(s1)) = fVi(s1).
This follows from below.

4. Given (E,V), define connection V* on E* by
v (@)(0) = d(w(0) — w(V(0), we Ay (U), oe A(U).
If w? is the local dual frame to o; for E*, then
V' =—Al@uw!, Vo=Al o

5. Given f: X —» Y and (E,V) — Y, define the pullback connection (f*FE, f*V) — X as follows. Locally
choose frame o1, ...0, for E on U C Y, with pullback frame f*o; for f*E on f~1(U). Then let

([ V)(fo0) = [7AL [0
Since f* od = do f* on forms, this is well-defined and glue to a sheaf morphism f*V.

6. Given (F = E; ® E», V), define connections V; on E; by

where 7; : E — E; is the projection.

Lemma 7.3. Let E, F,G be vector bundles with connections. Then for any open setU C X, o € .AOE*®F(U),
7 € Ay o (U), the induced connections satsify

V{o,7) = (Vo,7) + (0, VT),
where (-,-) denotes the tensor of sections followed by contraction of E* with E.

Definition 7.4. The second fundamental form of vector bundle pair F; C F with respect to a connection
V on E is the section I € A'(X, Hom(E1, E/E))) defined for any local section s € A%, (U) by

(s) = mp/p, (V(s))

If the vector bundle splits as E = Fy1 @ Ey with Ey & E/Eq, then II = V — V;. We can always fix a
Hermitian metric on E to produce splitting £ = E; @ Ei- as Hermitian vector bundles.
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7 Connection and Curvature 7.1 Connection

Definition 7.5. Let (E,h) be a Hermitian vector bundle. A connection V on FE is compactible with the
Hermitian structure h if
d (h(sl, 82)) = h(V(Sl), 82) + h(Sl, V(Sz))

for every open set U C X, for all s1,s9 € AL(U).

Lemma 7.6. Let (E,h) be a Hermitian vector bundle over X. In an orthonormal frame {o;}, the Hermitian
connection matriz V(o;) = Al ® 0 is skew-Hermitian: A* = —A. Moreover, for each xog € X, there exists
a local orthonormal frame {o;} such that the Hermitian connection matriz vanishes at xo: A(xg) = 0.

Proposition 7.7. Let (E,h) be a Hermitian vector bundle. Let u(E,h) denote the real vector subbundle of
End(E):
a € u(E,h)y; < hy(au,v) + hy(u,av) =0 Yu,v € Ey.

Then the set of connections on E compatible with h is naturally an affine space over the real vector space
'AllJ.(E,h)(X)'

Definition 7.8. Let ' — X be a holomorphic vector bundle over a complex manifold X. A connection V
on E is compatible with the holomorphic structure if V%! = 0g, where V = V'Y @ V%! is the bidegree
decomposition of AL, = A};’O o A%l.

Proposition 7.9. Let E — X be a holomorphic vector bundle. The set of connections on E compatible with
the holomorphic structure is naturally an affine space over the complex vector space .AEnd (E) (X).

Theorem 7.10 (Chern Connection). Let (E,h) be a holomorphic Hermitian vector bundle. There exists a
unique connection on E that is compatible with both the Hermitian structure h and the holomorphic structure.

Proof Idea. Uniqueness: AlE’I?d(E)(X) N Ai(E’h) (X) = 0. This is in fact true on each fiber of Q - ® End(E),
so we have local uniqueness that is useful below. A

Existence: Choose local holomorphic frame o1, ...,0, for E on U C X. Write V(0;) = A! ® 0, and we
must have

Al = Ohyy, - hi* € AVO(U).

This uniquely determines a local connection Vi;. Then by uniqueness, these local definitions glue. That is,
we can determine V(s) by V(s)|v = Vu(s|v)- O

Ezample 7.11. When (X, g) is Kdhler, E = Tx is the holomorphic tangent bundle with Hermitian metric
induced from g, then in holomorphic coordinate (z;) we can compute the Chern connection

V(azg )(azl) = Ffjazk )

Y = digz- g™
Ezample 7.12. Let (E,h) be a Hermitian vector bundle, and assume F = E; @ Es is orthogonal decomposi-
tion. Then (E;, h;) for ¢ = 1,2 are Hermitian vector bundles induced from (E, h).
If V is a connection on E compatible with h, then the induced connections V; on F; are compatible with
h;. The second fundamental forms II; satisfies

h1<817112(82>) =+ hg(IIl(Sl), 82) =0

for all sections s; € A% (U) on any open set U C X.

Suppose E = F; @ Eg as complex vector bundles, and F; C F is a pair of holomorphic Vector bundles
with holomorphic inclusion. Then given a connection V on E with V%! = dg, we have V1 = 0g,, and
hence

II,=V-V; e AHom(EhEﬁ(X).
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7 Connection and Curvature 7.1 Connection

Definition 7.13 (Holomorphic Connection). Let E — X be a holomorhic vector bundle over a complex
manifold X. Let x denote the holomorphic cotagent bundle. A holomorphic connection on F is a C-linear
sheaf morphism

D:EFE—-Qx®F

satisfying the Leibnize rule
D(fo)=0f®0c+ fD(o)

for all U C X open, o € E(U), f € Ox(U).

As above, the difference between any two holomorphic connections is O x-linear, so we can work in local
holomorphic frame to represent it by a global section of the holomorphic vector bundle Qx ® End(E):

D - D' € (Qx ®End(E)) (X)

Each holomorphic connection D extends to a C-linear sheaf morphism D : A% — A}E’O satisfying D(fo) =
Of ® o + fD(o) for all smooth function f and holomorphic section o. Unlike connections or Hermitian
connections which always exist by partition of unity, the existence of holomorphic connection depends on a
topological invariant of £ — X.

Definition 7.14 (Atiyah Class). Let E — X be a holomorhic vector bundle over a complex manifold X.
Let U = {U;} be any open covering of X that provides local trivializations of E:

Y B

v, 2U; x C, ahyy =05 " : Uy — GL(r,C).
The Atiyah class A(E) € H'(X,Qx ® End(E)) is given by the Cech cocycle

{(Uij), ;" o (¢ dipis) o9y € (Ux ® End(E)) (Uy)}.
The Atiyah class is well-defined, independent of the choice of trivializations.

Locally, choose holomorphic frame o; for E and its dual frame w’ on U;. Let A denote the matrix of
holomorphic functions +;;. Then the cocyle

0A
-1 -1 .. L Aok kB ;.1 B
Yo (v dipig) onpy = A wrN dz' ® W’ @ o,.
If F is a holomorphic line bundle, the cocyle simplifies to

{(Usy), 0log(vij) € Qx (Usj)} € HYH(X)

Theorem 7.15 (Exitence of Holomorphic Connection). Let E — X be a holomorhic vector bundle over a
complex manifold X. A holomorphic connection on E exists if and only if the Atiyah class A(E) = 0 €
HY(X,Qx ® End(E)).

Proof Idea. Holomorphic connections on U; are parametrized exactly by sections «; € (Qx ® End(E)) (U;).
They agree on overlaps U;; and hence glue to a global holomorphic connection, if and only if §(c;) equals
the Cech cocyle (with respect to this choice of trivializations) defining A(E), where § is the chain map in
the Cech resolution. O

34



7 Connection and Curvature 7.2 Curvature

7.2 Curvature

Let E be a complex vector bundle over a differentiable manifold M. Each connection V : A% — AL has

natural extension
Lk k+1

defined by
V(ia®s) =da®s+ (—1)anV(s)
),

for each open set U C X and a € A*(U), s € AL(U). Then V satisfies generalized Leibniz rule
V(aAs)=dans+(=1)anv(s)
(

for each open set U C X and a € A*(U), s € AL (U). The natural extension of d : A° — A is the exterior
differential d : AF — AF+L.

Definition 7.16. The curvature of a connection (E, V) is the sheaf morphism

Fg:=VoV:AL — A3
Since Fy is A%linear, we can describe curvature by a global section
Fy € A q(m)(X).
In local frame {;} for E, writing V(0;) = A7 @ o, for A} € AY(U), we have
Fy(oy) = (d(Ag) — A A Ai) aj-

Use induced connections on E* and End(E) to get the Bianchi identity

V(Fy)=0¢ A%nd(E)(X)'

For each o € A% (U), V%(0) = Fy(0) € AL2(U).
Lemma 7.17. Given (E,V),(E1,V1),(E2,V3), the curvature on the following vector bundles are given by:

1. On E]_ D EQ;
F=Fy, ®© Iy,
2. On Ey ® Es,
F=Fy, ®ldg, +1dg, ®Fv,
3. On E*,

Fy.=-FJ, Fy-(s"®05) =-Fy(s’ ®0y,)

4. On pullback f*F,
Fpeg = f*Fy

Proposition 7.18. The curvature of a Hermitian connection V on a Hermitian vector bundle (E, h) satisfies
0="h(Fy(0),7)+ h(o, Fy(7))

for any local sections o,7 of E. That is, Fy € A%nd(ﬂh) (X).

Proof Idea. For Hermitian connection V, o € A% (U), 7 € AL (U),

dh(o,7) = h(V(o),T) + (—l)kh(a, V(7).
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7 Connection and Curvature 7.2 Curvature

Proposition 7.19. The curvature of a connection V on a holomorphic vector bundle E compatible with the
holomorphic structure satisfies

2,0 1,1
by € (‘AEnd(E) ® AEnd(E)) (X).

Combined, the Chern connection on a holomorphic Hermitian bundle (E, h) satisfies

Iy e (Allilﬁd(E) N A%]nd(E,h)) (X).
In local frame o; for E, write h;; = h(o;,0;) to get
Fy =20 (8hik . hjk) W oj.
Thus EEnd( g)(Fy) = 0. If E is line bundle, then Fy = — d0log h, which is a closed purely imaginary

(1,1)-form.

Ezample 7.20. Let (X, g) be Kéhler. The holomorphic tangent bundle Tx with Hermitian metric induced
from ¢ has Chern curvature

S o - . = -
Fy =R/ dz'® 57 ® (dzF NdZ'), R = —0k0ihg - WP + Okhg - Ohyg - W77 - BT,

Lowering the index, Rim = Rm(9;, 87, Ok, 0;), where Rm is the C-linear extension of the Riemann curvature
tensor on (X, g).

Proposition 7.21. Let (E,h) be a holomorphic Hermitian vector bundle. The Chern connection V on E
has curvature representing the Atiyah class:

[Fy] = —A(E) € HY(X,Qx ® End(E)).

The idea is to compare the Dolbeault and Cech resolutions for Qx ® End(FE). More generally, given two
resolutions Z* and C' (U, F) for a sheaf F, we have the following diagram

F 7° 4 1! 72

l | | |

U, F) — C°U, 1% —— U, 1') —— C°(U,7?)

| l l l

ctu,F) — CtUu, 1% — Cc*U,1') —— Cct(U,1?)

| | | |

C:U,F) — C*U,I°) —— C*(U,T') —— C>(U,T?)
and the associated resolution which naturally contains both resolutions given
0 —— F —— C(U,1Y £, cou,Hyectu, 1% — U, > e CctWu,7t) o C*(U, 1% —— ...

with D = d+ (—1)P6 on K7 = C%(U,ZI?). Tt suffices to compare the representatives in this new resolution.
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7 Connection and Curvature 7.3 Chern Classes

7.3 Chern Classes
In this section let G := GL(n,C), and V = gl(n, C).

Definition 7.22. A polynomial function P : V' — C homogeneous of degree k in the entries is invariant if
P(A) = P(gAg~Y) forall AeV, g €G.

The key example is the elementary symmetric polynomials P7(A) of the eigenvalues of A € V:
det(Id +tA) = Z PF(A (7.1)

Other examples include:

) = i PE(A) -, (7.2)

det(tA) k( &
det(Id —e—t4) ZP (7.3)

Definition 7.23. A k-linear form P:V x --- x V — C is invariant if
p(Ala ceey Ak) = p(gAlgila cee 7gAkgil)
for all Ay,...., A, €V, ge€G.

Lemma 7.24. There is one-to-one correspondence between symmetric invariant k-linear forms P:Vx-x
V' — C and invariant homogeneous polynomial P : V — C of degree k, given by diagonal and polarization:

P(A) = P(A, ..., A).

For example, when k = 2, polarization writes P by P via
~ 1
P(A,B) = 3 (P(A+ B)— P(A) — P(B)).

The invariance property enables us to go global from local. Let £ — X be a complex vector bundle of
rank n on a smooth manifold X, with a connection V and curvature Fy. Let {U,} be an open covering of
M by local trivializations ¢, : Ely, = Uy x C™.

Lemma 7.25. Let P:V — C be any invariant homogeneous polynomial of degree k.

1. There is a well-defined global 2k-form P(Fy) on X, independent of the trivializations chosen. On each
Uy, the 2k-form can be given by P(©,,), where ©,, is the n X n curvature matriz of 2-forms.

2. P(Fy) is d-closed.

3. The cohomology class [P(Fy)] € H2%(X, C) is independent of the choice of the connection V, hence a
class determined only by E.

Proof Idea. Use Bianchi identity and that

k j—1 .
AP(y1, o) = > _(=1)Z= 1P (y1, o, V), )

j=1
for any ~; € AZEjnd(E) (X). For a € AIlind(E)(X)’

d - -
p P(Fgita) = kP (V(a), Fy, ..., Fv) = kdP(a, Fy, ..., Fy).
t=0

37



7 Connection and Curvature 7.3 Chern Classes

Definition 7.26. Let ® denote the graded algebra of invariant homogeneous polynomials V' — C. Fix a
complex vector bundle £ — X. The Weil homomorphism is the C-algebra homomorphism

® — Hi;(X,C)
P [P(Fy)]
where Fy is the curvature with respect to any connection on E.

Definition 7.27. The Chern forms ¢;(Fy) of the curvature Fy on E are
(Fy) =P —F (X
o) = P 5o ) € A2(x),
where P! are invariant polynomials defined by (7.1]). The Chern classes of E are
wlB) = [P (P )| € Hthix.0),
where co(E) =1 € HJ5(X,C). The total Chern class is

c(E) =co(E) +ci1(E)+ - € HiR(X,C).

The Chern classes of a complex manifold are ¢;(Tx ), where T'x is the holomorphic tangent bundle.
The Chern characters ch; and Todd classes td; are defined analogously with respect to invariant polyno-

mials given in (|7.2) and (7.3).

Lemma 7.28. Let f: X = Y be any smooth map between smooth manifolds. Suppose E —Y is a complex
vector bundle. Then

fra(E) = c(f7E).
Lemma 7.29. Let E — X be a complex vector bundle. Then for each i,
a(BY) = (~1)iei(B) € Bi(X,C).
Proposition 7.30 (Whitney Product Formula). For two complex vector bundles E, F — X we have
c(E®F)=c(E)-c(F) € Hix(X,C).

Lemma 7.31. For two complex vector bundles E, F — X we have

ch(E @ F) = ch(E) + ch(F) € Hin(X,C),

ch(E ® F) = ch(E) - ch(F) € H*,(X,C).
Lemma 7.32. The total Chern character and total Todd class can be expressed in terms of the total Chern

class:

A(E) ;QCQ(E) n 3(E) - 301(E)602(E) + 3c3(E) N
(E) | d(E)+c(B)  alB)eE)
2 + 12 - * 242

ch(E) = rank(FE) + 1 (E) +

td(E) =1+ 2 +o

Lemma 7.33. The Chern classes, Chern characters, and Todd classes are all real, i.e. lies in H**(X,R).
Moreover, if X is compact Kdhler and E is holomorphic vector bundle, then these characteristic classes lie

in H**(X,R).

Proof Idea. Choose Hermitian connection to see ¢Fy is Hermitian matrix under Hermitian trivialization. [J
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7 Connection and Curvature 7.3 Chern Classes

The splitting principle reduces the problem of computing Chern classes of a vector bundle E to the easier
problem when E splits into line bundles £ = FE; & --- ® E,,.

Theorem 7.34 (Splitting Principle). Let E — X be a complex vector bundle of rank n over a smooth
manifold X. There exists a space Y = FI(E), called the flag bundle associated to E, and a map p:Y — X,
such that

1. The induced map on cohomology p* : H*(X) — H*(Y) is injective.
2. The pullback bundle p*E —'Y splits as a direct sum of line bundles: p*E =L, & - - ® Ly.
Ezample 7.35. For any complex vector bundle E — X, one has ¢1(E) = ¢1(det E).

Proposition 7.36 (Chern Class of Holomorphic Line Bundle). Let L be a holomorphic line bundle on a
complex manifold X. The first Chern class c1(L) € H*(X,C) coincides with the image of L under the map
HY'(X,0%) — H*(X,Z) — H*(X,C).

Proof Idea. Compare the Cech resolution and de Rham resolution for C in the double-complex resolution
as discussed above. L is represented by the cocycle of transition maps (g;;) € C*(U, O%), whose image in
H?*(X,C) is given by (fi; + fix + fri) € C2(U?A()7) where f;; = 2%” log g;;. This is cohomologous to ¢i(L)
represented by a Hermitian curvature form —z= ddlogh; € C°(U, A?), because h; = | g¢j|2hj. O

Proposition 7.37. Let X be compact Kdhler manifold. For every closed real (1,1)-form w € c1(L), there
exists a Hermitian metric h on L whose Chern curvature form —i0dlogh = w.

Let X be a compact complex manifold. For any analytic subvariety V' C X of dimension k, the funda-
mental class (V) € Hop(X,R) is defined as the linear functional

<P'—>/80
v

on H?!(X,R). Denote its Poincaré dual by [V] € H*"~2*(X R).

Lemma 7.38. Let X be a compact Kdhler manifold. For any analytic subvariety V- C X of dimension k,
the fundmanetal class
[V]e H' M M(X, 7).

Proposition 7.39. Let X be a compact complex manifold, and D € Div(X). Then ¢;(O(D)) = [D] €
H2(X,R).
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8 Applications of Cohomology

8.1 Hirzebruch-Riemann-Roch

Definition 8.1. Let F — X be a holomorphic vector bundle over a compact complex manifold X. Define
the Euler-Poincaré characteristic

dim(X)

X(X,E):= Y (=1)'h'(X,E).
=0

Definition 8.2. Let C' be a compact complex curve. The genus of C' is

_ 2=x(©)

1
: — —deg Ko+ 1
g(C) 5 Qdeg c+1,

where x(C) is the Euler characteristic of C, and the second equality follows from Gauss-Bonnet.

Lemma 8.3. Let X be a compact complex surface, and C C X a smooth irreducible curve (analytic subvariety
of dimension 1). The genus of C is

Kx-C+C-C
)= K CrCC

where the second equality is immediate consequence of adjunction formula Ko = (Kx ® Ox(C))|c.
We use the formula above to define the genus for any curve on a compact complex surface.

Proposition 8.4 (Riemann-Roch). Let E — C be a holomorphic vector bundle over a compact complex

curve C. Then
\(C, E) = deg(E) + rank(E) - (1 - ¢(C?)) (.1)

The Hirzebruch-Riemann-Roch (HRR) formula generalizes this. There are further generalizations, in-
cluding the Grothendieck-Riemann-Roch formula and Atiyah-Singer index theorem.

Theorem 8.5 (Hirzebruch-Riemann-Roch). Let E be a holomorphic vector bundle on a compact complex
manifold X. Then its Fuler-Poincaré characteristic equals

E) = [ (B (x) = [ 37 ehi(B) i (X),
i=0

FEzample 8.6 (Line bundles on a curve). Let C' be a connected compact curve and L € Pic(C'). Then

_ deg(Kc)
2

w0 = [ e+ 2 — et = deg(L) + (1 9(C),

which recovers Riemann-Roch (8.1)).

Ezample 8.7 (Line bundles on a surface). Let X be a compact complex surface. Then

L-L-Kx-L
X(X L) = x(X, 0x) + =222

Definition 8.8. Let X be a compact complex manifold of dimension n. Define the arithmetic genus of
X as

Pa(X) = (=1)"(x(X,0x) = 1).
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Definition 8.9. The Hirzebruch yx,-genus of a compact complex manifold X of dimension n is the
polynomial

= DBy = D (DX
p=0

P,q=0
We can calculate the Hirzebruch x,-genus using HRR and Chern roots:

Proposition 8.10. Let ~y; denote the formal Chern roots of Tx. Then

/wa

The formal Chern roots only locally diagonalize the curvature matrix ﬁFv for Tx. However, the

symmetric polynomials in (v;) represent well-defined cohomology classes in H**(X,R), and the RHS of the
formula above makes sense in this way.
Some important special values of the Hirzebruch yx,-genus:

Ly =0: xy—0 = x(X,Ox) = [ td(X) gives the arithmetic genus.

2.y =1 xy=1 = > 4o(—=1)?hP(X) = sgn(X) if X is compact Kihler of even dimension n, by Hodge
index theorem. Combining with the proposition above, we get Hirzebruch signature theorem for
compact Kéahler manifolds of even dimension:

sen(x) = x (\0x) = /X L(X),

where L(X) is the L-genus defined in terms of the Chern roots by

n n

H% 1+Z : H% coth( )

The same result holds for any compact complex manifold of even dimension.

3. y = —1: Suppose X is compact Kdhler manifold of dimension n. Then
X1 = X ()P = x(X) = [ H% - [ )
P,q=0

This is the Chern-Gauss-Bonnet formula, which holds more generally for any compact complex
manifolds.

Ezxample 8.11. Consider a smooth hypersurface Y C X. The short exact sequence of sheaves on X
0—)0(7}/)*)0)(—)0)/—)07

gives

KY.00) = X(X.0y) = x(X.0x) = X(X.0(V)) = [ (1=0T)a(x),
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8 Applications of Cohomology 8.2 Kodaira Vanishing Theorem

8.2 Kodaira Vanishing Theorem

Definition 8.12. Let X be a complex manifold. A holomorphic line bundle L on X is called a positive
line bundle if its first Chern class ¢; (L) € H?(X,R) can be represented by a closed positive real (1, 1)-form.

Theorem 8.13 (Kodaira Vanishing Theorem). Let L be a positive holomorphic line bundle on a compact
Kahler manifold X of dimension n. Then

HP(X,L)=HY(X,Q% @ L) =0, forallp+q>n.

Let (E,h) be a holomorphic vector bundle over X with fixed Hermitian structure. Recall from §6 the

operators O and E*E on A%9. We also extend the Lefschetz operator L and dual Lefschetz operator A from
AP1 to AL via L =L ®Idg, A = A ®Idg. The Kéhler identity

ALl =(n—(p+q)- 1d
now holds on A%

Lemma 8.14 (Nakano Identity). Let V be the Chern connection on (E,h). Then
(A9 = —i (V") + AR - A

where .
1,0 — 1,0 —
(V) =—Fp- o Vi o

Nakano identity implies the Kéhler identity

[A, 0] = —i0",
by letting £ = Ox, in which case V = d.
Proof. Work in orthonormal trivialization such that the connection matrix A satisfies A* = —A and A(x) =
0 for a fixed point zp € X. O

Lemma 8.15. Let (E,h) be a Hermitian holomorphic vector bundle over compact Kdhler manifold (X, g).
Let V be the Chern connection on E, and o € HP1(X, E) any harmonic form. Then

i

2

i

(FyA(a),a) <0, o

(AFy(a),a) > 0.

Proof. Use Fy = V00 + g o VH0: ART — A%H’qﬂ. O

Proof of Kodaira Vanishing Theorem. Fix a Kéahler form w € ¢; (L), which is the Chern curvature form of a
Hermitian metric on L. For any harmonic form o € HP9(X, L),

(A, Fy]a,a) >0

1
- > 0.

(n = (p+a))llal” = (A, Lla,a) = 5

Therefore, 0 = HP9(X, L) = HP9(X,L) = HY(X,Q% ® L) for any p+ ¢ > n. O

Theorem 8.16 (Weak Lefschetz Theorem). Let X be a compact Kdhler manifold of dimension n, and let
Y C X be a smooth hypersurface such that the induced line bundle O(Y') is positive. Then the canonical

restriction map
i*: H*(X,C) — H*(Y,C)

is bijective for k < n — 2 and injective for k < n — 1.
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8 Applications of Cohomology 8.2 Kodaira Vanishing Theorem

Lemma 8.17. Let X be a compact Kdhler manifold, and Y C X smooth hypersurface. Let i :Y — X
denote the inclusion. For any holomorphic vector bundle E on X, we have

HYY,i"E)=HYY,i"E® Oy) 2 H{(X,EF®1i.0y), Vq>0.
We consider the structure sequence (and its twist by a holomorphic vector bundle on X)
0—-0x(-Y)—=>0x - i.0y -0

as instead
0— Ox(*Y) — OX — Oy *)O,

since the induced long exact sequence of sheaf cohomologies conincide by the lemma above. Lemma of this
type involves the tool of spectral sequence, which is beyond the scope of the current notes.

Proof. Use Hodge decomposition. Apply Kodaira vanishing theorem to variants of structure sequence and
normal bundle sequence
0— QL (-Y) = Q% — Q% |y — 0,

0— QN (=Y) = O%|y — Q8 — 0.
O

Theorem 8.18 (Serre’s Vanishing Theorem). Let L be a positive line bundle on a compact Kdhler manifold
X of dimension n. For any holomorphic vector bundle E on X there exists a constant mq such that

HY(X,E®L™) =0
for all m > mg, ¢ > 0.
Proof Idea. Repeat the argument for Kodaira vanishing to H™4(EF @ L™). O

Corollary 8.19 (Grothendieck Lemma). Every holomorphic vector bundle E on P! is isomorphic to a direct

sum of line bundles
Do),
i=1

where the integers a1 > + -+ > a, are uniquely determined by E.

Proof Idea. Prove by induction on rank r. The first Chern class map ¢; : H'(P", O*) — H?(P",Z) is
isomorphism. Use Serre’s vanishing and Riemann-Roch to choose a; as the maximal integer a such that
HO(P!, E(—a)) # 0. A non-zero section s € H°(P!, E(—ay)) induces a short exact sequence of holomorphic

vector bundles
0— O(a1) > FE— E,=E/O(a1) — 0.

Show that E 22 O(ay) @ E; as holomorphic vector bundles, and use induction hypothesis on Fj. O
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8 Applications of Cohomology 8.3 Kodaira Embedding Theorem

8.3 Kodaira Embedding Theorem

Theorem 8.20 (Kodaira Embedding Theorem). Let X be a compact complex manifold, and L — X a
positive line bundle. Then there exists ko € N such that for any k > ko, LF is globally generated and the
canonical map

ok 2 X = P(HY(X, L*)%)

z— (s€ H(X, L*) s(x))
s a holomorphic embedding.
If we fix a basis {sq, ..., sy} of H°(X, L*) with dual basis for H°(X, L¥)*, then ¢ is given explicitly by
x> [so(x) - sy(2)] € PV,

Lemma 8.21. Let L — X be a holomorphic line bundle over a compact complex manifold X. Then L is
globally generated (or base-point free) if H(X, L) — L, is surjective for each x € X. This map fits into the
short exact sequence of sheaves

0=>L®Zyyy > L—> Ly —0

Lemma 8.22. Let L — X be a globally generated holomorphic line bundle over a compact complex manifold
X. Then o, : X — PV is an embedding if both conditions below hold:

1. @, is injective. It is sufficient to check, for any 1 # 1o € X, HY(X,L ® (a1 .22)) = 0, according to
the short exact sequence of sheaves

0= L®ZLig 20y > L — Ly © Ly, — 0.

2. @r is immersion. It is sufficient to check, for any x € X, H'(X, L ®I{2m}) =0, according to the short
ezact sequence of sheaves

0 LTl = LT 5 Qxe® Ly — 0.

In other words, HY(X, L) separates points and generates 1-jets at every point of X.

Lemma 8.23. Let X be a complex manifold of dimension n and L a postive line bundle on X. Let o : XX
be the blow-up of X along a finite number of points x1,...,x; € X, and let E; := o~ (x;) = P(T,X) be the
exceptional divisors for each j = 1,...,1. Then for any holomorphic line bundle M on X and integers
ny,...,ng > 0, the line bundle

o*(LF @ M)® O(= > n,;E))

on X is positive for k> 0.

Proof. Use partition of unity to define Hermitian metrics on O(—E};) whose curvature is the Fubini-Study
metric on E; = P"~! and vanish outside a small neighborhood of E;. o*(ci(L)) ensures positivity in the
direction normal to F; for points on E; and positivity outside a neighborhood of E. O

Proof of Kodaira Embedding Theorem. Follow the outline in Lemmal[8.22] Translate the problem to the blow-
up of X along point(s) of interest, and use Kodaira vanishing to conclude the vanishing of the corresponding
H' cohomologies. This provides ko but may depend on the choice of points we consider. Observe finally
that the properties we require on @+ are "open”, which combined with compactness of X gives a uniform
choice of k. O

Corollary 8.24. Let X be a compact complex manifold. A line bundle L — X is positive if and only if it
is ample.
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8 Applications of Cohomology 8.3 Kodaira Embedding Theorem

Definition 8.25. Let X be a compact Kihler manifold. The Kéhler cone Cx € HY!'(X,R) consists of all
classes which admits a Kahler form on X.

Lemma 8.26. The Kdhler cone Cx C HY(X,R) is an open convex cone and contains no lines {a + 13 |
t € R} for any B # 0.

Corollary 8.27. A compact Kdahler manifold X is projective if and only if
Cx NIm(H*(X,Z) — H*(X,C)) # 0.
Corollary 8.28. Every compact Kdihler manifold X with h*>°(X) = h%2(X) = 0 is projective.

Corollary 8.29. Let X := V/T be a complex torus. Then X is projective if and only if X admits a
Riemann form, i.e. an alternating R-bilinear form w :V xV — R such that

i) wliu,iv) = w(u,v),
i) w(-,i(-)) is positive definite, and
iii) w(u,v) € Z if u,v € T
Proposition 8.30. Let X be a projective manifold. Then the natural homomorphism
O : Div(X) — Pic(X)
18 surjective.

Proof. For each ample line bundle L and any line bundle M, M ® L* and L* are both contained in the
image of O for some sufficiently large & by Kodaira vanishing and Hirzebruch-Riemann-Roch. O

Proposition 8.31. Let X be a projective manifold. Then the kernel of the map
¢1 : Pie(X) - H(X,Z) — H*(X,C)

consists of numerically trivial line bundles NT(X) (line bundles of degree zero on any curve C C X).
Therefore,
NS(X) 2 Pic(X)/ NT(X).

Proof. Let w € HY1(X,Z) denote the pullback of the Fubini-Study metric on P. Apply Hard Lefschetz
and Hodge-Riemann bilinear relations to ¢;(L) and consider the curves [D] A [w]"~?2 for any divisor D. O

Conjecture 8.32 (Hodge Conjecture). Let X be a projective manifold of dimension n. Then for any
0<k<n,

H** (X, Q) := HFF(X)NH?*(X,Q) = spang{[V] € HM*(X,7) | V analytic subvariety of dimension n — k}.
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