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1 Introduction

In this note we give an outline of the very basics of complex geometry. References:

1. Griffiths, Harris. Principles of Algebraic Geometry.

2. Huybrechts. Complex Geometry.

3. Voisin. Hodge Theory and Complex Algebraic Geometry.

2 Holomorphic Functions of Several Variables

2.1 Holomorphicity and Analyticity

Let f : U → C be a C1 map on an open set U ⊂ Cn. For each u ∈ U , there is canonical isomorphism
TuU ∼= Cn.
Theorem 2.1. f is holomorphic if any of the following equivalent conditions holds.

• The (real) differential
dfu ∈ Hom(TuU,C) ∼= Hom(Cn,C)

is C-linear at each u ∈ U .

• f satisfies the Cauchy-Riemann equations

∂f

∂zi
=

1

2

(
∂f

∂xi
+ i

∂f

∂yi

)
= 0, ∀i = 1, ..., n.

• f admits a power series expansion in a neighborhood of each z0 ∈ U :

f(z0 + z) =
∑
I

αIz
I ,

and the series converges absolutely: ∃R1 > 0, ..., Rn > 0 such that∑
I

|αI |rI <∞

for every r1 < R1, ..., rn < Rn.

• f satsifies the Cauchy integral formula: for each (open) polydisk Dr(a) whose closure is contained in
U , one has for each z ∈ Dr(z0),

f(z) =
1

(2πi)
n

∫
Tr(a)={ζ||ζi−ai|=ri}

f(ζ)
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
,

where the orientation on the torus Tr(a) is the product of natural orientaions on circles.

A C1 map f : U ⊂ Cn → V ⊂ Cm is holomorphic if each component function f1, ..., fm : U → C is
holomorphic.
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2.2 Properties of Holomorphic Functions

Using Cauchy’s integral formula, one gets

Theorem 2.2 (Maximum Principle). Let f : U ⊂ Cn → C be holomorphic. If |f | admits a local maximum
at some point u ∈ U , then f is constant in a neighborhood of u.

Theorem 2.3 (Analytic Continuation). Let U ⊂ Cn be a connected open subset. If f : U → C is holomorphic
and vanish on an open subset of U , then f ≡ 0 on U .

Theorem 2.4 (Riemann Extension). Let f be a holomorphic function defined on U \ {z | z1 = 0} for some
open set U ⊂ Cn. If f is locally bounded on U , then f extends (uniquely) to a holomorphic function on U .

Theorem 2.5 (Hartogs’ Extension). Let f be a holomorphic function defined on U \ {z | z1 = z2 = 0} for
some open set U ⊂ Cn. Then f extends (uniquely) to a holomorphic function on U .

Theorem 2.6 (Global Extensions). On a complex manifold X, every holomorphic function that is defined
on the complement of an analytic subset of codimension ≥ 1 and is locally bounded on X extends (uniquely)
to a holomorphic function on all of X. Similarly, every holomorphic function defined on the complement of
an analytic subset of codimension ≥ 2 extends (uniquely) to a holomorphic function on all of X.

Theorem 2.7 (Weierstrass Preparation Theorem). Let f : Dε(0) → C be a holomorphic function on a
polydisk Dε(0). If f(0) = 0 and f0(z1) = f(z1, 0, ..., 0) ̸≡ 0, then there exists a smaller polydisk Dδ(0) ⊂
Dε(0), and a Weierstrass polynomial g(z1, w) = gw(z1) and a holomorphic function h on Dδ(0) such that

f = g · h on Dδ(0),

and h(0) ̸= 0. Such Weierstrass polynomial g is unique.

Here a Weierstrass polynomial g has the form g(z1, w) = zd1 + ad−1(w)z
d−1
1 + · · · + a0(w), where the

coefficients aj(w) are holomorphic functions on the open subset Cn−1 ∩Dδ(0), and aj(0) = 0.

Theorem 2.8 (Inverse Function Theorem). Let f : U → V be a holomorphic map between open subsets
U, V ⊂ Cn. If f is regular at z ∈ U , then there exist open subsets z ∈ U ′ ⊂ U and f(z) ⊂ V ′ ⊂ V such that
f : U ′ → V ′ is biholomorphism.

Theorem 2.9 (Implicit Function Theorem). Let f : U ⊂ Cm → Cn be a holomorphic map, where m ≥ n.
If z0 ∈ U is a point such that

det (∂jfi(z0))1≤i,j≤n ̸= 0,

then there exists open subsets U1 ⊂ Cm−n, U2 ⊂ Cn, and a holomorphic map g : U1 → U2 such that
z0 ∈ U1 × U2 ⊂ U and

{z ∈ U1 × U2 | f(z) = f(z0)} = {(w, g(w)) | w ∈ U1}.

Corollary 2.10. Let f : U ⊂ Cm → Cn be a holomorphic map. Suppose f is regular at z0 ∈ U , i.e.,
rank J(f)(z0) = min(m,n). Then

• If m ≥ n, then f is projection up to change of domain coordinate: there exists a biholomorphism
h : V → U ′ for some V ⊂ Cm and z0 ∈ U ′ ⊂ U such that f(h(z1, ..., zm)) = (z1, ..., zn) for all z ∈ V .

• If m ≤ n, then f is inclusion up to change of image coordinate: there exists a biholomorphism h :
V → V ′ for some f(z0) ∈ V ⊂ Cn and V ′ ⊂ Cn such that h(f(z1, ..., zm)) = (z1, ..., zm, 0, ..., 0) for all
z ∈ f−1(V ).

Theorem 2.11. The Jacobian of a biholomorphism is everywhere invertible.
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2 Holomorphic Functions of Several Variables 2.2 Properties of Holomorphic Functions

More local theory of holomorphic functions are given in the language of the stalk of sheaf of holomorphic
functions.

Theorem 2.12 (Weierstrass Division Theorem). Let f ∈ OCn,0 and g ∈ OCn−1,0[z1] a Weierstrass polyno-
mial of degree d. Then there exists r ∈ OCn−1,0[z1] of degree < d and h ∈ OCn,0 such that

f = g · h+ r,

and such functions h and r are uniquely determined.

As a consequence,

Theorem 2.13. OCn,0 is a local UFD: every element in OCn,0 can be factorized (up to a unit) as a product
of Weierstrass poynomials irreducible in OCn−1,0[z1], which are also irreducible in OCn,0. The local UFD
OCn,0 is Noetherian.

Theorem 2.14. Let g ∈ OCn,0 be irreducible. If f ∈ OCn,0 such that f vanishes on Z(g), then g | f .

Definition 2.15. A germ X ⊂ Cn in 0 is analytic if there exists f1, ..., fk ∈ OCn,0 such that X = Z(f1, ..., fk)
as germs. An analytic germ X is irreducible if whenever X = X1∪X2 where X1, X2 are germs, then X = X1

or X = X2.

Proposition 2.16. For each ideal I ⊂ OCn,0, Z(I) is analytic. An analytic germ X is irreducible if and
only if I(X) ⊂ OCn,0 is a prime ideal.

Theorem 2.17 (Nullstellensatz). For each ideal I ⊂ OCn,0,
√
I = I(Z(I)).

When an analytic germ X has codimension 1, i.e. X = Z(f) for a single non-trivial function f ∈ OCn,0,

we have I(X) =
√

(f) = (g), where g is the product of irreducible factors of f ∈ OCn,0. We call g the
defining function for the analytic germ X.

Proposition 2.18. Let f ∈ OCn,0 be irreducible. Then for all z ∈ Cn sufficiently close to 0, f ∈ OCn,z is
irreducible.
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3 Complex Manifolds

3.1 Manifolds and Tensor Bundles

Definition 3.1. A complex manifold is a differentiable manifold of even real dimension equipped with a
complex structure: there exists a covering by open sets, which are diffeomorphic to open sets of Cn, such
that the transition diffeomorphisms are holomorphic.

Definition 3.2. An almost complex structure on a differentiable manifold is a vector bundle morphism
I : TX,R → TX,R such that I2 = − Id. Equivalently, it is the structure of a complex vector bundle on TX,R.

Let (X, I) be an almost complex manifold. Then there is decomposition of TX,C into eigenspaces of I
with eigenvalues ±i:

TX,C = T 1,0
X ⊕ T 0,1

X ,

u 7→
(
u− iI(u)

2
,
u+ iI(u)

2

)
.

Proposition 3.3. Let X be a complex manifold. Then T 1,0
X is isomorphic to the holomorphic tangent bundle

TX as complex vector bundles.

Every complex manifold induces an almost complex structure. In holomorphic coordinates (zi = xi+iyi),
I is multiplication by i, or equivalently I sends ∂xi to ∂yi and ∂yi to −∂xi . We can thus identify the complex
vector bundles

(TX,R, I) ∼= T 1,0
X

∼= TX ,

(∂xi
/2, ∂yi/2) ↔ (∂zi , i∂zi) ↔ (∂zi , i∂zi) .

Theorem 3.4 (Newlander-Nirenberg). Let (X, I) be an almost complex manifold. The almost complex
structure I is integrable, i.e. induced by a complex structure on X, if and only if one of the following
equivalent conditions holds:

• [T 0,1
X , T 0,1

X ] ⊂ T 0,1
X

• dα = ∂α+ ∂α for all α ∈ A∗(X), i.e. d maps Ap,q(X) into Ap+1,q(X)⊕Ap,q+1(X)

• dα has no (0, 2)-part for all α ∈ A1,0(X).

• ∂
2
α = 0 for all α ∈ A∗(X).

HereAp,q denotes the sheaf of (differentiable) sections of the complex vector bundle Ωp,qX . See below. Some
objects defined with respect to the real tensor bundles, e.g. complex structure, metric, exterior derivative,
covariant derivative, connection, Lie bracket, has natural C-linear extensions to complexified bundles (·)⊗RC,
and in the sequal we use them without furthur notice.

Let (X, I) be an almost complex manifold. Dual to the decomposition of TX,C, we have

ΩX,C = Ω1,0
X ⊕ Ω0,1

X ,

and hence the decomposition of complex k-forms:

k∧
ΩX,C =

⊕
p+q=k

Ωp,qX =
⊕
p+q=k

(
p∧
Ω1,0
X ⊗

q∧
Ω0,1
X

)
.

Definition 3.5. Let Xn be a complex manifold. Define the holomorphic cotangent bundle ΩX as the dual
of the holomorphic tangent bundle TX . Define the holomorphic vector bundle of holomorphic p-forms as
ΩpX = ∧pΩX . The canonical bundle is KX := ∧nΩX = det(ΩX).
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Definition 3.6. A complex submanifold Y of a complex manifold X is a differentiable submanifold whose
tangent space, identified with a subspace of the tangent space of X, is stable under the almost complex
structure on X.

By Newlander-Nirenberg and theory of holomorphic functions, this is equivalent to defining complex
submanifolds of codimension k as subsets Y ⊂ X such that for each y ∈ Y , there exists a neighborhood of y
in Y that equals the vanishing set of k holomorphic functions defined in a neighborhood of y in X with C-
linearly independent differentials. When Y is embedded, this is equivalent to the existence of a holomorphic
atlas {(Ui, φi)} on X such that φi : Ui ∩ Y ∼= φi(Ui) ∩ Cn−k for each i.

Proposition 3.7 (Adjunction Formula). Let Y ⊂ X be a complex submanifold. Then there is natural
isomorphism

KY
∼= (KX)|Y ⊗ det

(
NY |X

)
Theorem 3.8 (Construction of Complex Manifolds via Quotient). Let G ↷ X be a free and proper action
by a complex Lie group G on a complex manifold X. Then X/G is a complex manifold such that the quotient
map X → X/G is holomorphic.

Definition 3.9 (Analytic Subvariety). An analytic subvariety of a complex manifold X is a closed subset
Y ⊂ X such that for each x ∈ X, there exists a neighborhood x ∈ U ⊂ X such that Y ∩ U = Z(f1, ..., fk)
for some f1, ..., fk ∈ OX(U). y ∈ Y is regular if the holomorphic map (f1, ..., fk) : U → Ck is regular at y.

Theorem 3.10. The regular part of an analytic subvariety of X is a complex submanifold of X. The singular
part of an analytic subvariety is also an analytic subvariety of X, of strictly smaller dimension.

Theorem 3.11. An analytic subvariety Z ⊂ X can be locally written as a finite union of irreducible analytic
subsets. If Z is compact, then Z can be written as a finite union of irreducible analytic subvarieties.

Theorem 3.12. Every analytic hypersurface Y ⊂ X can be written uniquely as the union of irreducible
analytic hypersurfaces Y = Y1 ∪ · · · ∪ Ym, where Yi are closures of the connected components of Yreg.

Theorem 3.13. An analytic subvariety Y ⊂ X is irreducible if and only if Yreg is connected.

Theorem 3.14 (Proper Mapping Theorem). Let f : X → Y be a holomorphic map between complex
manifolds. Suppose V ⊂ X is an analytic subvariety and f |V is proper map, then f(V ) ⊂ Y is analytic
subvariety.
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3.2 ∂-Poincaré and Dolbeault Complex

First recall the d-Poincaré:

Theorem 3.15 (d-Poincaré). Let α be a d-closed differentiable form of strictly positive degree on a differ-
entiable manifold. Then locally there exists a differential form β such that dβ = α.

Theorem 3.16 (∂-Poincaré). Let α ∈ Ap,q(X) be a ∂-closed differential form of type (p, q) on a complex
manifold X, where q > 0. Then locally there exists a differential form β of type (p, q − 1) such that ∂β = α.

Let Ap,q
E denote the sheaf of differentiable sections of Ωp,qX ⊗E, where E → X is any holomorphic vector

bundle. There is Dolbeault operator
∂E : Ap,q

E → Ap,q+1
E

defined such that
∂
2

E = 0,

∂E(fα) = ∂f ∧ α+ f∂E(α)

for all smooth function f : U → C and section α ∈ Ap,q
E (U), for all open sets U ⊂ X. For any local

holomorphic frame ej of E, one has
∂E(αj ⊗ ej) = ∂(αj)⊗ ej .

The Dolbeault complex
0 → A0,0

E → A0,1
E → A0,2

E → . . .

is thus a resolution of the sheaf E by ∂-Poincaré.

Theorem 3.17. Let E be a complex vector bundle over a complex manifold X. A holomorphic structure
on E is uniquely determined by a C-linear operator ∂E : A0,0

E → A0,1
E satisfying the Leibniz rule and the

integrability condition ∂
2

E = 0.
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3.3 Kähler Metrics

Let X be a complex manifold with induced almost complex structure I.

Definition 3.18. A Hermitian metric h on X is a collection of (positive definite) Hermitian metrics hx on
complex vector spaces (Tx,R, Ix) that varies smoothly on x.

In coordinates, using C-basis {∂xi} for (Tx,R, I), we can represent h by

hij = h(∂xi
, ∂xj

),

where (hij) is a Hermitian matrix and hij are smooth C-valued functions. The associated fundamental form
is defined as

ω = − Imh ∈ Ω1,1
X ∩ Ω2

X,R.

In coordinates above,

ω =
i

2
hijdz

i ∧ dzj .

ω is Kähler if it is d-closed. Similarly,
g = Reh,

defines a Riemannian metric

g = Re(hij)dx
i ⊗ dxj + Im(hij)dx

i ⊗ dyj − Im(hij)dy
i ⊗ dxj +Re(hij)dy

i ⊗ dyj .

Moreover, h, ω, g are compatible with the almost complex structure, and

g(Iu, v) = ω(u, v), g(u, v) = ω(u, Iv), ∀u, v ∈ Tx,R.

The volume form is √
det(g)dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn =

ωn

n!
.

Theorem 3.19 (Existence of Normal Coordinate). Let (X,ω) be a Kähler manifold. For each x ∈ X, there
exists a normal holomorphic coordinate near x, where ω is given by

ω =
i

2
ωijdz

i ∧ dzj ,

such that
ωij(x) = δij ,

∂ωij
∂zk

(x) =
∂ωij
∂zk

(x) = 0.
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3.4 Connections

Let E → X be a holomorphic vector bundle. A connection on E is an operator

∇ : A0
E → A1

E

satisfying the Leibniz rule:
∇(fσ) = df ⊗ σ + f∇(σ)

for all smooth function f : U → C and section σ ∈ A0
E(U), for all open sets U ⊂ X.

Theorem 3.20 (Chern Connection). Let (E, h) → X be a holomorphic vector bundle equipped with a
Hermitian metric h. There exists a unique connection ∇ on E satisfying:

• ∇ is compatible with h, i.e.

d (h(σ, τ)) = h(∇(σ), τ) + h(σ,∇(τ)), ∀σ, τ ∈ A0
E ,

• ∇0,1 = ∂E : A0
E → A0,1

E .

Theorem 3.21. Let h be a Hermitian metric on the holomorphic tangent bundle TX . The following are
equivalent:

• h is Kähler,

• The almost complex structure I is flat for the Levi-Civita connection:

∇(IV ) = I∇V, ∀V ∈ A0
TX,R

,

• The Chern connection and the Levi-Civita connection coincide under identification TX ∼= (TX,R, I),
identified via the map taking the real part.
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4 Sheaf and Cohomology

4.1 Presheaf and Sheaf

Definition 4.1. Let X be a topological space. A presheaf F of abelian groups over X is given by an abelian
group F(U) for each open set U ⊂ X, together with a restriction morphism ρUV : F(U) → F(V ) for each
pair of open sets V ⊂ U , such that for each triple of open sets W ⊂ V ⊂ U , one has ρUW = ρVW ◦ ρUV .

A presheaf morphism consist of group morphisms over sections which commute with restrictions.

Definition 4.2. A sheaf of abelian groups is a presheaf satisfying the gluing condition: for each open set
U ⊂ X and each covering of U by open sets V ∈ V, the natural map∏

V

ρUV : F(U) →
∏
V

F(V )

induces an isomorphism of F(U) onto

{(σV )V ∈V | σV |W∩V = σW |W∩V ∀W,V ∈ V}.

Proposition 4.3 (Universality of Sheafification). For each presheaf F , there exists a unique sheaf Ff such
that

• There is a presheaf morphism
ϕ : F → Ff

• For every presheaf morphism
ψ : F → G

where G is a sheaf, there exists a unique sheaf morphism Ψ : Ff → G such that

Ff

F G

Ψϕ

ψ

In this case the sheafification induces isomorphisms on stalks:

ϕx : Fx ∼= Ff x, ∀x ∈ X.

Definition 4.4. Let A be a sheaf of rings over X. A sheaf F of A-modules is a sheaf such that

• each F(U) is equipped with the structure of an A(U)-module compatible with its group structure

• the restriction morphisms F(U) → F(V ) are morphisms of A(U)-modules, where F(V ) is equipped
with the structure of an A(U)-module via the restriction morphism A(U) → A(V ).

Definition 4.5. A sheaf F of A-modules is a sheaf of free A-modules of rank n if there exists a covering of
X by open sets U and isomorphisms of sheaves of A-modules τU : F|U ∼= A|nU over each U .

The correspondence between a vector bundle and the sheaf of its sections establishes a bijection (in fact
an equivalence of categories) between vector bundles and sheaves of free A-modules, for some appropriate
choice of the type of vector bundles and A. For example, between holomorphic vector bundles over complex
manifold X and sheaves of free OX -modules.

Proposition 4.6 (Injective Sheaf Morphism). Let ϕ : F → G be a morphism of sheaves. The following are
equivalent:
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4 Sheaf and Cohomology 4.1 Presheaf and Sheaf

• ϕ is injective

• the kernel sheaf kerϕ is zero

• the morphisms on stalks ϕx : Fx → Gx is injective for all x ∈ X.

Moreover, the natural inclusion i : kerϕ→ F always induces isomorphisms

ix : (kerϕ)x
∼= ker(ϕx), ∀x ∈ X.

Proposition 4.7 (Surjective Sheaf Morphism). Let ϕ : F → G be a morphism of sheaves. The following are
equivalent:

• ϕ is surjective

• the image sheaf Imϕ (sheafification of the image presheaf) is equal to G

• the morphisms on stalks ϕx : Fx → Gx is surjective for all x ∈ X.

The inclusion j : Imϕ→ G induced by the inclusion of the image presheaf into G always induces isomor-
phisms

jx : (Imϕ)x
∼= Im(ϕx), ∀x ∈ X.

There is sheaf isomorphism
F/ kerϕ ∼= Imϕ.

The cokernel sheaf cokerϕ of ϕ : F → G is the sheafification of the cokernel presheaf. We have

cokerϕ ∼= G/ Imϕ,

(cokerϕ)x
∼= Gx/ Im(ϕx).

The exactness of a sequence of sheaves

F G H
ϕ ψ

at G means Imϕ = kerψ, or equivalently the exactness of sequences

Fx Gx Hxϕx ψx

for all x ∈ X.
These definitions make the category of sheaves of abelian groups an abelian category, and we can treat

them just like the category of abelian groups when we talk about sequences, complexes, resolutions, etc.
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4.2 Examples of Resolutions

Define the Čech resolution of a sheaf F as follows. Fix a countable open covering U = {Ui} of X. For each
finite set I ⊂ N, let UI := ∩i∈IUi. Define sheaves

Ck(U ,F) :=
∏

|I|=k+1

FI ,

where the sheaves FI are defined via FI(U) := F(U∩UI). Define sheaf morphisms d : Ck(U ,F) → Ck+1(U ,F)
by

(dσ)j0,...,jk+1
=
∑
i

(−1)
i
σj0,...,ĵi,...,jk+1

|U∩Uj0,...,jk+1
, j0 < · · · < jk+1,

for each section σ = (σI), I ⊂ N, |I| = k + 1, σI ∈ FI(U) = F(U ∩ UI). We then have the Čech resolution

0 F C0(U ,F) C1(U ,F) C2(U ,F) . . .
j d d

for F , where the injection j : F → C0(U ,F) is given by

j(σ)i = σ|U∩Ui , σ ∈ F(U).

Define the de Rham resolution as follows. Let X be a differentiable manifold, and R denote the sheaf of
locally constant real-valued functions. Then we have de Rham resolution of R:

0 R Ω0
X,R Ω1

X,R Ω2
X,R . . .

j d d

where j is the natural inclusion, and d are exterior differentials. The exactness is given by d-Poincaré.

Define the Dolbeault resolution as follows. Let E be a holomorphic vector bundle over complex manifold
X. Using the definition of ∂E and ∂-Poincaré, we have a resolution for E, the sheaf of holomorphic sections
of E:

0 E A0,0
E A0,1

E A0,2
E . . .

j ∂E ∂E

More generally, we have resolutions for holomorphic vector bundles ΩpX ⊗ E:

0 ΩpX ⊗ E Ap,0
E Ap,1

E Ap,2
E . . .

j ∂E ∂E
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4.3 Functors and Derived Functors

Here are some abstract theory for the abelian category useful to the construction of sheaf cohomology.

Definition 4.8. An object I of an abelian category is injective if for every injective morphism j : A → B
and for every morphism ϕ : A→ I, there exists a morphism ψ : B → I such that ψ ◦ j = ϕ.

An abelian category has sufficiently many injective objects if every object A admits an injective morphism
j : A→ I for some injective object I.

Proposition 4.9. In an abelian category having sufficiently many injective objects, every object admits an
injetive resolution, i.e. a resolution I · consisting of injective objects.

Injective resolution is unique up to homotopy equivalence.

Proposition 4.10. Let (I ·, i : A → I0) and (J ·, j : B → J0) be resolutions of A,B respectively. Let
ϕ : A → B be a morphism. If the second resolution is injective, there exists a morphism of complexes
ϕ· : I · → J · such that ϕ0 ◦ i = j ◦ ϕ:

0 A I0 I1 I2 . . .

0 B J0 J1 J2 . . .

i

ϕ ϕ0 ϕ1 ϕ2

j

Moreover, if we have two such morphisms ϕ· and ψ·, then there exists a homotopy H · between ϕ· and ψ·.

From now on, let C, C′ be two abelian categories. Assume C has sufficiently many injective objects. Let
F be a left-exact functor from C to C′.

Theorem 4.11 (Derived Functor). For every object M of C, there exist objects RiF (M), i ≥ 0, in C′,
determined up to isomorphism, satisfying the following conditions:

• R0F (M) = F (M)

• For each short exact sequence

0 A B C 0
ϕ ψ

in C, we can construct a long exact sequence in C′:

0 F (A) F (B) F (C) R1F (A) R1F (B) R1F (C) . . .
ϕ ψ

• For every injective object I of C, we have RiF (I) = 0 for all i > 0.

In this case, we can define RiF (A) = Hi(F (I ·)), the cohomology of the complex F (I ·), where I · is any
injective resolution of A.

Proposition 4.12 (Functoriality of RiF ). If ϕ : A → B is a morphism in C, and I ·, J · are injective
resolutions of A and B respectively. Then there exists a canonical morphism induced by ϕ,

RiF (ϕ) : RiF (A) → RiF (B),

where RiF (A), RiF (B) are given by I ·, J · respectively.

We can use acyclic resolutions (weaker than injective) to compute the cohomology.

Definition 4.13. An object M of C is acyclic for the functor F if RiF (M) = 0 for all i > 0.

Proposition 4.14. Let (M ·, i : A → M0) be a resolution of A, where M i are F -acyclic. Then RiF (A) =
Hi(F (M ·)).
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4.4 Sheaf Cohomology

We now consider the category C of sheaves of abelian groups over a topological space X, and the category
C′ of abelian groups.

Lemma 4.15. The following are true:

• C is an abelian category.

• C has sufficiently many injective objects.

• The functor Γ : C → C′ taking the global section is left-exact. Hence write RiΓ(F) =: Hi(X,F).

Definition 4.16. A sheaf F is flasque if all restriction maps F(U) → F(V ) are surjective.

Proposition 4.17. Flasque sheaves are Γ-acyclic.

Definition 4.18. A fine sheaf F is a sheaf of A-modules, where A is a sheaf of rings over X satisfying the
partition of unity property: for each open cover {Ui} of X, there exists fi ∈ A(X) with compact support
inside Ui, such that

∑
i fi = 1 and the sum is locally finite.

Proposition 4.19. A fine sheaf F is Γ-acyclic, i.e. Hi(X,F) = 0 for all i > 0.

Theorem 4.20 (De Rham Cohomology). Let X be a C∞ manifold. Then

Hk(X,R) =
ker
(
d : ΩkX,R(X) → Ωk+1

X,R(X)
)

Im
(
d : Ωk−1

X,R(X) → ΩkX,R(X)
) .

A similar equality holds for Hk(X,C). Hence Hk(X,C) = Hk(X,R)⊗ C.

Theorem 4.21 (Dolbeault Cohomology). Let E be a holomorphic vector bundle over a complex manifold
X. Then

Hp,q(X,E) := Hq(X,ΩpX ⊗ E) =
ker
(
∂E : Ap,q

E (X) → Ap,q+1
E (X)

)
Im
(
∂E : Ap,q−1

E (X) → Ap,q
E (X)

) .
In particular,

Hp,q(X) = Hp,q(X,OX) =
ker
(
∂ : Ap,q(X) → Ap,q+1(X)

)
Im
(
∂ : Ap,q−1(X) → Ap,q(X)

) .
Cohomology for general sheaves can be computed via Čech cohomology as follows. Let U = {Ui} be a

countable ordered open covering of X.

Theorem 4.22 (Čech Cohomology for Nice Covering). If for each I ⊂ N, |I| <∞, the open sets UI satisfy
Hq(UI ,F) = 0 for all q > 0, then

Hq(X,F) = H̆q(U ,F) := Hq(C·(U ,F)(X)),

where C·(U ,F) is the Čech resolution for F with respect to U constructed above:

Cq(U ,F)(X) =
∏

|I|=q+1

F(UI).

When the open cover U does not satisfy the assumption above, note that by choosing an injective
resolution for F , Proposition 4.10 gives a canonical morphism

H̆q(U ,F) → Hq(X,F).

Ordering open covering by refinement, we have

13



4 Sheaf and Cohomology 4.4 Sheaf Cohomology

Theorem 4.23 (Čech Cohomology for Arbitrary Covering). If X is separable, the morphisms H̆q(U ,F) →
Hq(X,F) for each open covering U induce an isomorphism

lim−→
U
H̆q(U ,F) ∼= Hq(X,F).

Theorem 4.24 (De Rham Theorems). Let X be a locally contractible topological space. There is canonical
isomorphism

Hq
sing(X,Z) ∼= Hq(X,Z),

and the same result holds with Z replaced by any commutative ring R, identified with the locally constant
sheaf R.

Moreover, when X is a differentiable manifold, there is isomorphism

Hq
sing(X,R) ∼= Hq

dR(X,R) ∼= Hom(Hsing
q (X,Z),R),

and the second isomorphism is induced by sending a closed q-form ω to the linear form∫
ω : ϕ 7→

∫
∆q

ϕ∗ω,

for each singular q-chain ϕ : ∆q → X.

14
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4.5 The Group H1 and Cocycle

Let F be a sheaf of abelian groups over a separable topological space X. Then every element of H1(X,F)
can be represented by a Čech cocycle for a suitable open covering of X. To see this, fix an injective sheaf
morphism F → I, where I is injective. Then there is a short exact sequence

0 → F → I → G → 0,

whose associated long exact sequence of cohomology gives isomorphism

H1(X,F) ∼= coker
(
H0(X, I) → H0(X,G)

)
,

since H1(X, I) = 0. Fix α ∈ H1(X,F), which thus can be represented by a global section β ∈ G(X). By
surjectivity of I → G, there exists a countable open covering U = {Ui} of X such that β lifts to sections
βi ∈ I(Ui). By exactness, βij := βi − βj is a section of F over Uij . Then {βij ∈ F(Uij)} is a cocyle in
C1(U ,F)(X),

βij − βik + βjk = 0 ∈ F(Uijk),

and thus determines a class γ ∈ H̆1(U ,F). This class does not depend on the liftings or on the representative
β.

Theorem 4.25. Let A be one of the sheaves of rings C, C0
X,C, OX (the last one in the case where X is

a complex manifold), and A∗ the sheaf of corresponding multiplicative groups. The group H1(X,A∗) is in
bijection with

• the set of isomorphism classes of sheaves of free A-modules of rank 1, and also with

• the set of isomorphism classes of complex line bundles equipped with flat, continuous, or holomorphic
structures according to A.

In particular, this bijection is a group isomorphism Pic(X) ∼= H1(X,O∗
X), where Pic(X) is the group of

isomorphism classes of holomorphic line bundles over X with group operation ⊗.

Theorem 4.26. Let E be a holomorphic vector bundle over a complex manifold, identified with the sheaf of
its holomorphic sections. Then group H1(X,E) is in bijection with the isomorphism classes of extensions of
E by the trivial bundle, i.e. of holomorphic vector bundles F containing E as a holomorphic vector subbundle
such that the quotient bundle is the trivial line bundle OX :

0 → E → F → OX → 0.

15
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5 Holomorphic Vector Bundles

5.1 Divisors and Line Bundles

Let X be a complex manifold.

Definition 5.1. The (Weil) divisor group Div(X) is the set of locally finite formal Z-linear combinations
of irreducible analytic hypersurfaces of X, equipped with the natural group structure. Locally finite means:
writing D ∈ Div(X) as D =

∑
aiYi, then for each x ∈ X, there exists an open neighborhood x ∈ U ⊂ X

such that there are only finitely many coefficients ai ̸= 0 such that Yi ∩ U ̸= ∅.

Definition 5.2. A divisor D =
∑
aiYi is effective if ai ≥ 0 for all i.

Let Y ⊂ X be any irreducible analytic hypersurface, and y ∈ Y any point. Pick any local defining
function g ∈ OX,y for Y near y, which is unique up to a unit. Then the order along Y at y of a holomorphic
function f defined near y, ordY,y(f), is the largest integer a such that ga | f in OX,y. This order is locally
independent of the point y, so that by connectedness of Yreg, ordY (f) is well-defined for any f ∈ OX(X).
Similarly, there is well-defined order along Y for each global meromorphic function f ∈ KX(X), such that

ordY (f1f2) = ordY (f1) + ordY (f2), ∀f1, f2 ∈ KX(X).

For each f ∈ K∗
X(X), the associated divisor is

(f) =
∑
Y

ordY (f) · Y ∈ Div(X),

where Y ranges over all irreducible hypersurfaces of X.
The connection between meromorphic functions and irreducible hypersurfaces via order gives

Proposition 5.3 (Cartier Divisor and Weil Divisor). There exists a natural isomorphism

H0(X,K∗
X/O∗

X) ∼= Div(X).

The exact sequence
0 → O∗

X → K∗
X → K∗

X/O∗
X → 0

gives the natural group homomorphism

O : Div(X) → H1(X,O∗
X) ∼= Pic(X),

whose kernel, called principal divisors, is the image of

K∗
X(X) = H0(X,K∗

X) → H0(X,K∗
X/O∗

X).

The map O takes a global section of K∗
X/O∗

X represented by fi ∈ K∗
X(Ui) to the line bundle given by

transition maps {φij = fi/fj ∈ O∗
X(Uij)}.

From above, principal divisors consist exactly of (f) ∈ Div(X) where f ∈ K∗
X(X). Two divisors are

linearly equivalent if their difference is principal.

Proposition 5.4 (Pullback of Divisors). Let f : X → Y be a holomorphic map between connected complex
manifolds, and suppose that f is dominant, i.e. f(X) is dense in Y . The the pullback defines a group
homomorphism

f∗ : Div(Y ) → Div(X),

such that the diagram commutes:

Div(Y ) Pic(Y )

Div(X) Pic(X)

OY

f∗ f∗

OX

16



5 Holomorphic Vector Bundles 5.1 Divisors and Line Bundles

Similarly, viewing a non-zero global section of a holomorphic line bundle as a global section of K∗
X/O∗

X

via line bundle trivialization, we have a map

Z : H0(X,L) \ {0} → Div(X)

for each holomorphic line bundle L→ X, such that each Z(s) is effective divisor, and

Z(s1 ⊗ s2) = Z(s1) + Z(s2), ∀si ∈ H0(X,Li) \ {0}.

Proposition 5.5. Let 0 ̸= s ∈ H0(X,L), then O(Z(s)) ∼= L.

Proposition 5.6. For any effective divisor D ∈ Div(X) there exists 0 ̸= s ∈ H0(X,O(D)) such that
Z(s) = D.

Corollary 5.7. Non-trivial sections s1 ∈ H0(X,L1) and s2 ∈ H0(X,L2) define linearly equivalent divisors
Z(s1) ∼ Z(s2) if and only if L1

∼= L2.

Corollary 5.8. The image of O : Div(X) → Pic(X) is generated by line bundles L ∈ Pic(X) with
H0(X,L) ̸= 0.

Proposition 5.9. Let Y be a smooth hypersurface of a complex manifold X, defined by a section 0 ̸= s ∈
H0(X,L) for some holomorphic line bundle L→ X. Then NY |X ∼= L|Y and thus KY

∼= (KX ⊗ L) |Y .

Proposition 5.10. Let Y ⊂ X be an irreducible hypersurface. For any 0 ̸= s ∈ H0(X,O(Y )) such that
Z(s) = Y , the sheaf morphism O(−Y ) → OX given by (·) ⊗ s is injective, and the image is the ideal sheaf
IY of holomorphic functions vanishing on Y .

Combined with the short exact sequence

0 → IY → OX → OY → 0

defining OY , we have
0 → O(−Y ) → OX → OY → 0.

More generally, for each effective divisor D =
∑
aiYi, we have short exact sequences

0 → ID → OX → OD → 0,

0 → O(−D) → OX → OD → 0,

where ID is the ideal sheaf of holomorphic functions vanishing of order at least ai on Yi for each i.

Proposition 5.11. Suppose L→ X is a holomorphic line bundle and s0, ..., sN ∈ H0(X,L) is a basis. Then
the holomorphic map

φL : X \ Bs(L) → PN , x 7→ [s0(x) : · · · : xN (x)]

satisfies
φ∗
LOPN (1) ∼= LX\Bs(L).

L is called very ample if Bs(L) = ∅ and the map φL : X → PN is a holomorphic embedding. L is called
ample if Lk is very ample for some k > 0.

17
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5.2 Example: Projective Space and Blow-up

In this note the transition maps for a vector bundle is always written by φij = ψi ◦ψ−1
j : Ui∩Uj → GL(n,C).

Let Pn = Cn+1/C∗ be the projective space with standard coordinate charts Ui, i = 0, ..., n. The tauto-
logical line bundle is

OPn(−1) = {(l, z) ∈ Pn × Cn+1 | z ∈ l},

with transition function
φij =

zi
zj
, on Uij .

The Fubini-Study metric on Pn is given in each coordinate Ui by

ω|Ui =
1

2iπ
∂∂ log

(
1

1 +
∑n
i=1 |zi|

2

)
.

More generally, given a holomorphic vector bundle E of rank r + 1, define the projective bundle over X
associated to E:

P(E) := (E \ σ0)/C∗,

where σ0 ⊂ E is the zero section and C∗ acts on each fiber of E. P(E) inherits trivializations and transition
maps from E via the quotient Cr+1 \ {0} → Pr. Now we have

π∗E E

P(E) X

q p

π

and define the tautological bundle OP(E)(−1) over P(E) to be the line subbundle of π∗E whose fiber at
(x, l ⊂ Ex) is the line l ⊂ Ex. Then OP(E)(1) is the dual of OP(E)(−1). The restriction of OP(E)(1) to each
fiber π−1(x) ∼= Pr is naturally isomorphic to OPr (1).

Proposition 5.12. If X is compact Kähler and E → X is holomorphic vector bundle. Then P(E) is compact
Kähler.

Proposition 5.13 (Global Sections of O(k)). For each k ≥ 0, H0(Pn,O(k)) ∼= C[x0, ..., xn]k, the space of
homogeneously polynomials of degree k. These vector space isomorphisms combine to give a ring isomorphism⊕

k≥0

H0(Pn,O(k)) ∼= C[x0, ..., xn].

Corollary 5.14. For k < 0, H0(Pn,O(k)) = 0.

Proposition 5.15. The canonical bundle of the projective space is KPn ∼= O(−n− 1).

Proposition 5.16. Let Y ⊂ Pn be a smooth hypersurface of degree k, i.e. defined by a section 0 ̸= s ∈
H0(Pn,O(k)). Then KY

∼= O(k − n− 1)|Y .

Proposition 5.17 (Euler Sequence). On Pn there is a natural short exact sequence of holomorphic vector
bundles

0 → O → ⊕nj=0O(1) → TPn → 0.

Equivalently,
0 → ΩPn → ⊕nj=0O(−1) → O → 0,

or twisted by O(1):
0 → ΩPn(1) → ⊕nj=0O → O(1) → 0.

18
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Here the mapO → ⊕nj=0O(1) is induced by the standard basis {x0, ..., xn} ofH0(Pn,O(1)) ∼= C[x0, ..., xn]1.
The map ⊕nj=0O(1) → TPn sends a section σ = (σ0, ..., σn) to

π∗

(∑
i

σi
∂

∂Xi

)
,

where π : Cn+1 \{0} → Pn, and σi, which sends each point l ∈ Pn to a linear functional on l ⊂ Cn+1, extends
naturally to a linear function X ∈ Cn+1 \ {0} 7→ σi(π(X))(X) ∈ C. In particular, xi(X) = Xi.

More generally, given holomorphic vector bundle E → X, there is relative Euler sequence of holomorphic
vector bundles over P(E):

0 → Ωπ ⊗OP(E)(1) → π∗E∗ → OP(E)(1) → 0.

Here Ωπ = T ∗
π is the relative cotangent bundle, defined such that Tπ is the kernel of the vector bundle

morphism TP(E) → π∗TX , i.e. directions along fibers π−1(x).
Let Y ⊂ X be a complex submanifold of codimension k. Locally there are functions f1, ..., fk ∈ OX(U)

with independent differentials such that Y ∩U = Z(f1, ..., fk). Define the local blow-up along Y on U to be

ŨY = {(Z, z) ∈ Pk−1 × U | Zifj(z) = Zjfi(z) ∀i, j ≤ k}.

The local blow-ups glue together to give a complex manifold X̃Y , called the blow-up of X along Y .

Proposition 5.18. The following holds for a blow-up along Y ⊂ X:

• The blow-up map π : X̃Y → X is holomorphic, and biholomorphic above X − Y .

• The exceptional divisor D := π−1(Y ) ∼= P(NY |X).

• OX̃Y
(−D)

∣∣
D

∼= OP(NY |X)(1).

• If X is Kähler and Y is compact complex submanifold of X, then X̃Y is Kähler. Moreover, X̃Y is
compact if X is.

If Y = {x} is a point, we have

• KX̃x

∼= π∗KX ⊗OX̃x
((n− 1)D).

• On the blow-up neighborhood U of x ∈ X, we have OX̃x
(D)

∣∣
π−1(U)

∼= p∗OPn−1(−1), where p : π−1(U) ⊂
Pn−1 × U → Pn−1 is the projection.

• X̃x is diffeomorphic as an oriented differentiable manifold to the connected sum X#Pn.
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5.3 Holomorphic Vector Bundles

Lemma 5.19. Let f : E → F be a holomorphic vector bundle homomorphism over a complex manifold X,
in particular, f is of constant rank. Then Im(f) is a holomorphic vector subbundle of F , and we have the
short exact sequence of holomorphic vector bundles

0 → ker(f) → E → Im(f) → 0,

0 → Im(f) → F → coker(f) → 0.

Lemma 5.20. Let X be a complex manifold. Suppose there is a short exact sequence of holomorphic vector
bundles

0 → E
e→ F

f→ G→ 0.

Then:

1. F ∼= E ⊕G as complex (smooth) vector bundles.

2. F ∼= E ⊕G as holomorphic vector bundles if and only if either of the following holds:

(a) There exists a holomorphic vector bundle homomorphism φ : G→ F such that f ◦ φ = IdG.

(b) There exists a holomorphic vector bundle homomorphism ε : F → E such that ε ◦ e = IdE.
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6 Hodge Theory

6.1 Laplacians

Let Xn be a compact oriented differentiable manifold with metric g. The induced metric on tensor bundles
and the identification of R with ∧nΩX,x via the volume form defines the Hodge ∗-operator

∗ : ΩkX,R
∼= Ωn−kX,R

as an isomorphism of vector bundles (or sheaves). We use the same notation for the isomorphism on sections:

∗ : Ak(X) ∼= An−k(X).

Lemma 6.1. 1. For α, β ∈ Ak(X), we have

(α, β) =

∫
X

(α, β)Vol =

∫
X

α ∧ ∗β.

2. ∗2 = (−1)k(n−k) on Ak(X).

3. The operator d∗ : Ak(X) → Ak−1(X) defined by d∗ := (−1)k ∗−1 d∗ = (−1)n(k+1)+1 ∗ d∗ is the formal
adjoint of d:

(α, d∗β) = (dα, β), ∀α ∈ Ak−1(X), β ∈ Ak(X).

4. The Laplacian ∆d := dd∗ + d∗d is self-adjoint, and

(α,∆dα) = ∥dα∥2 + ∥d∗α∥2.

From now assume X is compact complex manifold with dimCX = n, equipped with metric g compatible
with the almost complex structure I. The associated Hermitian metric on (TX,R, I) extends to L

2 Hermitian
metrics on the complexified tensor bundles ΩkX,C. Extend Hodge ∗-operator C-linearly to ΩkX,C as well and
we have

∗ : Ωp,qX
∼= Ωn−q,n−pX ,

(α, β) =

∫
X

(α, β)Vol =

∫
X

α ∧ ∗β, ∀α, β ∈ Ap,q(X).

Lemma 6.2. The operators
∂∗ := − ∗ ∂∗ : Ap+1,q(X) → Ap,q(X)

∂
∗
:= − ∗ ∂∗ : Ap,q+1(X) → Ap,q(X)

are formal adjoints of ∂ and ∂ respectively:

(α, ∂∗β) = (∂α, β) , ∀α ∈ Ap,q(X), β ∈ Ap+1,q(X),(
α, ∂

∗
β
)
=
(
∂α, β

)
, ∀α ∈ Ap,q(X), β ∈ Ap,q+1(X).

Hence the Laplacians
∆∂ = ∂∂∗ + ∂∗∂,

∆∂ = ∂∂
∗
+ ∂

∗
∂,

are self-adjoint. Also, ker∆∂ = ker ∂ ∩ ker ∂∗, and ker∆∂ = ker ∂ ∩ ker ∂
∗
.
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Suppose (E, h) → X is a holomorphic vector bundle equipped with a Hermitian metric h. We can then
use g and h to define the C-antilinear isomorphism

∗E : Ωp,qX ⊗ E ∼= Ωn−p,n−qX ⊗ E∗,

α⊗ σ 7→ (∗α)⊗ (⟨·, σ⟩) .

We thus have L2 Hermitian metric on Ap,q
E :

(α, β) =

∫
X

(α, β)Vol =

∫
X

α ∧ ∗Eβ, ∀α, β ∈ Ap,q
E (X).

Lemma 6.3. The operator
∂
∗
E := −∗E∗ ◦ ∂E∗ ◦ ∗E : Ap,q

E → Ap,q−1
E

is formal adjoint of ∂E: (
α, ∂

∗
Eβ
)
=
(
∂Eα, β

)
, ∀α ∈ Ap,q

E (X), β ∈ Ap,q+1
E (X).

Hence the Laplacian
∆E = ∂

∗
E∂E + ∂E∂

∗
E

is self-adjoint and satisfies analogous properties as other Laplacians above.
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6.2 Hodge Decomposition for Elliptic Differential Operators

Let E,F be two real differentiable vector bundles over differentiable manifold M . Let A0
E denote the sheaf

of smooth sections of E. For each differential operator

P : A0
E → A0

F

of order k, we associate a global section σP of Hom(E,F ) ⊗ Symk TX , called the symbol of the operator
P , which depends only on the k-th order partial derivatives in P . P is elliptic if for every m ∈ M , and
0 ̸= αm ∈ ΩM,m, the homomorphism σP,m(α) : Em → Fm is injective.

Lemma 6.4. Let X be a compact complex manifold with Hermitian metric g and Hermitian holomorphic
vector bundle (E, h). The Laplacians ∆,∆∂ ,∆∂ ,∆E are elliptic operators. All symbols σP,x have the form

αx ∈ ΩX,x 7→ −∥αx∥2 Id

except for a constant 1
2 for ∆∂ and ∆∂ .

Theorem 6.5 (Demailly). Let (X, g) be a compact oriented manifold. Let P : A0
E → A0

F be an elliptic
differential operator between vector bundles E and F of equal rank and equipped with metrics. Let P ∗ denote
the formal adjoint of P . Then

1. P ∗ : A0
F → A0

E is a differential operator of the same order as P .

2. kerP ⊂ A0
E(X) is finite-dimensional.

3. P (A0
E(X)) ⊂ A0

F (X) is closed and of finite codimension.

4. There is orthogonal decomposition with respect to the L2 metric on A0
E(X):

A0
E(X) = kerP ⊕ P ∗ (A0

F (X)
)

The main step in the proof is to prove the regularity: if P ∗α = β in the sense of distributions and β is
smooth, then α is smooth.

Theorem 6.6 (Hodge Decomposition: Riemannian Manifold Case). Let (X, g) be a compact oriented man-
ifold. Let Hk(X, g) denote the vector space of ∆d-harmonic real differential forms of degree k. There is
orthogonal decomposition

Ak(X) = Hk(X, g)⊕ d
(
Ak−1(X)

)
⊕ d∗

(
Ak+1(X)

)
.

Then we have an isomorphism
Hk(X, g) ∼= Hk(X,R)

induced by each sending harmonic form to its class in the de Rham cohomology. Similarly, the complex
harmonic forms Hk

C(X, g)
∼= Hk(X,C). Hk(X, g) is finite dimensional.

Note that in this case ∗∆d = ∆d∗, so there is isomorphism

∗ : Hk(X, g) ∼= Hn−k(X, g).

Theorem 6.7 (Hodge Decomposition: Hermitian Manifold Case). Let X be a compact complex manifold
equipped with a Hermitian metric g. Let Hp,q

∂ (X, g), Hp,q

∂
(X, g) denote the vector space of ∆∂- and ∆∂-

harmonic forms in Ap,q(X), respectively. There are orthogonal decompositions

Ap,q(X) = Hp,q

∂
(X, g)⊕ ∂

(
Ap,q−1(X)

)
⊕ ∂

∗ (Ap,q+1(X)
)
,
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Ap,q(X) = Hp,q
∂ (X, g)⊕ ∂

(
Ap−1,q(X)

)
⊕ ∂∗

(
Ap+1,q(X)

)
.

Then we have an isomorphism
Hp,q

∂
(X, g) ∼= Hp,q(X)

induced by sending each harmonic form to its class in the Dolbeault cohomology. Hp,q

∂
(X, g) and Hp,q

∂ (X, g)
are finite dimensional.

Note that in this case ∗∆∂ = ∆∂∗, so there is isomorphism

∗ : Hp,q

∂
(X, g) ∼= Hn−q,n−p

∂ (X, g).

Theorem 6.8 (Hodge Decomposition: Holomorphic Vector Bundle Case). Let (E, h) be a Hermitian
holomorphic vector bundle over a compact complex manifold X equipped with a Hermitian metric g. Let
Hp,q(X,E) denote the vector space of ∆E-harmonic sections in Ap,q

E (X). There is orthogonal decomposition

Ap,q
E (X) = Hp,q(X,E)⊕ ∂E

(
Ap,q−1
E (X)

)
⊕ ∂

∗
E

(
Ap,q+1
E (X)

)
.

Then we have an isomorphism
Hp,q(X,E) ∼= Hp,q(X,E)

induced by sending each harmonic section to its class in the Dolbeault cohomology. Both spaces are finite
dimensional.
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6.3 Duality Theorems

Let F and G be sheaves of A-modules over a topological space X, where A is a commutative ring with unit.
There is natural A-module morphism

Hp(X,F)⊗A Hq(X,G) → Hp+q(X,F ⊗A G).

When F = G = A is a sheaf of rings and A = Z, the map given by the product

A⊗A → A

induces homomorphisms Hk(A⊗A) → Hk(A), which, composed with the map above, give the cup product

Hp(X,A)⊗Hq(X,A) → Hp+q(X,A),

(α, β) 7→ α ∪ β.

If (X, g) is an n-dimensional connected compact oriented manifold, the cup product

Hp(X,R)⊗Hn−p(X,R) → Hn(X,R) ∼= R

is induced by the bilinear map

(α, β) 7→
∫
M

α ∧ β

for closed p-form α and closed (n−p)-form β, once we identify Hk(X,R) ∼= Hk
DR(X,R). This bilinear pairing

Hp(X,R)×Hn−p(X,R) → R

is non-degenerate. The key observation is that ∗ commutes with ∆g, and hence

∗ : Hp(X, g) ∼= Hn−p(X, g).

Therefore we have a natural isomorphism

Hp(X,R)∗ ∼= Hp(X,R) ∼= Hn−p(X,R)∗.

In fact, the Poincaré duality gives a canonical isomorphism

Hp(X,Z) ∼= Hn−p(X,Z).

Theorem 6.9 (Serre Duality). Let (E, h) be a Hermitian holomorphic vector bundle over a compact complex
manifold X equipped with a Hermitian metric g. The bilinear pairing

Hp,q(X,E)×Hn−p,n−q(X,E∗) → C

induced by

(α, β) 7→
∫
X

α ∧ β, α ∈ Ap,q
E (X) ∩ ker ∂E , β ∈ An−p,n−q

E∗ (X) ∩ ker ∂E∗

is non-degenerate. Moreover, we have C-antilinear isomorphism

∗E : Hp,q(X,E) ∼= Hn−p,n−q(X,E∗),

and natural C-linear isomorphism

Hp,q(X,E) ∼= Hn−p,n−q(X,E∗)∗.
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6.4 Hodge Theory on Kähler Manifolds

In this section let (X,ω) be a Kähler manifold with complex dimension n.

Definition 6.10. The Lefschetz operator L : Ak 7→ Ak+2 is defined such that Lα = α ∧ ω.

Lemma 6.11. The dual Lefschetz operator

Λ : Ak 7→ Ak−2

Λ = (−1)k ∗ L∗ = ∗−1L∗

is the formal adjoint of L with respect to the Hermitian metric on each Ω∗
X,C,x induced by ω.

Proposition 6.12 (Kähler Identities). Let (X,ω) be a Kähler manifold. Then

[∂, L] = [∂, L] = 0

[∂
∗
,Λ] = [∂∗,Λ] = 0

[∂
∗
, L] = i∂, [∂∗, L] = −i∂

[∂,Λ] = i∂∗, [∂,Λ] = −i∂∗

∆∂ = ∆∂ =
1

2
∆d

and ∆d commutes with ∗, ∂, ∂, ∂∗, ∂∗, L, and Λ.

Proof Idea. Compute in normal coordinate at a point. For line 3 and 4, it is equivalent to proving the
equality of the symbols of the corresponding 1-st order differential operators, since they have no zero-order
terms.

Corollary 6.13. Let (X,ω) be a Kähler manifold. Then

Hk(X, g) =
⊕
p+q=k

Hp,q(X, g)

given by the bidegree decomposition.

Theorem 6.14 (Hodge Decomposition: Kähler Case). Let (X,ω) be a compact Kähler manifold. The
decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

induced by the isomorphisms given above:

Hk(X,C) ∼= Hk(X, g)

Hp,q(X) ∼= Hp,q(X, g)

Hk(X, g) =
⊕
p+q=k

Hp,q(X, g)

does not depend on the choice of Kähler metric ω.

The Hodge decomposition of cohomology depends essentially on the ∂∂-Lemma, which follows from the
Hodge decomposition for forms.

Lemma 6.15 (∂∂-Lemma). Let (X,ω) be a compact Kähler manifold. Let α ∈ Ap,q(X) be d-closed. TFAE:

1. α is d-exact, i.e. α = dβ for some β ∈ Ap+q−1(X).
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2. α is ∂-exact, i.e. α = ∂β for some β ∈ Ap−1,q(X).

3. α is ∂-exact, i.e. α = ∂β for some β ∈ Ap,q−1(X).

4. α is ∂∂-exact, i.e. α = ∂∂ β for some β ∈ Ap−1,q−1(X).

By Hodge decomposition, the complex conjugation of forms induces natural maps on Hk(X,C) such
that Hp,q(X) = Hq,p(X). We can represent each class [α] ∈ Hp,q(X) by a d-closed (p, q)-form α, and then
[α] = [α] ∈ Hq,p(X).

Proposition 6.16. Let X be a compact Kähler manifold. Then

H1,1(X,R) ∼=
{d-closed real (1, 1)-forms}

i ∂∂ C∞(X,R)
.
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6.5 Lefschetz Theorems

Let (X,ω) be a Kähler manifold with complex dimension n. Let L,Λ denote the corresponding Lefschetz
and dual Lefschetz operators on the real and complexified tensor bundles. L is real operator of bidegree
(1, 1) in the bidegree decomposition of complexified bundles.

Lemma 6.17. [L,Λ] = (k − n) Id, and [Li,Λ] = i(k − n+ i− 1)Li−1 on Ak.

Lemma 6.18. The vector bundle morphism

Ln−k : ΩkX,R → Ω2n−k
X,R

or equivalently, the operator of order zero

Ln−k : Ak → A2n−k

is an isomorphism. In the complexified case, there is isomorphism

Ln−k : Ap,q → An−q,n−p

for each p+ q = k ≤ n, and hence isomorphism

Ln−k : Hp,q(X, g) ∼= Hn−q,n−p(X, g).

Definition 6.19. An element α ∈ ΩkX,R,x (or ΩkX,C,x) is primitive if Λα = 0. Define ΩkX,R,x,p to be the

primitive elements in ΩkX,R,x.

Proposition 6.20 (Lefschetz Decomposition on Forms). For each k, there is orthogonal decomposition

ΩkX,R,x =
⊕
r≥0

LrΩk−2r
X,R,x,p

with respect to the induced metric on forms. Moreover,

1. ΩkX,R,x,p = 0 if k > n.

2. ΩkX,R,x,p = kerLn−k+1 if k ≤ n.

Therefore, we have orthogonal decomposition

Ak =
⊕
r≥0

LrAk−2r
p .

In the complexified case, we have orthogonal decomposition

Ap,q =
⊕
r≥0

LrAp−r,q−r
p .

Assume now (X,ω) is comapct Kähler manifold of complex dimension n. Let

L : Hk(X,R) → Hk+2(X,R)

Λ : Hk(X,R) → Hk−2(X,R)
denote the Lefschetz and dual Lefschetz operators on cohomology. Then L[α] = [α ∧ ω] for each d-closed
α ∈ Ak(X). Λ[α] = [Λα] for each harmonic α ∈ Hk(X, g). These operators depend only on the cohomology
class [ω] ∈ H2(X,R). By Hodge decomposition, in the complexified case,

L : Hp,q(X) → Hp+1,q+1(X)

Λ : Hp,q(X) → Hp−1,q−1(X)

Let Hk(X,R)p, Hk(X,C)p, Hp,q(X)p, H
p,p(X,R)p denote the primitive classes, i.e. kernel of Λ. Then

Hk(X,C)p = Hk(X,R)p ⊗ C =
⊕
p+q=k

Hp,q(X)p.
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Theorem 6.21 (Hard Lefschetz). For each k ≤ n,

Ln−k : Hk(X,R) → H2n−k(X,R)

is an isomorphism. For any k, there is decomposition

Hk(X,R) =
⊕
r≥0

LrHk−2r(X,R)p

Hk(X,C) =
⊕
r≥0

LrHk−2r(X,C)p

Hp,q(X) =
⊕
r≥0

LrHp−r,q−r(X)p

Hp,p(X,R) =
⊕
r≥0

LrHp−r,p−r(X,R)p

Proposition 6.22. For each primitive element α ∈ Ωp,qX,x,p ⊂ ΩkX,C,x, we have

∗α = (−1)
k(k+1)

2 ip−q
1

(n− k)!
Ln−kα.

Define the intersection form Q on Hk(X,R) for each k ≤ n:

Q(α, β) = ⟨Ln−kα, β⟩ =
∫
X

ωn−k ∧ α ∧ β.

Then Hk(α, β) = ikQ(α, β) is a Hermitian form on Hk(X,C).

Proposition 6.23. The Hard Lefschetz decomposition

Hk(X,C) =
⊕
r≥0

LrHk−2r(X,C)p

is orthogonal with respect to Hk for each k ≤ n.

Theorem 6.24 (Hodge-Riemann Bilinear Relation). The Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

is orthogonal with respect to Hk for each k ≤ n. Moreover, for each p+ q = k ≤ n, the form

(−1)
k(k−1)

2 ip−q−kHk

is positive definite on Hp,q(X)p:

(−1)
k(k−1)

2 ip−q
∫
X

ωn−k ∧ α ∧ α > 0, ∀0 ̸= α ∈ Hp,q(X)p.

Proof Idea. A cohomology class [α] is primitive if and only its unique harmonic representative α is primitive

form. Relate the form to ∥α∥22 =
∫
X
α ∧ ∗α.

Corollary 6.25 (Hodge Index Theorem). Let X be a compact Kähler surface. The intersection form Q on
H2(X,R):

Q(α, β) =

∫
X

α ∧ β

has index (2h2,0(X) + 1, h1,1(X)− 1). The restriction to H1,1(X,R) is of index (1, h1,1(X)− 1).
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Corollary 6.26. Let X be a compact Kähler manifold of even complex dimension n. The signature of the
intersection form Q on Hn(X,R) is

sgn(Q) =

n∑
p,q=0

(−1)php,q(X).

On a compact Kähler manifold (Xn, ω), some useful relations between (primitive) Hodge numbers include:

1. hp,q = hq,p by complex conjugation,

2. hp,q = hn−p,n−q by Serre duality,

3. hp,q = hn−q,n−p by Hodge ∗-operator,

4. hp,q =
∑
r≥0 h

p−r,q−r
p for p+ q ≤ n by Hard Lefschetz.

Proposition 6.27. Let X be a compact Kähler manifold. The two maps

H2(X,C) → H0,2(X) = H2(X,OX)

induced by

• sheaf inclusion C → OX

• projection via Hodge decomposition

coincide.

Proof Idea. The map on cohomology induced by morphism of sheaves can be described by any morphism
of resolutions between these sheaves. Use de Rham resolution for C and Dolbeault resolution for OX with
morphism of resolution Π0,k : Ak → A0,k.

Theorem 6.28 (Lefschetz Theorem on (1, 1)-Classes). Let X be a compact Kähler manifold. The image
NS(X) (Neron-Severi group) of map c1 : Pic(X) = H1(X,O∗

X) → H2(X,Z) → H2(X,C) induced by the
short exact sequence

0 → Z → OX → O∗
X → 0

equals H1,1(X,Z) = H1,1(X) ∩ Im
(
H2(X,Z) → H2(X,C)

)
.
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7 Connection and Curvature

7.1 Connection

Let (E, h) be a Hermitian vector bundle of (complex) rank r over a smooth manifold X. In local trivialization
of E over U ⊂ X, h is given by a Hermitian matrix HU : U → GL(r,C). Let ψUV : U ∩ V → GL(r,C)
denote the transition maps of E from V to U , then

HV = ψ⊤
UVHUψUV .

The following are basic constructions of Hermitian structures.

1. If E,F are Hermitian vector bundles, then there are natural Hermitian structures on E ⊕ F , E ⊗ F ,
Hom(E,F ). In particular, (E∗, g) induced from (E, h) is given locally by Hermitian matrix

GU = HU
−1

= H−⊤
U .

There is natural C-antilinear isomorphism E ∼= E∗ as real vector bundles.

2. If (X, g) is Hermitian manifold, then the Hermitian metric g on (TX,R, I) induce natural Hermitian
metrics on all complexified tensor bundles of X, e.g.

∧p,q
X.

3. If (E, h) is Hermitian vector bundle and F ⊂ E subbundle, then h restricts to a Hermitian metric on
F and its orthogonal complement F⊥ with respect to h. Since E = F ⊕F⊥ and F⊥ ∼= E/F , h induces
Hermitian metric on E/F .

4. Let f : X → Y be a smooth map and (E, h) → Y . Then f∗E → X has natural Hermitian structure
f∗h given by (f∗h)x = hf(x) on (f∗E)x = Ef(x). In local trivialization, the Hermitian matrix is
f∗HU : f−1(U) → GL(r,C) for each U ⊂ Y .

5. Let L → X be a holomorphic line bundle. Suppose L is globally generated by sections s1, ..., sN ∈
H0(X,L), then these sections induce a Hermitian structure on L, given in each local trivialization
ψU : LU → U × C by

HU =
1∑

i |ψU (si)|
2 .

An important example is OPn(1) globally generated by z0, ..., zn ∈ H0(Pn,O(1)).

Assume π : E → X is a complex vector bundle over a real manifold X.

Definition 7.1. A connection on E is a C-linear sheaf morphism

∇ : A0
E → A1

E

satisfying the Leibniz rule:
∇(fσ) = df ⊗ σ + f∇σ

for all U ⊂ X open, σ ∈ A0
E(U), f ∈ A0(U). A section σ of E is parallel if ∇(σ) = 0.

As a sheaf morphism, ∇(σ)(x) ∈ Ω1
x ⊗ Ex depends only on the germ of σ at x.

Proposition 7.2. The set of all connections on a vector bundle E is naturally an affine space over the
complex vector space A1

End(E)(X).

Proof Idea. The difference between any two connections is A0-linear. Use local frame for E to find the
representation of ∇−∇′ in A1

End(E)(X).

31



7 Connection and Curvature 7.1 Connection

Locally choose frame σ1, ..., σr for E on U ⊂ X. Then we can write ∇ = d+A with respect to this frame,
i.e.

∇
(
f iσi

)
= df i ⊗ σi + f iAjiσj , Aji ∈ A1(U), ∇σi = Aji ⊗ σj .

Some contructions of connections:

1. Given (Ei,∇i) for i = 1, 2, define connection on E1 ⊕ E2 by

∇(s1 ⊕ s2) = ∇1(s1)⊕∇2(s2).

2. As above, define connection on E1 ⊗ E2 by

∇(s1 ⊗ s2) = ∇1(s1)⊗ s2 + s1 ⊗∇2(s2).

3. As above, define connection on E∗
1 ⊗ E2 by

∇(f)(s1) = ∇2(f(s1))− f∇1(s1).

This follows from below.

4. Given (E,∇), define connection ∇∗ on E∗ by

∇∗(ω)(σ) = d(ω(σ))− ω(∇(σ)), ω ∈ A0
E∗(U), σ ∈ A0

E(U).

If ωi is the local dual frame to σi for E
∗, then

∇∗ωi = −Aij ⊗ ωj , ∇σi = Aji ⊗ σj .

5. Given f : X → Y and (E,∇) → Y , define the pullback connection (f∗E, f∗∇) → X as follows. Locally
choose frame σ1, ...σr for E on U ⊂ Y , with pullback frame f∗σi for f

∗E on f−1(U). Then let

(f∗∇)(f∗σi) = f∗Ajif
∗σj .

Since f∗ ◦ d = d ◦ f∗ on forms, this is well-defined and glue to a sheaf morphism f∗∇.

6. Given (E = E1 ⊕ E2,∇), define connections ∇i on Ei by

∇i(si) = πi(∇(si)),

where πi : E → Ei is the projection.

Lemma 7.3. Let E,F,G be vector bundles with connections. Then for any open set U ⊂ X, σ ∈ A0
E∗⊗F (U),

τ ∈ A0
E⊗G(U), the induced connections satsify

∇⟨σ, τ⟩ = ⟨∇σ, τ⟩+ ⟨σ,∇τ⟩,

where ⟨·, ·⟩ denotes the tensor of sections followed by contraction of E∗ with E.

Definition 7.4. The second fundamental form of vector bundle pair E1 ⊂ E with respect to a connection
∇ on E is the section II ∈ A1(X,Hom(E1, E/E1)) defined for any local section s ∈ A0

E1
(U) by

II(s) = πE/E1
(∇(s))

If the vector bundle splits as E = E1 ⊕ E2 with E2
∼= E/E1, then II = ∇ − ∇1. We can always fix a

Hermitian metric on E to produce splitting E = E1 ⊕ E⊥
1 as Hermitian vector bundles.
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Definition 7.5. Let (E, h) be a Hermitian vector bundle. A connection ∇ on E is compactible with the
Hermitian structure h if

d (h(s1, s2)) = h(∇(s1), s2) + h(s1,∇(s2))

for every open set U ⊂ X, for all s1, s2 ∈ A0
E(U).

Lemma 7.6. Let (E, h) be a Hermitian vector bundle over X. In an orthonormal frame {σi}, the Hermitian
connection matrix ∇(σi) = Aji ⊗ σj is skew-Hermitian: A∗ = −A. Moreover, for each x0 ∈ X, there exists
a local orthonormal frame {σi} such that the Hermitian connection matrix vanishes at x0: A(x0) = 0.

Proposition 7.7. Let (E, h) be a Hermitian vector bundle. Let u(E, h) denote the real vector subbundle of
End(E):

a ∈ u(E, h)x ⇐⇒ hx(au, v) + hx(u, av) = 0 ∀u, v ∈ Ex.

Then the set of connections on E compatible with h is naturally an affine space over the real vector space
A1

u(E,h)(X).

Definition 7.8. Let E → X be a holomorphic vector bundle over a complex manifold X. A connection ∇
on E is compatible with the holomorphic structure if ∇0,1 = ∂E , where ∇ = ∇1,0 ⊕ ∇0,1 is the bidegree
decomposition of A1

E = A1,0
E ⊕A0,1

E .

Proposition 7.9. Let E → X be a holomorphic vector bundle. The set of connections on E compatible with
the holomorphic structure is naturally an affine space over the complex vector space A1,0

End(E)(X).

Theorem 7.10 (Chern Connection). Let (E, h) be a holomorphic Hermitian vector bundle. There exists a
unique connection on E that is compatible with both the Hermitian structure h and the holomorphic structure.

Proof Idea. Uniqueness: A1,0
End(E)(X)∩A1

u(E,h)(X) = 0. This is in fact true on each fiber of Ω1
X,C ⊗End(E),

so we have local uniqueness that is useful below.
Existence: Choose local holomorphic frame σ1, ..., σr for E on U ⊂ X. Write ∇(σi) = Aji ⊗ σj , and we

must have
Aji = ∂hik · hjk ∈ A1,0(U).

This uniquely determines a local connection ∇U . Then by uniqueness, these local definitions glue. That is,
we can determine ∇(s) by ∇(s)|U = ∇U (s|U ).

Example 7.11. When (X, g) is Kähler, E = TX is the holomorphic tangent bundle with Hermitian metric
induced from g, then in holomorphic coordinate (zi) we can compute the Chern connection

∇(∂zj )(∂zi) = Γkij∂zk ,

Γkij = ∂igjl · g
kl.

Example 7.12. Let (E, h) be a Hermitian vector bundle, and assume E = E1 ⊕E2 is orthogonal decomposi-
tion. Then (Ei, hi) for i = 1, 2 are Hermitian vector bundles induced from (E, h).

If ∇ is a connection on E compatible with h, then the induced connections ∇i on Ei are compatible with
hi. The second fundamental forms IIi satisfies

h1(s1, II2(s2)) + h2(II1(s1), s2) = 0

for all sections si ∈ A0
Ei
(U) on any open set U ⊂ X.

Suppose E = E1 ⊕ E2 as complex vector bundles, and E1 ⊂ E is a pair of holomorphic vector bundles
with holomorphic inclusion. Then given a connection ∇ on E with ∇0,1 = ∂E , we have ∇0,1

1 = ∂E1 , and
hence

II1 = ∇−∇1 ∈ A1,0
Hom(E1,E2)

(X).
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Definition 7.13 (Holomorphic Connection). Let E → X be a holomorhic vector bundle over a complex
manifold X. Let ΩX denote the holomorphic cotagent bundle. A holomorphic connection on E is a C-linear
sheaf morphism

D : E → ΩX ⊗ E

satisfying the Leibnize rule
D(fσ) = ∂f ⊗ σ + fD(σ)

for all U ⊂ X open, σ ∈ E(U), f ∈ OX(U).

As above, the difference between any two holomorphic connections is OX -linear, so we can work in local
holomorphic frame to represent it by a global section of the holomorphic vector bundle ΩX ⊗ End(E):

D −D′ ∈ (ΩX ⊗ End(E)) (X)

Each holomorphic connection D extends to a C-linear sheaf morphism D : A0
E → A1,0

E satisfying D(fσ) =
∂f ⊗ σ + fD(σ) for all smooth function f and holomorphic section σ. Unlike connections or Hermitian
connections which always exist by partition of unity, the existence of holomorphic connection depends on a
topological invariant of E → X.

Definition 7.14 (Atiyah Class). Let E → X be a holomorhic vector bundle over a complex manifold X.
Let U = {Ui} be any open covering of X that provides local trivializations of E:

ψi : E|Ui
∼= Ui × Cr, ψij = ψi ◦ ψ−1

j : Uij → GL(r,C).

The Atiyah class A(E) ∈ H1(X,ΩX ⊗ End(E)) is given by the Čech cocycle

{(Uij), ψ−1
j ◦

(
ψ−1
ij dψij

)
◦ ψj ∈ (ΩX ⊗ End(E)) (Uij)}.

The Atiyah class is well-defined, independent of the choice of trivializations.

Locally, choose holomorphic frame σi for E and its dual frame ωi on Uj . Let A denote the matrix of
holomorphic functions ψij . Then the cocyle

ψ−1
j ◦

(
ψ−1
ij dψij

)
◦ ψj = Aαk

∂Akβ
∂zl

dzl ⊗ ωβ ⊗ σα.

If E is a holomorphic line bundle, the cocyle simplifies to

{(Uij), ∂ log(ψij) ∈ ΩX(Uij)} ∈ H1,1(X)

Theorem 7.15 (Exitence of Holomorphic Connection). Let E → X be a holomorhic vector bundle over a
complex manifold X. A holomorphic connection on E exists if and only if the Atiyah class A(E) = 0 ∈
H1(X,ΩX ⊗ End(E)).

Proof Idea. Holomorphic connections on Ui are parametrized exactly by sections αi ∈ (ΩX ⊗ End(E)) (Ui).
They agree on overlaps Uij and hence glue to a global holomorphic connection, if and only if δ(αi) equals
the Čech cocyle (with respect to this choice of trivializations) defining A(E), where δ is the chain map in
the Čech resolution.
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7.2 Curvature

Let E be a complex vector bundle over a differentiable manifold M . Each connection ∇ : A0
E → A1

E has
natural extension

∇ : Ak
E → Ak+1

E

defined by
∇(α⊗ s) = dα⊗ s+ (−1)|α|α ∧∇(s)

for each open set U ⊂ X and α ∈ Ak(U), s ∈ A0
E(U). Then ∇ satisfies generalized Leibniz rule

∇(α ∧ s) = dα ∧ s+ (−1)|α|α ∧∇(s)

for each open set U ⊂ X and α ∈ Ak(U), s ∈ Al
E(U). The natural extension of d : A0 → A1 is the exterior

differential d : Ak → Ak+1.

Definition 7.16. The curvature of a connection (E,∇) is the sheaf morphism

F∇ := ∇ ◦∇ : A0
E → A2

E .

Since F∇ is A0-linear, we can describe curvature by a global section

F∇ ∈ A2
End(E)(X).

In local frame {σi} for E, writing ∇(σi) = Aji ⊗ σj for A
j
i ∈ A1(U), we have

F∇(σi) =
(
d(Aji )−Aki ∧A

j
k

)
σj .

Use induced connections on E∗ and End(E) to get the Bianchi identity

∇(F∇) = 0 ∈ A3
End(E)(X).

For each σ ∈ Ak
E(U), ∇2(σ) = F∇(σ) ∈ Ak+2

E (U).

Lemma 7.17. Given (E,∇), (E1,∇1), (E2,∇2), the curvature on the following vector bundles are given by:

1. On E1 ⊕ E2,
F = F∇1

⊕ F∇2

2. On E1 ⊗ E2,
F = F∇1 ⊗ IdE2 +IdE1 ⊗F∇2

3. On E∗,
F∇∗ = −F⊤

∇ , F∇∗(sα ⊗ σβ) = −F∇(sβ ⊗ σα)

4. On pullback f∗E,
Ff∗∇ = f∗F∇

Proposition 7.18. The curvature of a Hermitian connection ∇ on a Hermitian vector bundle (E, h) satisfies

0 = h(F∇(σ), τ) + h(σ, F∇(τ))

for any local sections σ, τ of E. That is, F∇ ∈ A2
End(E,h)(X).

Proof Idea. For Hermitian connection ∇, σ ∈ Ak
E(U), τ ∈ Al

E(U),

dh(σ, τ) = h(∇(σ), τ) + (−1)kh(σ,∇(τ)).
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Proposition 7.19. The curvature of a connection ∇ on a holomorphic vector bundle E compatible with the
holomorphic structure satisfies

F∇ ∈
(
A2,0

End(E) ⊕A1,1
End(E)

)
(X).

Combined, the Chern connection on a holomorphic Hermitian bundle (E, h) satisfies

F∇ ∈
(
A1,1

End(E) ∩ A2
End(E,h)

)
(X).

In local frame σi for E, write hij = h(σi, σj) to get

F∇ = ∂
(
∂hik · hjk

)
ωi ⊗ σj .

Thus ∂End(E)(F∇) = 0. If E is line bundle, then F∇ = − ∂∂ log h, which is a closed purely imaginary
(1, 1)-form.

Example 7.20. Let (X, g) be Kähler. The holomorphic tangent bundle TX with Hermitian metric induced
from g has Chern curvature

F∇ = R j

i kl
dzi ⊗ ∂

∂zj
⊗ (dzk ∧ dzl), R j

i kl
= −∂k∂lhiβ · hjβ + ∂khiβ · ∂lhpq · h

pβ · hjq.

Lowering the index, Rijkl = Rm(∂i, ∂j , ∂k, ∂l), where Rm is the C-linear extension of the Riemann curvature
tensor on (X, g).

Proposition 7.21. Let (E, h) be a holomorphic Hermitian vector bundle. The Chern connection ∇ on E
has curvature representing the Atiyah class:

[F∇] = −A(E) ∈ H1(X,ΩX ⊗ End(E)).

The idea is to compare the Dolbeault and Čech resolutions for ΩX ⊗End(E). More generally, given two
resolutions I · and C·(U ,F) for a sheaf F , we have the following diagram

F I0 I1 I2

C0(U ,F) C0(U , I0) C0(U , I1) C0(U , I2)

C1(U ,F) C1(U , I0) C1(U , I1) C1(U , I2)

C2(U ,F) C2(U , I0) C2(U , I1) C2(U , I2)

d

δ

and the associated resolution which naturally contains both resolutions given

0 F C0(U , I0) C0(U , I1)⊕ C1(U , I0) C0(U , I2)⊕ C1(U , I1)⊕ C2(U , I0) . . .D

with D = d+ (−1)pδ on Kp,q = Cq(U , Ip). It suffices to compare the representatives in this new resolution.
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7.3 Chern Classes

In this section let G := GL(n,C), and V = gl(n,C).

Definition 7.22. A polynomial function P : V → C homogeneous of degree k in the entries is invariant if
P (A) = P (gAg−1) for all A ∈ V , g ∈ G.

The key example is the elementary symmetric polynomials P j(A) of the eigenvalues of A ∈ V :

det(Id+tA) =

n∑
k=0

P k(A) · tk. (7.1)

Other examples include:

tr
(
etA
)
=

∞∑
k=0

P k(A) · tk, (7.2)

det(tA)

det(Id−e−tA)
=

∞∑
k=0

P k(A) · tk. (7.3)

Definition 7.23. A k-linear form P̃ : V × · · · × V → C is invariant if

P̃ (A1, ..., Ak) = P̃ (gA1g
−1, . . . , gAkg

−1)

for all A1, ..., Ak ∈ V , g ∈ G.

Lemma 7.24. There is one-to-one correspondence between symmetric invariant k-linear forms P̃ : V ×· · ·×
V → C and invariant homogeneous polynomial P : V → C of degree k, given by diagonal and polarization:

P (A) = P̃ (A, ..., A).

For example, when k = 2, polarization writes P̃ by P via

P̃ (A,B) =
1

2
(P (A+B)− P (A)− P (B)) .

The invariance property enables us to go global from local. Let E → X be a complex vector bundle of
rank n on a smooth manifold X, with a connection ∇ and curvature F∇. Let {Uα} be an open covering of
M by local trivializations φα : E|Uα

∼= Uα × Cn.

Lemma 7.25. Let P : V → C be any invariant homogeneous polynomial of degree k.

1. There is a well-defined global 2k-form P (F∇) on X, independent of the trivializations chosen. On each
Uα, the 2k-form can be given by P (Θα), where Θα is the n× n curvature matrix of 2-forms.

2. P (F∇) is d-closed.

3. The cohomology class [P (F∇)] ∈ H2k
dR(X,C) is independent of the choice of the connection ∇, hence a

class determined only by E.

Proof Idea. Use Bianchi identity and that

dP̃ (γ1, ..., γk) =

k∑
j=1

(−1)
∑j−1

l=1 ilP (γ1, ...,∇(γj), ..., γk)

for any γj ∈ Aij
End(E)(X). For a ∈ A1

End(E)(X),

d

dt

∣∣∣∣
t=0

P (F∇+ta) = kP̃ (∇(a), F∇, ..., F∇) = kdP̃ (a, F∇, ..., F∇).
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7 Connection and Curvature 7.3 Chern Classes

Definition 7.26. Let Φ denote the graded algebra of invariant homogeneous polynomials V → C. Fix a
complex vector bundle E → X. The Weil homomorphism is the C-algebra homomorphism

Φ → H2∗
dR(X,C)

P 7→ [P (F∇)]

where F∇ is the curvature with respect to any connection on E.

Definition 7.27. The Chern forms ci(F∇) of the curvature F∇ on E are

ci(F∇) := P i
(
i

2π
F∇

)
∈ A2i(X),

where P i are invariant polynomials defined by (7.1). The Chern classes of E are

ci(E) =

[
P i
(
i

2π
F∇

)]
∈ H2i

dR(X,C),

where c0(E) = 1 ∈ H0
dR(X,C). The total Chern class is

c(E) = c0(E) + c1(E) + · · · ∈ H2∗
dR(X,C).

The Chern classes of a complex manifold are ci(TX), where TX is the holomorphic tangent bundle.
The Chern characters chi and Todd classes tdi are defined analogously with respect to invariant polyno-

mials given in (7.2) and (7.3).

Lemma 7.28. Let f : X → Y be any smooth map between smooth manifolds. Suppose E → Y is a complex
vector bundle. Then

f∗ci(E) = ci(f
∗E).

Lemma 7.29. Let E → X be a complex vector bundle. Then for each i,

ci(E
∗) = (−1)ici(E) ∈ H2i

dR(X,C).

Proposition 7.30 (Whitney Product Formula). For two complex vector bundles E,F → X we have

c(E ⊕ F ) = c(E) · c(F ) ∈ H2∗
dR(X,C).

Lemma 7.31. For two complex vector bundles E,F → X we have

ch(E ⊕ F ) = ch(E) + ch(F ) ∈ H2∗
dR(X,C),

ch(E ⊗ F ) = ch(E) · ch(F ) ∈ H2∗
dR(X,C).

Lemma 7.32. The total Chern character and total Todd class can be expressed in terms of the total Chern
class:

ch(E) = rank(E) + c1(E) +
c21(E)− 2c2(E)

2
+
c31(E)− 3c1(E)c2(E) + 3c3(E)

6
+ . . .

td(E) = 1 +
c1(E)

2
+
c21(E) + c2(E)

12
+
c1(E)c2(E)

24
+ . . .

Lemma 7.33. The Chern classes, Chern characters, and Todd classes are all real, i.e. lies in H2∗(X,R).
Moreover, if X is compact Kähler and E is holomorphic vector bundle, then these characteristic classes lie
in H∗,∗(X,R).

Proof Idea. Choose Hermitian connection to see iF∇ is Hermitian matrix under Hermitian trivialization.
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7 Connection and Curvature 7.3 Chern Classes

The splitting principle reduces the problem of computing Chern classes of a vector bundle E to the easier
problem when E splits into line bundles E = E1 ⊕ · · · ⊕ En.

Theorem 7.34 (Splitting Principle). Let E → X be a complex vector bundle of rank n over a smooth
manifold X. There exists a space Y = Fl(E), called the flag bundle associated to E, and a map p : Y → X,
such that

1. The induced map on cohomology p∗ : H∗(X) → H∗(Y ) is injective.

2. The pullback bundle p∗E → Y splits as a direct sum of line bundles: p∗E = L1 ⊕ · · · ⊕ Ln.

Example 7.35. For any complex vector bundle E → X, one has c1(E) = c1(detE).

Proposition 7.36 (Chern Class of Holomorphic Line Bundle). Let L be a holomorphic line bundle on a
complex manifold X. The first Chern class c1(L) ∈ H2(X,C) coincides with the image of L under the map
H1(X,O∗

X) → H2(X,Z) → H2(X,C).

Proof Idea. Compare the Čech resolution and de Rham resolution for C in the double-complex resolution
as discussed above. L is represented by the cocycle of transition maps (gij) ∈ C1(U ,O∗

X), whose image in
H2(X,C) is given by (fij + fjk + fki) ∈ C2(U ,A0) where fij = 1

2πi log gij . This is cohomologous to c1(L)

represented by a Hermitian curvature form − i
2π ∂∂ log hi ∈ C0(U ,A2), because hi = |gij |2hj .

Proposition 7.37. Let X be compact Kähler manifold. For every closed real (1, 1)-form ω ∈ c1(L), there
exists a Hermitian metric h on L whose Chern curvature form −i ∂∂ log h = ω.

Let X be a compact complex manifold. For any analytic subvariety V ⊂ X of dimension k, the funda-
mental class (V ) ∈ H2k(X,R) is defined as the linear functional

φ 7→
∫
V

φ

on H2k(X,R). Denote its Poincaré dual by [V ] ∈ H2n−2k(X,R).

Lemma 7.38. Let X be a compact Kähler manifold. For any analytic subvariety V ⊂ X of dimension k,
the fundmanetal class

[V ] ∈ Hn−k,n−k(X,Z).

Proposition 7.39. Let X be a compact complex manifold, and D ∈ Div(X). Then c1(O(D)) = [D] ∈
H2(X,R).
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8 Applications of Cohomology

8 Applications of Cohomology

8.1 Hirzebruch-Riemann-Roch

Definition 8.1. Let E → X be a holomorphic vector bundle over a compact complex manifold X. Define
the Euler-Poincaré characteristic

χ(X,E) :=

dim(X)∑
i=0

(−1)ihi(X,E).

Definition 8.2. Let C be a compact complex curve. The genus of C is

g(C) :=
2− χ(C)

2
=

1

2
degKC + 1,

where χ(C) is the Euler characteristic of C, and the second equality follows from Gauss-Bonnet.

Lemma 8.3. Let X be a compact complex surface, and C ⊂ X a smooth irreducible curve (analytic subvariety
of dimension 1). The genus of C is

g(C) =
KX · C + C · C

2
+ 1

where the second equality is immediate consequence of adjunction formula KC
∼= (KX ⊗OX(C))|C .

We use the formula above to define the genus for any curve on a compact complex surface.

Proposition 8.4 (Riemann-Roch). Let E → C be a holomorphic vector bundle over a compact complex
curve C. Then

χ(C,E) = deg(E) + rank(E) · (1− g(C)) (8.1)

The Hirzebruch-Riemann-Roch (HRR) formula generalizes this. There are further generalizations, in-
cluding the Grothendieck-Riemann-Roch formula and Atiyah-Singer index theorem.

Theorem 8.5 (Hirzebruch-Riemann-Roch). Let E be a holomorphic vector bundle on a compact complex
manifold X. Then its Euler-Poincaré characteristic equals

χ(X,E) =

∫
X

ch(E) td(X) =

∫
X

n∑
i=0

chi(E) tdn−i(X).

Example 8.6 (Line bundles on a curve). Let C be a connected compact curve and L ∈ Pic(C). Then

χ(C,L) =

∫
C

c1(L) +
c1(C)

2
= deg(L)− deg(KC)

2
= deg(L) + (1− g(C)),

which recovers Riemann-Roch (8.1).

Example 8.7 (Line bundles on a surface). Let X be a compact complex surface. Then

χ(X,L) = χ(X,OX) +
L · L−KX · L

2
.

Definition 8.8. Let X be a compact complex manifold of dimension n. Define the arithmetic genus of
X as

pa(X) := (−1)n(χ(X,OX)− 1).
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8 Applications of Cohomology 8.1 Hirzebruch-Riemann-Roch

Definition 8.9. The Hirzebruch χy-genus of a compact complex manifold X of dimension n is the
polynomial

χy :=

n∑
p=0

χ(X,ΩpX)yp =

n∑
p,q=0

(−1)qhp,q(X)yp.

We can calculate the Hirzebruch χy-genus using HRR and Chern roots:

Proposition 8.10. Let γi denote the formal Chern roots of TX . Then

χy =

∫
X

n∏
i=1

(1 + ye−γi)
γi

1− e−γi
.

The formal Chern roots only locally diagonalize the curvature matrix i
2πF∇ for TX . However, the

symmetric polynomials in (γi) represent well-defined cohomology classes in H2∗(X,R), and the RHS of the
formula above makes sense in this way.

Some important special values of the Hirzebruch χy-genus:

1. y = 0: χy=0 = χ(X,OX) =
∫
X
td(X) gives the arithmetic genus.

2. y = 1: χy=1 =
∑n
p,q=0(−1)qhp,q(X) = sgn(X) if X is compact Kähler of even dimension n, by Hodge

index theorem. Combining with the proposition above, we get Hirzebruch signature theorem for
compact Kähler manifolds of even dimension:

sgn(X) = χ
(∧

ΩX

)
=

∫
X

L(X),

where L(X) is the L-genus defined in terms of the Chern roots by

L(X) =

n∏
i=1

γi
(1 + e−γi)

1− e−γi
=

n∏
i=1

γi · coth
(γi
2

)
.

The same result holds for any compact complex manifold of even dimension.

3. y = −1: Suppose X is compact Kähler manifold of dimension n. Then

χy=−1 =

n∑
p,q=0

(−1)p+qhp,q(X) = χ(X) =

∫
X

n∏
i=1

γi =

∫
X

cn(X).

This is the Chern-Gauss-Bonnet formula, which holds more generally for any compact complex
manifolds.

Example 8.11. Consider a smooth hypersurface Y ⊂ X. The short exact sequence of sheaves on X

0 → O(−Y ) → OX → OY → 0,

gives

χ(Y,OY ) = χ(X,OY ) = χ(X,OX)− χ(X,O(−Y )) =

∫
X

(
1− e−[Y ]

)
td(X).
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8.2 Kodaira Vanishing Theorem

Definition 8.12. Let X be a complex manifold. A holomorphic line bundle L on X is called a positive
line bundle if its first Chern class c1(L) ∈ H2(X,R) can be represented by a closed positive real (1, 1)-form.

Theorem 8.13 (Kodaira Vanishing Theorem). Let L be a positive holomorphic line bundle on a compact
Kähler manifold X of dimension n. Then

Hp,q(X,L) = Hq(X,ΩpX ⊗ L) = 0, for all p+ q > n.

Let (E, h) be a holomorphic vector bundle over X with fixed Hermitian structure. Recall from §6 the

operators ∂E and ∂
∗
E on Ap,q

E . We also extend the Lefschetz operator L and dual Lefschetz operator Λ from
Ap,q to Ap,q

E via L = L⊗ IdE , Λ = Λ⊗ IdE . The Kähler identity

[Λ, L] = (n− (p+ q)) · Id

now holds on Ap,q
E .

Lemma 8.14 (Nakano Identity). Let ∇ be the Chern connection on (E, h). Then

[Λ, ∂E ] = −i
(
∇1,0
E

)∗
: Ap,q

E → Ap−1,q
E ,

where (
∇1,0
E

)∗
:= −∗E∗ ◦ ∇1,0

E∗ ◦ ∗E .

Nakano identity implies the Kähler identity

[Λ, ∂] = −i∂∗,

by letting E = OX , in which case ∇ = d.

Proof. Work in orthonormal trivialization such that the connection matrix A satisfies A∗ = −A and A(x0) =
0 for a fixed point x0 ∈ X.

Lemma 8.15. Let (E, h) be a Hermitian holomorphic vector bundle over compact Kähler manifold (X, g).
Let ∇ be the Chern connection on E, and α ∈ Hp,q(X,E) any harmonic form. Then

i

2π
(F∇Λ(α), α) ≤ 0,

i

2π
(ΛF∇(α), α) ≥ 0.

Proof. Use F∇ = ∇1,0 ◦ ∂E + ∂E ◦ ∇1,0 : Ap,q
E → Ap+1,q+1

E .

Proof of Kodaira Vanishing Theorem. Fix a Kähler form ω ∈ c1(L), which is the Chern curvature form of a
Hermitian metric on L. For any harmonic form α ∈ Hp,q(X,L),

(n− (p+ q))∥α∥2 = ([Λ, L]α, α) =
i

2π
([Λ, F∇]α, α) ≥ 0.

Therefore, 0 = Hp,q(X,L) ∼= Hp,q(X,L) = Hq(X,ΩpX ⊗ L) for any p+ q > n.

Theorem 8.16 (Weak Lefschetz Theorem). Let X be a compact Kähler manifold of dimension n, and let
Y ⊂ X be a smooth hypersurface such that the induced line bundle O(Y ) is positive. Then the canonical
restriction map

i∗ : Hk(X,C) → Hk(Y,C)

is bijective for k ≤ n− 2 and injective for k ≤ n− 1.
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8 Applications of Cohomology 8.2 Kodaira Vanishing Theorem

Lemma 8.17. Let X be a compact Kähler manifold, and Y ⊂ X smooth hypersurface. Let i : Y → X
denote the inclusion. For any holomorphic vector bundle E on X, we have

Hq(Y, i∗E) = Hq(Y, i∗E ⊗OY ) ∼= Hq(X,E ⊗ i∗OY ), ∀q ≥ 0.

We consider the structure sequence (and its twist by a holomorphic vector bundle on X)

0 → OX(−Y ) → OX → i∗OY → 0

as instead
0 → OX(−Y ) → OX → OY → 0,

since the induced long exact sequence of sheaf cohomologies conincide by the lemma above. Lemma of this
type involves the tool of spectral sequence, which is beyond the scope of the current notes.

Proof. Use Hodge decomposition. Apply Kodaira vanishing theorem to variants of structure sequence and
normal bundle sequence

0 → ΩpX(−Y ) → ΩpX → ΩpX |Y → 0,

0 → Ωp−1
Y (−Y ) → ΩpX |Y → ΩpY → 0.

Theorem 8.18 (Serre’s Vanishing Theorem). Let L be a positive line bundle on a compact Kähler manifold
X of dimension n. For any holomorphic vector bundle E on X there exists a constant m0 such that

Hq(X,E ⊗ Lm) = 0

for all m ≥ m0, q > 0.

Proof Idea. Repeat the argument for Kodaira vanishing to Hn,q(E ⊗ Lm).

Corollary 8.19 (Grothendieck Lemma). Every holomorphic vector bundle E on P1 is isomorphic to a direct
sum of line bundles

r⊕
i=1

O(ai),

where the integers a1 ≥ · · · ≥ ar are uniquely determined by E.

Proof Idea. Prove by induction on rank r. The first Chern class map c1 : H1(Pn,O∗) → H2(Pn,Z) is
isomorphism. Use Serre’s vanishing and Riemann-Roch to choose a1 as the maximal integer a such that
H0(P1, E(−a)) ̸= 0. A non-zero section s ∈ H0(P1, E(−a1)) induces a short exact sequence of holomorphic
vector bundles

0 → O(a1) → E → E1 = E/O(a1) → 0.

Show that E ∼= O(a1)⊕ E1 as holomorphic vector bundles, and use induction hypothesis on E1.
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8.3 Kodaira Embedding Theorem

Theorem 8.20 (Kodaira Embedding Theorem). Let X be a compact complex manifold, and L → X a
positive line bundle. Then there exists k0 ∈ N such that for any k ≥ k0, L

k is globally generated and the
canonical map

φLk : X → P(H0(X,Lk)∗)

x 7→
(
s ∈ H0(X,Lk) 7→ s(x)

)
is a holomorphic embedding.

If we fix a basis {s0, ..., sN} of H0(X,Lk) with dual basis for H0(X,Lk)∗, then φLk is given explicitly by

x 7→ [s0(x) : · · · : sN (x)] ∈ PN .

Lemma 8.21. Let L → X be a holomorphic line bundle over a compact complex manifold X. Then L is
globally generated (or base-point free) if H0(X,L) → Lx is surjective for each x ∈ X. This map fits into the
short exact sequence of sheaves

0 → L⊗ I{x} → L→ Lx → 0

Lemma 8.22. Let L→ X be a globally generated holomorphic line bundle over a compact complex manifold
X. Then φL : X → PN is an embedding if both conditions below hold:

1. φL is injective. It is sufficient to check, for any x1 ̸= x2 ∈ X, H1(X,L ⊗ I{x1,x2}) = 0, according to
the short exact sequence of sheaves

0 → L⊗ I{x1,x2} → L→ Lx1
⊕ Lx2

→ 0.

2. φL is immersion. It is sufficient to check, for any x ∈ X, H1(X,L⊗I2
{x}) = 0, according to the short

exact sequence of sheaves

0 → L⊗ I2
{x} → L⊗ I{x}

dx→ ΩX,x ⊗ Lx → 0.

In other words, H0(X,L) separates points and generates 1-jets at every point of X.

Lemma 8.23. Let X be a complex manifold of dimension n and L a postive line bundle on X. Let σ : X̂ → X
be the blow-up of X along a finite number of points x1, ..., xl ∈ X, and let Ej := σ−1(xj) ∼= P(TxX) be the
exceptional divisors for each j = 1, ..., l. Then for any holomorphic line bundle M on X and integers
n1, ..., nk > 0, the line bundle

σ∗(Lk ⊗M)⊗O(−
∑
j

njEj)

on X̂ is positive for k ≫ 0.

Proof. Use partition of unity to define Hermitian metrics on O(−Ej) whose curvature is the Fubini-Study
metric on Ej ∼= Pn−1 and vanish outside a small neighborhood of Ej . σ

∗(c1(L)) ensures positivity in the
direction normal to Ej for points on Ej and positivity outside a neighborhood of E.

Proof of Kodaira Embedding Theorem. Follow the outline in Lemma 8.22. Translate the problem to the blow-
up of X along point(s) of interest, and use Kodaira vanishing to conclude the vanishing of the corresponding
H1 cohomologies. This provides k0 but may depend on the choice of points we consider. Observe finally
that the properties we require on φLk are ”open”, which combined with compactness of X gives a uniform
choice of k0.

Corollary 8.24. Let X be a compact complex manifold. A line bundle L → X is positive if and only if it
is ample.
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Definition 8.25. Let X be a compact Kähler manifold. The Kähler cone CX ⊂ H1,1(X,R) consists of all
classes which admits a Kähler form on X.

Lemma 8.26. The Kähler cone CX ⊂ H1,1(X,R) is an open convex cone and contains no lines {α + tβ |
t ∈ R} for any β ̸= 0.

Corollary 8.27. A compact Kähler manifold X is projective if and only if

CX ∩ Im(H2(X,Z) → H2(X,C)) ̸= ∅.

Corollary 8.28. Every compact Kähler manifold X with h2,0(X) = h0,2(X) = 0 is projective.

Corollary 8.29. Let X := V/Γ be a complex torus. Then X is projective if and only if X admits a
Riemann form, i.e. an alternating R-bilinear form ω : V × V → R such that

i) ω(iu, iv) = ω(u, v),

ii) ω(·, i(·)) is positive definite, and

iii) ω(u, v) ∈ Z if u, v ∈ Γ.

Proposition 8.30. Let X be a projective manifold. Then the natural homomorphism

O : Div(X) → Pic(X)

is surjective.

Proof. For each ample line bundle L and any line bundle M , M ⊗ Lk and Lk are both contained in the
image of O for some sufficiently large k by Kodaira vanishing and Hirzebruch-Riemann-Roch.

Proposition 8.31. Let X be a projective manifold. Then the kernel of the map

c1 : Pic(X)
δ−→ H2(X,Z) → H2(X,C)

consists of numerically trivial line bundles NT(X) (line bundles of degree zero on any curve C ⊂ X).
Therefore,

NS(X) ∼= Pic(X)/NT(X).

Proof. Let ω ∈ H1,1(X,Z) denote the pullback of the Fubini-Study metric on PN . Apply Hard Lefschetz
and Hodge-Riemann bilinear relations to c1(L) and consider the curves [D] ∧ [ω]n−2 for any divisor D.

Conjecture 8.32 (Hodge Conjecture). Let X be a projective manifold of dimension n. Then for any
0 ≤ k ≤ n,

Hk,k(X,Q) := Hk,k(X)∩H2k(X,Q) = spanQ{[V ] ∈ Hk,k(X,Z) | V analytic subvariety of dimension n− k}.
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