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1 Calabi Conjecture and Kahler-Einstein Metrics

Definition 1.1. A Kihler manifold X is called Calabi-Yau (CY) if its first Chern class vanishes in H?(X, R):

c1(X) = {Rl;(f)} =0¢€ H*(X,R).

Definition 1.2. A Kéhler manifold (X,w) is called Kéhler-Einstein (KE) if there exists a real number A € R
such that
Ric(w) = Aw.

Example 1.3. Ricci-flat Kéhler manifolds are trivially KE, e.g. wgy. on complex torus.
P is KE as Ric(wrg) = (n + Dwps.
B" is KE with Poincaré metric wp satisfying Ric(wp) = (—n — Dwp.

We can always assume, by scaling the Kéhler metric, that A = 0,1, —1. This follows immediately from
the local definition of Ricci curvature:

Ric(w) := —idd log det (gﬂ).

Thus if @ = pw, and Ric(w) = Aw, then Ric(®) = %(:J
Question 1.4. Which compact Kahler manifolds admit Kdhler-FEinstein metrics?

We approach this question from the definition. Suppose Ric(w) = Aw, consider the three cases:
i) A =0. By Yau’s theorem, this happens if and only if X is Calabi-Yau.

ii) A = 1. In this case
2me1(X) = [Ric(w)] = [w],

S0 it is necessary that X is Fano.
ili) A = —1. As above, X must be canonically polarized, i.e. ¢;(X) < 0.
In case iii) we have the following result.

Theorem 1.5 (Aubin-Yau '76). Let X be a compact Kahler manifold that is canonically polarized. Then
there exists a unique Kdhler metric w on X with Ric(w) = —w.

In contrast, not all Fano manifolds admit KE metrics. There is an if and only if characterization of which
Fano manifolds admit KE metrics, using algebraic geometry and theorem by Chen-Donaldson-Sun 12,

We can prove Theorem [1.5| in tandem with Yau’s theorem solving the Calabi conjecture. Recall Yau’s
theorem:


https://arxiv.org/pdf/1302.0282
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Theorem 1.6 (Yau ’76). Let (X", w) be a compact Kihler manifold. Given any closed real (1, 1)-form 1
with
[¢] = 2mc1(X) = [Ric(w)] € H*(X,R),

there exists a unique Kdahler metric @ such that
[©] = [w] € H*(X,R),
Ric(w) = 9.

Start proof of Yau’s Theorem. We first show that the assertion Ric(w) = 1 we want is equivalent to a
"prescribed volume form” problem. By assumption, Ric(w) — ¢ is d-exact real (1, 1)-form. Hence by
00-lemma, there exists F' € C*°(X,R), unique up to adding a constant, such that

Ric(w) — ¢ = i0JF.

We pick the unique constant added to F' such that

/er":/w".
X X

Here we use compactness of X. Now F' is uniquely determined. B
Similarly, since we want to find & with [@] = [w] € H?*(X,R), by d9-lemma there exists some unique
» € C*(X,R) such that

@ = w+1i00p and/gow":().
b's

Then we compute the Ricci curvature:

Ric(@) = Ric(w) — i00log (“n>

w’l’L

=) —i00 [log <i::) F} .

Thus Ric(w) = v if and only if the real function log (i—:) — F is a constant. Taking exponential and using

Stokes ~
/ ern _ / W / Wn,
X X X

(L,TL
log( )—FzO(:MD":er”,

wn

we see that this holds if and only if

which is a prescribed volume form problem.

To conclude what we compute so far, Yau’s theorem is equivalent to

Theorem 1.7 (Yau ’76). Let (X™,w) be a compact Kdhler manifold. Given F € C*(X,R) with

/er”:/w",
X X

there exists a unique ¢ € C*°(X,R) such that

@ i=w+i00p > 0

Jx pw™ =0.
" = (w+i00p)" = eFuwn.
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The last equation is a 2nd order scalar PDE for ¢, of complex Monge-Ampere type. In local coordinates:

2
det (gjg + 7325%) = el det (gﬂ)
2

The equation is non-linear for n > 2. For n = 1, this is trivial Poisson equation we have discussed.

We analyze Aubin-Yau (Theorem [1.5]) similarly. Suppose we find KE metric & such that Ric(®) = A@,
A= =+1. Then
2me1(X) = [Ric(@)] = [@] = A - 271 (X),

which means the class ) - 2mci (X) contains some Kéhler metric. Fix a Kéhler metric w in A - 2mci (X). So
by 00-lemma, if KE metric @ exists, it must be of form

O =w+1i0dp > 0,

where ¢ € C*°(X,R) is unique up to adding a constant. On the other hand, since [Ric(w)] = 2me1 (X)), we
have B
Ric(w) — Aw = 100F

for some F' € C*°(X,R). Then

~n

Ric(@) — A& = Ric(w) — i99 log ( ) — Aw — Xiddyp

w
wn

=i [F — X — log (Znﬂ

Thus w is KE metric if and only if the real function F' — Ap — log (f—:) is a constant. We can shift ¢ by this
constant such that the condition is equivalent to

~yn

F—Acp—log(w

n) =0& " =l Meun,
w

Now the Aubin-Yau theorem reduces to

Theorem 1.8. Let (X™,w) be a compact Kahler manifold, and F' € C*°(X,R). Then there exists a unique
p € C®(X,R) such that

Q= w+i00p > 0
Q" = (w +i00p)" = efTeun

This implies that if X is canonically polarized, we can find w € —27¢q(X) to start with, and find KE
metric @ as defined above. The uniqueness of @ follows from the analysis above.

Proof of Uniqueness in Theorem[I.7. This immediately follows from Calabi’s uniqueness. O

Proof of Uniqueness in Theorem[1.8 Let w; = w + i00¢p; > 0 solving wf = ef*+%iwm for i = 1,2. Let
U := g — 1. Then B
(w1 4+ 100u)"™ = wy = eftezymn = e“wi.

We want to show that u = 0.
By compactness of X, we can pick a point x € X where u attains maximum. Then

i00u(x) <0,
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9%u
82]‘ Oz
real coordinates and translate to complex coordinates. Hence

i.e. the matrix ( (x)) is negative semi-definite. We can check this using the 2nd derivative test on the

0 < wa(z) = (w1 +300u)(z) < wi(z).
Taking n-th power wedge, which takes determinant on the matrices in coordinates, we get

@i () = wh (2) < Wi (2) > 0,

so that
e®) <1= 4 <0on X.

Similarly, consider a point x € X where v attains minimum. Then
wa(z) > wi(z) > 0= @l (z) = wh(x) > wi(z) > 0,
so that v > 0 on X. In conclusion, u = 0. O

Proof of existence in Theorem and[1.8 We use the method of continuity. More precisely, we deform our
PDE in a continuous way to another one that we can solve explicitly, and show that solvability persist
through the deformation.

Let t € [0, 1] be the deformation parameter. Let p = 0 and +1 for Theorem and respectively. Our
PDE is
look for ¢, € C*°(X,R) s.t.

w4 i00p; > 0
fXSOthzo if u=0
(w+i00p,)" = cretfTreewn on X (x¢)

1 w=1
0<c = [y W™
T eror H=0

The choice of ¢; when p = 0 ensures that

/(eri@ggot)":/ W
X X

for all t € [0,1]. Indeed, problem (x;) is our desired PDE.
Let’s define the set
I:={te0,1] | PDE has a C* solution ¢ }.

I is non-empty since 0 € I with trivial solution o = 0. We next show that I is open and closed in [0, 1].

Openness means that for each solution ¢; of (%;), we can deform it slightly to get a solution of (x;) for s

sufficiently close to t. Closedness means that if ¢, solves (x¢,) and t; — to, then ¢, — @, solving (k).
First consider ¢; as a function of ¢. For y = 0, we have ¢g = ¢; = 1. We claim that

e 1Pl x) < ¢, < eIl sy, (1.1)

/etFwnSetHFHLoo(X)/ wngeHFHLOO(X)/ "
X X X
/etFwnZQ—tanmX)/ wnZe—anmw/ o,
X X X

In particular, ¢; does not approach 0 or oo as t varies.

Indeed,
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Recall the Holder space C%(U) defined by Holder norm

lull groory = luller@ry + [D*u] ca 1)

k
) |D1u(ac) — Dlu(y)|
= D' + - .
; 1Pl ey + e s ==

We know that C**(U) is Banach space containing C>°(U), and C°°(U) is not dense in C*(U). We now

move from local to global. Fix (X" w) a compact Kéhler manifold, or more generally a closed Riemannian

manifold. Fix an atlas {(Uj,¢; : U; = V; C C") ;V:h and {p;} a partition of unity subordinate to {U;}.
Define for a k times differentiable function u : X — R the C*(X) norm, depending on the choices of

atlas and POU above: N

”uHCkva(X) = Z H(p]u) © @;1’|ck,a(vj)

j=1
Then the Holder space

C*(X):={u: X — R | uis k times differentiable and [ull oo (xy < 00}
is a Banach space containing C°°(X), and C*°(X) is not dense in C**(X).

We fix k = 3 and any « € (0,1) to prove openness of I. First consider u = 0. Define

U= {u6C3’O‘(X) \w+i65u>00nXand/ uw™ :0}.
X

v:{veclva(xn/wiz/xm}.

U is an open subset of the Banach space of the kernel of the bounded linear operator [ (-)w™ : C**(X) — R.
Similarly, V is an affine linear closed subspace of C1:®. Then define an opeartor

(w + i@gu)n

wn

EU—-V, Eu):=

We can immediately see that & maps into V. Functional analysis theory yields £ is Fréchet differentiable as
a map between Banach spaces.
Now we prove openness of I under p = 0. Suppose ¢; solves PDE for some t € I. By definition of &,

E(pt) = cretl

We try to find ¢s € U (for now) solving &(ps) = cse*!” for all s € [0,1] sufficiently close to t. The key point
is that if s is sufficiently close to ¢, then cse®! is as close as I want to c;e!t” in ”'HCM(X)' To show this, we
want to apply the Inverse Function Theorem for Banach spaces: if D, is an isomorphism between
(tangent) Banach spaces, then £ is locally a bijection near ¢; and £(py).

The tangent space to @y in U is

TwU{weCM(XH/meo}.

The tangent space to £(¢;) in V is

Te(o)V = {77 € Cl’a(X) | /an" = O}.
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We compute the Gateaux derivative Dy, & : Ty, U — Te(,,)\V:

Dy, () E(pr + s9)

s=0
(w +1i00 (pr + sw))n

wn

T ds
_ 4
ds =0
n (w+i0dp,)" " NidDYp
wn
n (w+i00p)" " NidDY  (w+i0Dp,)"
(w+ iaggpt)n wn

= (Awﬂa&aﬁﬂ) -E(e1)

We then use the following linear PDE theory on manifolds.

Theorem 1.9 (Poisson equation in Holder spaces). Let (X™,w) be a compact Kdhler manifold. For any
keN, a€(0,1), there exists C > 0 such that

1) given any f € C**(X) with [y fw™ =0, there ezists a unique u € C*2(X) solving

{Aguf on X

Jxuw™ =0

and we have
||U|‘ck+2va(x) < CHf”ckwa(X) < C/Hu”ck%a(x)v

where the first inequality is global Schauder estimate and the second inequality is trivial by Agu = f.

Hence the map
A, : {u € Ch2o(x) | / e = o} o {f € Che(x) | / fu = o}
X X

is a Banch space isomorphism.

2) given any X > 0, and any f € C**(X), there exists a unique u € C*T2Y(X) solving the Helmholtz

equation or eigenvalue equation
Agu= u+f onX,

and we have the same Schauder estimate (second inequality is again trivial by f = Agu — Au)
||“Hck+2.,a(x) < CHf”ck,a(X) < ClH“”ckH,a(x)«

Hence the map
Ay —A1d: CMF2(X) — CF*(X)

is a Banach space isomorphism.

Back to our proof. Let w; := w + i00¢;, a C*° Kihler metric. By computation above,
w'
Do, £(¢) = (Aw¥) - —

Then applying Theorem 1) to (X,w;), we see that D, & : T,,,U — Tg(,,)V is a Banach space isomorphism

using trivial isomorphisms between kernel of [ (-)w™ and [ (-)wf*. Therefore, by Inverse Function Theorem,
there exist open neighborhoods

wn’

opreUclU, cefevcy,
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such that £ : U — V is bijection. Hence for all s sufficiently close to ¢, cse*"” € V, and we can solve for ¢,
using (€]y)”". We now have

s € CH*(X)
w4+ i00p, > 0 on X

Ix gosw’i: 0
(w + i00ps)"™ = csesF'wn

The last question to ask is whether ¢, € C°°(X,R). This is true by the following regularity theorem.

Theorem 1.10 (Regularity). Let (X,w) be a compact Kdihler manifold. Suppose ¢ € C**(X) for some
a € (0,1) solves B B
w+id0p >0, (w+i0dp)™ = el ey

for some F' € C*(X), p € R, then ¢ € C*(X).
The same statement holds if we only assume ¢ € C?(X). The proof is harder.

The proof of Theorem [1.10] uses local Schauder theory:

Theorem 1.11 (Schauder estimate). Let g be any Kdhler metric on the unit ball By = B1(0) C C", and
gcn the Euclidean metric. Fix k € N, a € (0,1). Suppose

A gen < g < Agen
{||9||ck,~(31) <4
for some A > 0. Let f € C*%(By), u € C**(By) solve
Agu=f onB.

Then for any € > 0, there exists some constant C = C(n, A, k,a,€) such that u € C¥*%%(B;_.), and

lullgrsas,_.y < C (Ifllonazy + lull=s,)) -

In particular, on By/3, we have u € Ck+2’a(Bl/2) and there exists some constant C = C(n, A, k,«) such
that

lllow s, < C (1 lcrasy + lull o, -

Proof of Regularity Theorem [I.10] assuming Schauder Theorem[I.11l The regularity is a local statement, so
we can work in a chart isomorphic to B;(0) C C". Let our Kéhler metric g given by metric g on B;. In this
coordinate, the Monge-Ampere equation that ¢ solves is

det (gﬁ + 81-8;90) = ef e det (gﬁ).
Taking log,
log det (gﬁ + 3@7@) = F + pp + log det (gﬁ).
Taking %, as ¢ € C3%(By), we get
A (k) = 57 0c0i05
=570, (gg - gg)
= —§68k9g + Ok F + popp + gﬁ@/cgij

where

- —t
97 = 97 + 9i05, (57” ) = (ﬁg) :
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Note that —§”dxg,; € C*(By), Opp € C**(By), O F + g" drg;; € C*°(B1). To see the first one g € C1°,
use that C'1® is closed under product and division by function nowhere vanishing (work on a slightly larger
ball and use compactness in division). By definition, § has C1'®(B;) coefficients, and is comparable
to the Euclidean metric on By. Thus we can apply Schauder Theorem with £ = 1 to conclude that
Ok € C*(By2). Repeat the argument above with 5 to get dpp € C**(By)s). Thus ¢ € C**(Bys).
We can repeat the argument above with k = 2 now, since we already have ¢ € C*%(B; s2)- This yields
p e C5’Q(Bl/4). Repeat this argument to see that ¢ is smooth at 0. This completes the proof.
O

Therefore, the solution ¢, we get from £~ ! is smooth. This concludes openness of I when p = 0.

Next we show openness of I when p = 1. The proof can be adapted from above slightly. Suppose ¢
solves PDE for some ¢t € I. Define

00w)"
F:W = Ch(X), ]-"(w)::logi(w—i_Z w) —w

wn

where _
W= {w e C>*(X) | w+ iddw > 0}

is an open subset of the Banach space C*®(X). Indeed F maps W into C™®: logarithm of a positive
C12(X) function is still C1*(X) by compactness of X. Then

.F((,Ot) = tF7

so for all s € [0,1] sufficiently close to ¢, the function sF is close to tF in C1%(X). As above, we compute
the Gateaux derivative of F at ¢, to apply Inverse Function Theorem in Banach spaces.

Dy, F : T, W = C¥*(X) = Ch°,

and follow the calculaations above for £ to get

d
Do F (W)= | Flotsv)
s=0

= Awt::w-‘riagaptw - w
=D, F=A, —1Id.
By Theorem 2), Dy, F is a Banach space isomorphism. Thus we solve for ¢, € C3%(X) using local
inverse F~!(sF). By Regularity Theorem s € C°(X). This concludes openness of I.
We are left to show that I C [0, 1] is closed. The main claim is the following:
Theorem 1.12 (Yau’s a priori estimates). Let (X™,w) be a compact Kdhler manifold. Let F € C*(X,R),
=20 or 1. Suppose ¢ € C°(X,R) solves
w4100 > 0
Jx pw™ =0 if u=20
(w+i00p;)" = el Trew™  on X.

Then given any o € (0,1), there exists a constant C' = C((X,w), [[F||ca.a(x), @) such that

w + i85<p >C 1w
||%0||c2va(x) <C.
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This means that if at x € X we pick coordinates that simultaneously diagonalize w and w + i00p at x:

9;5(x) = dij
(gﬁ + 81-8]—«,0) (Z‘) = /\j(Sij,

then the first a priori estimate says A\; > C~! for each j = 1,...,n; the second estimate says

|

Let us assume Yau’s a priori estimates first and finish the proof of closedness of I. See proof of Theorem
[L12 below.

Assume there is a sequence ¢; € I such that t; — ¢ € [0, 1], we want to show that ¢ € I. By assumption,
let ¢, € C>°(X,R) be solutions to the PDE (x¢,). Let &; := w+i0dyp;, > 0, such that @F = ¢;,etif Treun,

Fix any « € (0,1). To apply a priori estimates, we want F :=log ct, +t;F, such that ef’ = ¢, e'f". Recall
from that |log cy,| < [|F[| (x> so there exists some constant C' independent of ¢ such that

<C=)\<C
Co(X)

3@%%"

log ct, + tiF || ga.a(x) < C-

Thus Theorem does apply, and there exists some constant C such that for all ,

{d}z > Clw

||§0t1 C2e(X) § C.

In local coordinates on By, write (gi)g =95+ 5'1-8]—.30&. Then the matrices g; satisfy

19ill go.e(x) < C
Clg<g;<Cyg

for some constant C' independent of i. Then
A5 (kpr,) = =30 Orgpg + OuF + pdrpr, + 9" Ok pq-

The RHS has uniform C%%(Bj)-norm bound independent of i. The only non-trivial part is the first term,

where we use §; ' = ﬁ(gi)Adj (gi), and compare det(g;) > C det(g) using the results above.

By Schauder Theorem there exists some uniform constant C. such that
10k 2t ll 2o, ) < Ce + CellOketll oo,y < €,

where the last inequality follows from above: ||¢y, || crax) < C.

Similarly, ||Ozer, < C for some uniform constant C. Hence [lgy,|[¢s.a(p, ) < C for some

OQ’Q(Blfe)
constant C' independent of . Now we use compactness of X to pick € > 0 small, and pick my charts ”dense”
such that the union of balls By_. C Bj still covers all of X. We can therefore conclude that

||<Pti C3(X) <C

where C' is independent of i.

Fix 0 < o/ < o < 1. We have compact embedding C**(X) < C3* (X). Thus there exists a subsequence
ti, — t such that (py;, converges in C39'(X), say to some 7 € C** (X). We want to verify that o7 solves
the PDE (%5). First, for positivity, we have

O<C’*1w§dzij — w+1i00¢7 as j — oo.
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Hence w + iagtp; > C~ 1w is a K&hler metric with CLe _coefficients.
Also, passing to limit in the PDE, as j — oo,

ti; F+;wf,ij

tF + ~ Al A\
cpettTHeT T ct € w" = — (w+100¢5) ",

so that ~
— n
(w+i00¢;) = cretFrmerm,

0=/ apti,_w”—>/ ™ = 0.
x 7 X

Finally, by Regularity Theorem ¢7 is in fact C*°(X,R). Therefore, 5 solves the PDE (x;). This
completes the proof of closedness of I.
Therefore, I = [0,1], and in particular our desired PDE (1) has a solution.

If © = 0, we check in addition

We are now left only with proving Yau’s a priori estimates. We first need the following.

Proposition 1.13 (Compact embeddings of Holder spaces). Let (X™,w) be a compact Kdihler manifold. Let
k,leN, a,p € (0,1) such that

I+8>k+a.
Hence | > k, and B > « if | = k. Then the natural inclusion C*"#(X) — C**(X) is compact operator
(mapping bounded subsets to precompact subsets).

Proof. The map CH?(X) < C*® is clearly a bounded linear operator.

To show compactness, it suffices to consider k = [ = 0. The rest of the cases follow by induction. Now
B> a > 0. Suppose u; is a bounded sequence of functions in C%#(X) = C#(X). We want to show that u;
has a subsequence convergent in C*(X). We have

luillos (xy o= llull oo x) + [ws]os(x) < C

|ui(z) — wi(y)|
Uilos(x) == Sup ———————.
[ Z] X cH#yeX d(lﬂ,y)ﬁ
[ull oo (xy < C implies that u; are uniformly bounded in C(X), and [u;]cs(x) < C implies that u; are
equicontinuous in C'(X). Thus by Arzela-Ascoli, there exists a subsequence u;; that converges in C(X), say
to u € C(X). By pointwise convergence in particular, for any = # y € X,

Jue) —u)] _ . s (@) = s, ()]
deyy S dmyp SO

= [u)os(x) < C.

Thus u € C?(X).
It remains to show that u;; — u in C%(X) as j — co. Convergence in C(X) is known already, so we
want to show that
[wi; —u]ca(x) — 0 as j — oc.

For x # y € X, the value we consider is
|uiy () —u(z) —ui,(y) +uly)| dz,y)°
d(z, y)? d(z, y)*

When d(z,y) is small, the second term is small, and the first term is uniformly bounded by 2C. When
d(x,y) is not small, d(x,y)~* is bounded, and |u;, () — u(x) — us, (y) + u(y)| is small for all j large and for
all z # y. This proves that [u;; — u]ce(x) — 0 as j — oo, and completes the proof.

O

10
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Proof of Theorem[I.13 We shall prove these in 3 steps
Step 1. Prove the uniform bound

[l o (x) < C = C((X,w), |F] oo (x))-
We first consider the easier case y = 1:

(w+ i(“)g(p)n = efteyn
w4 i00p > 0.

Let € X be a point where ¢ attains its maximum on X. By 2nd derivatives test, i0dp < 0, so

0 < (w+109¢)(7) < w(z).
Taking n-th wedge product, we see e +?(x) < 1, so F(z) + ¢(x) < 0, ¢(z) < 1]l 700 (30

< . Similarly,
considering any point y € X where ¢ attains its minimum, we get —¢(y) < F(y) < [|F|[ .« (x), so that

1@l oo (x) < I1F Moo (x)

The case p = 0 is more delicate. Recall first the Euclidean Sobolev inequality.
Theorem 1.14 (Sobolev inequality in R"=2). Given 1 < p < n, and q € R such that

111
¢ p n
then for all f € C°(R™), we have
g(n—1)
||f||Lq(]Rn) < 7va||1;p R™)

The proof of this is standard real analysis. See, e.g. Evans §5.
We now bring Sobolev inequality onto compact Kahler manifolds

Theorem 1.15 (Sobolev inequality on compact manifolds). Let (X"=?
Given 1 < p < 2n, let ¢ € R such that

1 1 1
g p 2n
Then there exists some constant C = C((X,w), p) such that for all f € C*(X,R), we have

100 < C (IF Loy + 10 ) )

1l = ( /. flpw”f,
10F10 ) = ( [ (or2)" )

-0f o]
of> = g
19715 02 0z

where

and recall that in local coordinates

11

w) be a compact Kdhler manifold.
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Proof. First cover X by a finite atlas {U;, p; : U; 2 V; C C"}Y
have

j=1, such that in local coordinates on Uj;, we

- Id < (g;) <21d.
Hence if we denote the Lebesgue measure by dx, we have
dr < W™ < 22dx

on each Uj.

This atlas can be attained, because for each € X we can pick local coordinates such that gﬁ(x) =1Id,
so that the condition above is satisfied in a neighborhood of .

Fix a partition of unity {p;} subordinate to {U;}. Then

N

N
1l pacxy = ||D_pif < il e
j=1

=1 La(X)

Apply Euclidean Sobolev inequality to (p;f) o gp}l € CX(R?"):

Hpjf”Lq(Uj) = (/U |pjf|qwn>

%
<C ( / |(ny oY, 1| dz) by choice of coordinates above

Q=

=

pif)o 90;1) |pd9€> Sobolev inequality

S

<C (/ |0 (p; f |p ”) by choice of coordinates

<o ||f||Lp(X) + Hafan(X))

where in the final steps we use the equivalence of all LP norms on a finite dimensional space. Summing
over j, we have the desired result. Indeed the constant C' depends on partition of unity {p;}, and hence on
(X,w), but not on f.

O

We next recall Poincaré inequality on compact Kéhler manifolds.

Theorem 1.16 (Poincaré inequality on compact manifolds). Let (X", w) be a compact Kéihler manifold (or
closed Riemannian manifold). Fiz any 1 < p < co. Then there exists some constant C = C(p) > 0 such that

for all f € C*(X,R), we have
[ <c [ vy,
X X

12
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where
g
f=
Vol(X, g)

denotes the average of f.

There is a more general version of Poincaré inequality for all 1 < p < oo and the constant C' depends
only on (X, g) and p. The proof uses Rellich-Kondrachov W'?(X) € L?(X) and argue by contradiction.

Formally speaking, Poincaré inequality says that the operator —A, acting on C*°(X,R) with L? inner
product has the zero eigenvalue first (one-dimensional space of constant functions), and then the next
eigenvalue is positive (1/C from above). Indeed eigenvalues of —A, have zero average.

Let’s now continue the proof of Yau’s a priori estimate. Consider case y = 0 in Step 1. Notice the
following lemma:

Lemma 1.17. For each continuous function f: X — R on a compact space X, we have
plggo Hf”LP(X) = ”fHLOO(X)'

Proof. Notice that it suffices to consider the case || f|| Leo(x) = 1, as we can scale any non-zero function by
its L>°(X)-norm.

Clearly, [|f[|rs(x) < [fllpee(x) =1 for each p > 1.

For the other direction, split X according to the value of |f|. We claim that for each 0 < § < 1, we can
pick €(6) > 0 and pg large such that Vp > py,

%
1l = ( / P+ / fl”)
{IfI>1—-¢} {IfI<1—¢€}

>(1—e)- M({If| > 1—eh'/?
>1-4.

Indeed this can be achieved. For example, pick & < 6/2, and since M ({|f[ > 1 —¢€}) > Odueto || f|| ;e (x) = 1,
we can find po large enough such that M({|f| > 1 —¢})'/? > 1 — ¢ for all p > py. Therefore,

plinolo Hf”Lp(X) =1

O

Thus to bound |||« x, uniformly, it suffices to bound (||, (x) uniformly. Observe that though [t|” is

not differentiable at ¢ = 0, the function ¢|¢t|* is differentiable on R for any a > 0, with derivative (a + 1)[¢|“.
Hence for p > 2, compute

/ plolP 2w — @) = / elolP2(1 — e wn by assumption PDE
X X
< [lert e
X
<C [ jolrter
X

13



1 Calabi Conjecture and Kéahler-Einstein Metrics 1.0

where C' depends on HeF On the other hand, as in Calabi’s uniqueness argument,

HLoo(X)'

b

n—1

—/ ol 209 A (w A@mTE)
b'e =
n—1 ‘ ‘
= / d (ga\<p|p72> Aidp A Z (w? A" Stokes and closedness of w,®
b's ;
7=0

n—1
=(p-1) / lo|P ™ %ido A Do A Z (w! A1)
b's =0

=(p—1) / lo|P~ 228(,0/\(9(,0/\2 (wi A=)

p—1) / ‘<P|p_2i3§0 A % Aw™ ! proved in Calabi uniqueness
X

-1 — 1(1,
- / [olP =000 na AW EE Y (b ) - wr
X

= LL(I:Z;QU/XP(@I@IT)EW

Remark 1.18. The wedge product of n positive real (1, 1)-forms on (X™,w) is positive multiple of the volume
form.

In conclusion, we now have some kind of "reverse Sobolev inequality”.

[ [0 (etel ) [fur <o [ jorar s p [ oo (12)

for all p > 2 and C uniform independent of p. In particular, for p = 2, we have

/ D20 < C / ol (1.3)
X X

Let’s now assume n > 2 and combine the inequality above with Sobolev inequality. Let 8 := 5.

—2
Applying Sobolev inequality to f := g0|<p|p7, we have

() <o f o)

Then using the reverse Sobolev inequality above for the second term on RHS,

%
( / lepﬁw”) §C<p [ertons [ lepw") (1.4)
X X X
C(ﬁ (/ Ww”) ' +/ |s0pw”> Holder. (1.5)
X X

p—1

( / |<p|”u)") < max (L / an),
X X

14
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%
</ |<p|pﬁw”> < Cpmax (17/ |<p|pw"> :
X X

Clearly, we also have 1 < RHS, so

SO

max (1, [ s (x) ) < CFpF max (1,10l o ) ) (1.6)

for all p > 2 and some uniform constant C' independent of p. This looks like a "reverse Holder inequality”.
We are now ready to apply the Moser iteration technique. Since 8 = -5 > 1, iterate reverse Holder

inequality (1.6]) to get
a1 a1
max (1, 1l o2 x) ) < CF (08) 7 max (1,11l s )

< CH (pA) P Cp# max (1, ¢l i) ) -

|~

|

The k-th iteration of (1.6) becomes

k—1 1 1 k=1 1 1

1.5k L 1.5k . 1 s~k—1 i
max (1, ||<pHLP/3’“(X)) < OF'&i=0 BT L p =0 5T . B 2i=t BT may (1’ HwHL?’(X)) ]
Using 3 > 1 and Lemma [[.17] letting k — oo, and p = 2, we get
max (1, 1l g (x) ) < Cmax (1, Il 2x) ) - (1.7)

Here we use the covergence > .-, # < 00.
We can further deal with ||¢|| L2(x) using Poincaré inequality, Theorem m Indeed,

C_l/ PP < / |8ap|§w" / pw"™ = 0 and Theorem [[.16]
X X X
<C / |pfw™ reverse Sobolev inequality ((1.3))
X
1

<C (/ <p2w") , Holder
X

so that [[¢|[2(x) < C for some uniform constant C'. Combined with inequality (T7), we have uniform bound
||90||Loo(X) < C, as desired.

Remark 1.19. Here the constant C' = C ((X,w), ||eF||LM(X)>. In fact, we can modify this argument to get

lollpoe(xy < C=C ((X, w), HeFHLq(X),q> for any ¢ > n. The same claim holds for all ¢ > 1, but with a
different proof given by Kolodzie;j.

Question 1.20. What about the case n = 17 Let 8 = 2. Sobolev inequality withp =4/3, g = 2p/(2—p) =4

(o) <o (o) + (o))

Plug in f = ¢|g|"T forp>2,
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by Hélder. Then as above,

(/XWIQ”wY SC(/leper/X 0 (@I@I%Z)EQ

<C (/ lolPw +p/ |<p|p1w> by reverse Sobolev inequality (1.2)
X X

which is now the same as (L.4) in the case n > 2. We then proceed exactly as before with 5 =2 now.

We have now finished Step 1 in the proof of Theorem [1.12] giving a uniform bound on the L*-norm of
all solutions .
Step 2. We next show that there exists some constant C' = C ((X,w), ||F||CQ(X)) such that

Clw<@:=w+iddp < Cuw (1.8)
Locally, inequality (|1.8]) means that
Cil(gﬁ) < (gzj) < C(gi})-

If we simultanesouly diagonalize g and g at x € X such that (g;7)(z) = di5, (3;7)(z) = Aj65, A; > 0 indeed.
Then C~! < Aj<Cforallj=1,..,n.

We first reduce the inequality between matrices/metrics/tensors to an inequality between functions.
Recall the trace of a real (1, 1)-form defined by

tr, w = gﬁgi; Snw" T AD = tr, @ - W

Indeed tr, @ € C*°(X,R4), for in the diagonalized local coordinates above, tr, w(z) = >_; A;.
Claim 1.21. Iftr, & < C on X for some uniform constant C, then inequality (1.8)) follows.

Proof of Clatm|1.21] In local coordinates above, we have

A<D N <C =) < Cw(x)
J

Thus the inequality w < Cw follows immediately.
The other side needs uniform lower bound on ;. We use the PDE:

ﬁ N det (gg) on P (),

1 J = det (91'3) = ﬁ(az) =e

[Fl o (x) < [[Fll2(x) trivially, and we proved in Step 1 that [|¢] e x) < C = C((X,w), [F 1 (x))-
Thus

n
H A > e IF+pell Lo (x) >0 !
=1

for some constant C = C ((X,w), HF||C2(X)). Meanwhile, >, A; < C, so that A\; > C~" for all j. This

proves the claim. ]

We are left to show that
tr, w < C.

16
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The trick is to use maximum principle. We choose Ag over A, as the former is the linearized opeartor
of PDE. We compute

Agtr, @ = GO0, (gﬁs?i;) .
To simplify, we choose a coordinate at x that is normal for g and diagonalizes g. That is,
gi}(x) = 0ij
akgij(x) =0
9i5(x) = Aji
and hence _
Okg” (z) = 0.

This can be achieved: start from the simultaneously diagonalized coordinates as above, and then
perturb the coordinate by terms of order 2 such that dgﬁ vanishes at x; meanwhile it’s easy to
check that §(z) remains the same. See e.g. Huybrechts §1.3. Then at z, (typo for line 27)

Agtry & = 10,0 (97555

> Ma5Ra + 79" 0k01di;

i,5,k,1

=Y " GiRaz— Y "9 Ryat+ Y. §"97509,;0:0,
i,k

,5,k,1 4,3,k,1,p,q

=Y 3™ 3Ry — truRic@) + Y §M97§79010,50k0i7
ik 1,5,k,1,p,q

where we recall that -
R0 = 9"1019,5009iq — OkOp9,5

R = g" Ry = —0:0;10g det(gy7)
Ric(w) = iRzdz; N dZ;
R = tr,, Ric(w) = gﬁRﬁ.
By PDE, @" = ef t#¢w" so det(§) = e #¢ det(g), and
Ric(@) — Ric(w) = —i09(F + pp) = —i00F — ud + piw. (1.9)
Since tr, @ > 0, tr, w = n, it follows that
—tr, Ric(@) = — R+ AyF + ptr,w —un > —C

for some uniform constant C' = C' ((X,w)7 ||FHC2(X)) by compactness of X.

Also,

ng’“gﬁRm > chgk’“gﬁ = fC’Z)\Z—)\;l = Ctr, @ trow
ik ik ik

for some uniform constant C' = C'(X,w). In summary, in this normal coordinate at x, we have

Ajtr, &> ~Ctr,@-trow —C+ Y GG g7V5 -Vidig. (1.10)
i,5,k,0,p,q

17
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Both LHS and RHS are coordinate-free quantities (tensorial). To apply maximum principle and show

uniform bound on tr,, @, we need some correction function on the LHS under Az. Observe that

Agp = gijaiaﬁp = gij (gﬁ - Qij) =n—trgw,

and for v € C>(X,Ry),
- A- oul?
Ag IOg’u, = g” (61'(%]- 10gu) = 7gu — | u2|g.

It follows that
-2
Astr, o |0tr, @f;
Aglogtr, » = =29~ _ | - ‘29
’ try, w (tr, @)
pl~pT e ~ - 12
C ikt d0799VG,5 VG 0 tr, @
> —(Ctrgow — — + — — —
tr, & tr, @ (try, @)
Observe that
tr, w-trgw = Z)\j)\,gl >n,
J.k
so the second term
C —Ctrgw
— — >
tr,w n
|0 tr, &
(trp@)®

and can be absorbed into the first term —C'trg w. Now we have
Zi,j,k,z,p,q gMgrigii V19,7V
tr, w

Aglogtr,w > —Ctrgw +
Taking A := C' + 1, and replacing C' by the new constant An, we get
~kl ~pa 7 ~ ~ ~12
Ag (logtr, @ — Ap) > trow — C + Zi»jvk,hp,q 9799 V19,5V kGig _ |0 tr., w|§
w - w ~
I try, @ (tr, ©)?
We claim that the error term is non-negative:
BN T ~ -2
it 97979 Vg5 Vidia |0t Ol
~ - >0 (1.11)
tr, @ (tr, @)
(1.12)

Assuming this claim first, we get
Aj (logtr, @ — Ayp) > trgw — C.

We now apply maximum principle. Pick = € X where logtr,, & — Ay attains its maximum. Then
(1.13)

0> A (logtr, @ — Ap) (z) > trgw(z) — C = trgw(z) < C.

(tr@ w)n_l R—

To compare trg w and tr, @, note the elementary inequality
trp,w <
YT T (-1

18
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which can be easily checked at each point on X using the diagonalized coordinates above:

trw&):Z)\i
n—1
() ()
J

<
~ (n—-1)!
1 w"

 (n—1)!

tro @(x) < C2—(z) = CeP ¥ () < C
w

Then by (LI3),

using [|¢[| e x) < € from Step 1. Hence logtr, w(z) < C. Using [|¢] .« (x) < C again, we get
log tr, @(x) — Ap(z) < C.

Then by maximality at x,
logtr, & — Ap < C on X.

Again, since [|¢|| ;o x) < C, we have the desired inequality
tro@<C=C ((X,w), ||F||C2(X)) .

It remains to prove inequality (L.11]). We claim that
=kl ~pq ij ‘B‘fniwed
5979"9" Brig Bijp = P >0, (1.14)

LT~ ia - ~ ~12
igkipa 999 VIG5 Vigig |0t el 1
(tr,@)®  tr

tr, w

where By (i1, )
~ ke (P10 W)

Blig == Vigig — oo Je

B:=Vgj—0(logtr,®) ® g,

are coordinates of the 3-tensor

and we define the mixed norm exactly as above:
Ky FR T
‘Blmized =g gpqujBkiaBljﬁ'

2
> 0, for if we choose coordinates near € X normal to g and diagonal to g as above,

Clearly |B|fm.wed

we get
To see the first equality in (1.14)), we compute by hand:
M 379" BrigBijp = 3" 379" V19,5V kg
3"V 135 - Op (tr, @)

2

|Bliized = Z Ae Ay ' BripBrip > 0.

kyi,p

g

B tr, @
~kl 47 ~ ~

mg 97 V1G;7 - Ok (try, @)
M gg" O (try, @) Oy (trw ©) Jigdy;-

I
29

_l’_
(tr, @)

19
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The first term is as desired. For the rest, compute in coordinates chosen as above at a fixed point x € X.
il ~ = ~ AR ~ ~ )
9" 0kg;5 = Ok (gzjgg) = 0 (tr, @) = gklg”ngij O (try @) = |0 try, @3,
and similarly, o
Mg VG5 - O (tr, @) = [0 tre, @

For the last term,
gklgpﬁgijak (trw (L') 8? (trw (:)) giﬁgpj = gijgij : gklak (trw (‘D) &l (trw (L') =try, w- |atrw ‘M;

Combined, this yields the first equality in (1.14]). This completes Step 2.
Step 3. Last step in the proof of Yau’s a priori estimates is the following.

Theorem 1.22 (Calabi-Yau-Nirenberg). Let (X", w) be a compact Kéihler manifold. Let F € C*(X,R),
w =0 or 1. Then there exists some constant C = C ((X,w), ||FH03(X)) such that for all p € C*(X,R)
solving the problem

O = w+i0dp > 0

[y g™ =0 ifp=0

Q" = el treym on X,
we have uniform bound

1@l (x,g) < C-

Let’s first finish the proof of Theorem [1.12]| assuming Theorem whose proof is further below. Since
w is given, the estimate above implies B
Hiaa@HCI(X,g) <C

= ”Ag‘:ﬁ”cl(x’g) <C
= [Agella(x,y <€ Va€(0,1), C independent of a.

Our goal is to bound ||¢]| c2(x,¢) uniformly. Thus we apply global Schauder estimate, Theorem Let

B S pw™
Y= — )
Jxwn

so that [, ¢w™ =0 and Ayp = Agp. Then Theorem [1.9|1) gives

||%5||C2wa(x,g) < C”Ag@”ca(xw

< |7 Le#™ | cyia
= HQOHCZv“(X,g) = ||()0||C2»04(X)g) + Tewn | = [ g@||CQ(X7g) + H‘PHLOO()Q-
X

Combining with the uniform bound |||« x) < C proved in Step 1, we get

[ellcae g < € =€ ((X,) IFlcsgxya) Vo€ (0,1).

Along with the metric comparison result in Step 2, this concludes the proof of Theorem [1.12

Question 1.23. The dependence of C' on o comes solely from global Schauder Theorem [1.9,
Also C only depends on |[F|gs(xy, instead of |F|cs.a(x) as stated in Theorem [1.14? This is because
[Agellcr(x.g) < C implies |Agpllpax 4 < C for another C independent of a?

O
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Proof of Theorem[1.23. Recall from Step 2 that
Clw<®<Cw (1.15)
for some uniform constant C'. Thus

[©0llerx.g) = N9l x,9) = N9llco(x,g) T 1IVllco(x,g) < €+ IV3llcocx g

where V = V9 is the Chern connection with respect to metric g.
We are left to show that
||V§7||CO(X,g) = S;P ‘V§|g <,

which by (1.15) is equivalent to
2
sup [Vg[; < C.
X

As before, the idea for such uniform bound is to apply the maximum principle. We first claim that
-2 2
Vil =1T1; (1.16)

where T is a 3-tensor defined by
Tk .— Tk _ Tk
R )

K

the difference of Christoffel symbols of V9 and V9. Recall that in general local coordinates
ko ._ Kl
Fij = Zg (%-gﬂ.
l

To see ([1.16]), compute Vg in coordinates:
Vfﬂ = aigﬂ - Ffjgpi
This is in fact the coefficient for dz; A dz; in V;g. Then observe that

k _ mk
7~ Uiy =Tij-
Since raising the [ index is an isometry for §, we get (1.16)).
Remark 1.24. More details to expalin this. S := Vg is a tensor of type (0,3), i.e. tensor product of 3
covectors. On the other hand, we view T as a tensor of type (1,2), which is tensor product of a vector with
two covectors. Raising index is the sharp # isomorphism that relates S and T'. In coordinates,

Val} = |Vidzi© (a2 A dz)|
=V, ~jjm§m§jg§d
= V:3,Vad550 3" 3" 5P g1y g7 =gi
= Ti@@Qiagjggkw

0
_ k

2
= |T‘g'
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To apply the maximum principle to |V§|(27, we must compute its Laplacian. We choose the Laplacian
with respect to g. This is the linearized operator of Monge-Ampeére equation. Compute

A |Vil2 = AT

= pqa &( gﬁgza Jﬁglm)

= 79,95 (157,575 00 )

=" (Vo) (Valis) 8767 + 37 (VT35 ) (VaZl) 3757 a

+gqu Vi (T8) 0505 gis + 7T,V (T0,) 575 i ()
B

‘VT‘ + TV, Vg (TE) - 55

Remark 1.25. For hnes (x) and (*x) above, the following facts about the Chern connection V are used:

For a function f one has V;f = 0;f.

For a tensor, e.g. T represented by Ti’;- above, one has VpTi’;- = apT;;. —FéiTk Flezlf—FF’;lTilj. This is
abuse of notation, and VpTilj- actually denotes the coordinate entries of V,T". In particular,
Vi3 ziﬁpgﬁ 771_\;71‘913 :781,96 77glm (Opgimm) 955 :70, which means V,g = 0. Similarly, V, (g##) =0,
as Vpg" = 0,97 + %194 = 8p9" + g™ (Bpgim) g4 = 0.

V), satisfies the ”Leibniz rule” for the natural pairing between vector fields and covector fields, or
more generally the natural pairing between a (k,[)-tensor field and a (m,n)-tensor field.

V(S,T), = (VS,T), + (S, VT),

In the computation above, the function Tk T7 Wgﬁg,ﬁ is a natural pairing of a (2,4)-tensor T ®@ T

with the (4, 2)-tensor g ® g## ® g7, Where g is (0, 2)-tensor.

V, also satisfies the "Leibniz rule” for the tensor product of tensor fields: V,(F ® G) = V,F @ G +
FeV,G.

Another way to see this is to view ||T H; = (T, T) as an inner product on tensor fields extended from
g, an inner product on vector fields. Thus we have Cauchy-Schwarz inequality which will be useful
below.

The last two terms are almost complex conjugates of each other, except that VV are in wrong order.
This motivates the use of curvature to relate them. Thus compute

@Taﬁngb - @q@ﬁ acb
=0y (8qT;b - ffmTﬁ; - Fl pTar + F T ) - (%% b~ ff}aaﬁj—ﬁ - flgb%T& + fg@ﬂh)
= —%ﬂ;u Ty — 6171;5151 al T &Fql

Observe that

57 (<0514 ) = =305 (5™ 0
= gq 817( ) qgaﬁ - glﬁglmaﬁaqgaﬁ
E

?—3

g 5 G ) agaqgaﬁ - gqﬁglmaﬁaqgam
g

~Im (gquaﬁ &gamaqgag _ gq?(%aqgam)
Ry

im

I
;Ul Q.

l
a’
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and similarly,
g7 (<o) = Ry a7 (05) = ~Ri.
Combining, we get
GV e, = GV VpTg, + RUTH, + RyTg — RiTy,.
By the Monge-Ampére equation (assumption PDE), we have computed in equality above that

R =R — 0;0;F — ng;5 + ng;;- (1.17)

We know from Step 2 ([1.8)) that g and g are uniformly equivalent. Hence

for some uniform constant C. This is easily seen at each point in the nice coordinate chosen in
Step 2. By the same reason,

|RLT:;

‘come. R
G ||ga b

al

2<CT2 RET!
_?]_ | |§7 1+ ab

<o
< ~.
i g
Combining the computation of Az|T |§ and estimates above, and using Cauchy-Schwarz,
AgITIZ > 2Re{gﬁ@€p% (T) - g”agﬂﬂgw} Syeliar (1.18)

Now we use the definition of T to understand the first term on RHS. Compute

Jiq Jiq
— gpﬁ@p <R?jq - Rfﬁ) Bianchi It R7; = R;5;

= 3" (Vp Ry — TyiRyjq — Ty Rlq + Ty Rijg) — 377V, Rl

Tjq irq 1jq

By Bianchi identities, the last term above yields Ricci of g:

v k
= VR
= §"V,R;

il il
= VJR” —g TJp?,Rpi

Again, the Monge-Ampere equation implies (1.17)) and furthermore,

VjRﬂ = VjRﬁ - VJ(’%&IF — ungﬁ. (1.19)
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Combined, we estimate as above to get

1577V, V7 (T5)

2 _ .~
[ SCHOT = 1577V, V7 (T5)

<O+ 0T
g
1~\on§7 the term gﬁﬁlﬁp% (Tk) - 3§ in (L.18) can be viewed as the g-inner product of the tensor
griv, Vg (TZ];) (which is Laplcacian of tensor T') with the tensor 7. Hence Cauchy-Schwarz yields
2 2 2
AG|T[5 > C|T[; = C|T|; = =C|T[; - C. (1.20)
Recall from Step 2, the inequality (1.10) and bounds on tr, @ and trg w, that
Ajtr,® > —C + G519V 5 =V igis > —C + C 71|V, (1.21)

as we can replace g"3 by C~! gﬁ by uniform comparability of § and g deduced in Step 2.
Combining (1.16)), (1.20)), and (1.21)), we can pick a sufficiently large but uniform constant A such that

A (V35 + Atr, @) > Vg5 - C. (1.22)

We are now ready to apply the maximum principle. Consider some point z € X where |V§|£2~7 + Atr, @
attains its maximum. Then

V3l5(x) = C < 0= |Vglj(a) + Atr, @(z) < C,
as we derived the uniform bound on tr, @ in Step 2. Thus

IVal2 < Vil +Atr,e<C on X

for some uniform constant C = C ((X,w), ||FH03(X)). This completes the proof of Theorem [1.22

Remark 1.26. The uniform bound on the third derivative of F' is used at (|1.19)).
The computation of Ag|T' |§ above is the complex version of the Bochner Formula: in summary,

AIT]? = |VT]? + |[VT|* + 2Re(AT, T) + Q(T),
where Q(T) is the error term above involving Ricci curvature. Compare with the real version on smooth

manifolds: )
5A\T|2 = |VT|2 + (AT, T) 4+ Q(T), T any tensor field.

1
5A|X|2 = |VX]* + (AX, X) + Ric(X, X), X any vector field.

We have so far finished the proof of Yau’s answer to the Calabi conjecture (Theorem and Aubin-Yau’s
Theorem on the existence of Kéhler-Einstein metrics on canonically polarized compact Kéahler manifolds.

We add another digression from the proof of Theorem [I.22] on the localized higher order estimates of a
Kaéhler metric, for later use.

Theorem 1.27 (Local higher order estimates). Let By = B1(0) C C™ denote the unit ball. For each
A>1, k€N, there exists some constant C = C(k,n, A) such that for any Ricci-flat Kihler metric w on By
satisfying

A wen <w < Awen on By,
we have

||w||ck(3%,gcn) < C(k,n,A).

Here wen denotes the FEuclidean metric on By.
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Proof. We start the same as in proof of Theorem [[.22] By uniform comparability of w and wc, it suffices
to bound |Vg|£27 on B 1 V is the Chern connection with respect to gcn, which is now trivial in the standard
coordinate.

In particular, the Christoffel symbols with respect to ge» vanish, so letting 1" be the tensor with entries

T} =15,
the Christoffel symbols of g, we have
2 2

Since w is Ricci flat and wen is flat, the Bochner formula we computed above simplifies to
2 2 2 | =2
Dg|Vygly = Ag|T|, = [VT[; +[VT] .
Let p € C2°(B1) be a cutoff function that is 1 on By /s. As Ay = gP7V, Vg, compute
=12
Ay (p?19gl3) = p? (IVTI; + [VT]2) + [Vl20,(5%) + 2Re(V(p?), VITI:),
=, 12
> g2 (IVT1; + [VT12) = CIVgl2 — 4p| (Vo DITE) .

Again by uniform comparability of w and wcn, we have |Vp| S C. Thus the last term above can be further
estimated:

19|(Vp, VIT),| < Co|VITI;

g

<Cp (|VT|g|T|g + \vT|g|T\g)
< p? (|VT|j + WT}?) +CIT.

Combine to get
2 2
A, (21Vly) = —C1vgl;. (1.23)
Compare this with (1.20). Thus as before the analogous of (L.21)) now is
1 oG 7 Kl pg - 2
Agtrye, w = §ijgklgpq8kgiqajgp3 = gcjngklgpqvkgﬁngpj >C 1|V9\g7 (1.24)
using Ricci flatness of w and comparability of w and wen. We have checked the first equality of (1.24)) in
order to conclude (|1.10). The second equality makes the quantity coordinate-free as a mixed norm of Vg.
Combining (1.23]) and (1.24]), we can again pick constant A sufficiently large such that

Ay (p2‘Vg|§ + Atrye, w) >0 in Bj.

By maximum principle, the maximum of function p2|Vg|§ + Atr,,., w is attained on the boundary, say
x € OB;1. Since p =0 on 9By,

p2\Vg|3 + Atrye, w < (p2|Vg|§ + Atryen w) () = Atrye, w(z) < C
as tr,., w is uniformly bounded by comparability of w and wcn. Thus on By /o where p =1,
2 2 2
IVal, < p7|Vyl, + Atree, w < C.

This is uniform bound on |Vg|3, which completes the proof.

25



1 Calabi Conjecture and Kéahler-Einstein Metrics 1.0

For the case k > 2, we use a standard bootstrap argument. The Ricci-flatness condition implies that the
component functions 95 of w satisfies

Dggi5 = 9" 0k = 6" 9" 0k9i 019,55 = Q-
For any nested balls B C B’ C B”, we first have

<Cp
Lr(B",gcn)

|

for all p > 1 by the result for £ = 1 proved above. Then

o

by LP estimates (see e.g. Gilbarg-Trudinger §9.5) for p > 1. Then

for all a € (0,1) by Morrey’s inequality.
We can thus apply local Schauder estimates repeatedly to get uniform bound on ||W||C’v( By sugen) for
shrinking balls and increasing k = 2,3, .... This completes the proof for all k£ > 2.

< CB’p

K W?2.»(B’,gcn)

S CB,a

g.,.
llcte (B ,gen)

O

26



2 Intermezzo

2 Intermezzo

Before seeing applications of Calabi-Yau Theorem, we first recall some important concepts and properties.

Consult, in addition to the lecture notes, Huybrechts or Griffiths-Harris, for basic definitions of holo-
morphic vector bundles, sections, hermitian metrics, curvature, and Chern classes. We emphasize some
important points below.

Proposition 2.1. The space H°(P",O(k)) for each k > 0 is isomorphic to Clzg, ..., zn]k, the space of

homogeneous polynomials of degree k, which is C-vector space of dimension (”Zk)

Corollary 2.2. HO(P",O(k)) =0 for each k < 0.
Theorem 2.3 (Birkar-Cascini-Hacon-McKernan, Siu ’06). The canonical ring
R(X,Kx) =P H*(X,K%)
m>0
of any compact Kdhler manifold X is a finitely generated C-algebra.

For an example of a compact complex non-Kéhler manifold whose canonical ring is not finitely generated,
see Example 6.4 of https://arxiv.org/pdf/1309.3015

Lemma 2.4. For each complex manifold X, c1(X) = —c1(Kx) = e1(K%). We can see this using the metric
h=(detg)™" onKx.

Recall the holomorphic sectional curvature (HSC) for a (1, 0)-tangent vector V = Via%l with |V|§ =1

HSC(V) := Ry VIVIVIVE,

which is real and coordinate-free.
The complex space forms are the three model spaces of constant HSC: (C™,wgye), (P*,wrs), and
(B™,wp). Recall the Poincaré metric on B™ has constant HSC = —2.

Theorem 2.5 (Hopf, see Kobayashi-Nomizu Vol.IT §IX.7). Let (X" w) be a Kdhler manifold. Then
1. w has constant HSC'= X € R if and only if R77 = % (gﬁgkz + gizgkj).
2. If we further assume X is compact, and w has constant HSC = X\ € R, then

(a) A = 0 if and only if X has a finite covering space T : X — X such that X is biholomorphic to
a torus C"/A and 7*w is a Fuclidean metric. This is true if and only if the universal covering
p: X — X is biholomorphic to C™ and p*w is a Fuclidean metric.

(b) A >0 if and only if X is biholomorphic to P and w is isometric to %WFS.

(¢c) X <0 if and only if X is biholomorphic to B" /T for some discrete subgroup T' acting on B™ by
isometries of wp, and w is isometric to —%wP. This is true if and only if the universal covering

p: X 5 X is biholomorphic to B"™ and p*w = —%wp.
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3 Applications of Calabi-Yau Theorem

3 Applications of Calabi-Yau Theorem

3.1 Positivity of Chern Classes
We are now ready to state and prove two consequences of Theorem [1.6

Theorem 3.1 (Positivity of 2nd Chern class). Let X"=2 be a compact Calabi- Yau manifold, i.e. c¢1(X) = 0.
Then for every Kdhler metric w on X, we have

/ co(X) A w2 >0,
X

Moreover,

/ c2(X) Aw" ™2 =0 for some Kihler metric w <= X is finitely covered by C"/A.
X

Corollary 3.2. A compact Kihler manifold X"=? is finitely covered by C™/A if and only if c;(X) =0 €
H2(X,R) and co(X) =0 € HY(X,R).

Proof. <. this is immediate consequence of Theorem
=. Let 7 : C"/A — X be a (holomorphic) finite cover. Then 7* : H*(X,R) — H*(C"/A,R) is injective.
We consider
7 ep(X) = (C"/A) =0, k=1,2
since C" /A admits a flat metric. Thus ¢;(X) =0 and ¢2(X) = 0. O

Question 3.3. Following the same essential idea, we can also descend a Kdhler metric @ on C"/A to a
Kahler metric on X via m by averaging over the fibers of each point:
1
)
)

> @@ (dng (u), dn ().

(&)=x

w(x)(u,v) =

It is easy to check that w is closed positive real (1, 1)-form, and it is flat.
Another consequence of Theorem [I.6] is:

Theorem 3.4 (Miyaoka-Yau inequality). Let X"=2 be a compact Kdihler manifold that is canonically polar-
ized, i.e. ¢1(X) < 0. Then

(—1)”/X <2(nn+1)02(X) - cf(X)> Acp(X)"2 > 0.

Moreover, the equality holds if and only if X is biholomorphic to B™/T.

Both Theorem and Theorem [3.4] follow from Theorem [I.6] and Theorem together with the fol-
lowing.

Theorem 3.5. Let (X"22,w) be a compact Kihler-Einstein manifold. Say Ric(w) = Mw for some X € R.

Then ) )
/ <(”+)CQ(X) - &(X)) Aw™2 > 0.
X n
Moreover, the equality holds if and only if w has constant HSC = HZT/_\l
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Proof of Theorem[3.1l Let w be any fixed Kahler metric. By Yau’s Theorem [T.6] there exists some unique
metric @ = w + 100w such that Ric(®) = 0 € ¢1(X). Thus Theorem applies to @ to yield

/ ea(X) A w2 :/ e (X) A" 2 > 0.
X X

Here we use Stokes’ theorem and closedness of any representative of ¢o(X). Moreover, the equality holds if
and only if @ has constant HSC = 0. By Hopf’s Theorem this holds if and only if X is finitely covered
by a torus C"/A. O

Proof of Theorem[3.4 By Theorem there exists a unique K&hler metric w such that Ric(w) = —w. Then

() = {Ric(w)} 1

o | = Wl € H?(X,R).

Thus we can pick the representative 52 for ¢;(X), and it follows immediately from Theorem that

(—1)n/x (MCQ(X) _ cf(X)> Aer(X)n2 = /X (ch(X) - cf(X)> Aw2 >0,

n n

Moreover, the equality holds if and only if w has constant HSC = n;+21 By Hopf’s Theorem this holds

if and only if X is biholomorphic to B™/T". O

Proof of Theorem[3.5, By assumption, Ri} = )\gij, and hence R = Rijgi3 =n.
Consider the 4-tensor R° defined by

A
0 .
Ri}ki T Rijki Tl (gﬁgki + gﬁgkj) :
Hence by Theorem , w has constant HSC = n%‘l if and only if R? = 0, i.e. |RO|§ = 0. This suggests we
compute ‘ROE.
012 _ po 0 iq .pj k5, rl o
Rl = R Roarsg 9™ 970" R = Rz

)\2 c— - — -
2
= IRy + [CEVE (959161 + gifgkj) (9pa9rs + 9psgra) 9097 9"9"

)\ . - I
N mRﬁIJ (9pq9rs + gpsgrg) 9°1g%’ g5 grl

’ qi jp sk 7
_ mRﬁlE (gqﬁgsF + g(ﬁgsf)) gl g g%y
2 = i ig . pj k5 rl
=R, + — —5(n"+n) - Re{ R, (9pa9rs + Gpsdra) 9767 69
¢+l n+1 J

9 2n\? An\?
= &, (n+1) n+1
2nA?

(n+1)

=|R|§—

Recall that

1 1 ,
= r(QAQ) = HRZ’? t s (idzy NdZg) A (idz, A dZ)
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3 Applications of Calabi-Yau Theorem 3.1 Positivity of Chern Classes

is a real (2, 2)-form representing the class ¢ (X) —2c2(X) € H4(X,R), where
curvature form. We consider the integral of 725 tr(Q A Q) A w2

€ A?(X,End(T*°X)) is the

For each x € X, we compute in a coordinate {z;} such that gﬁ(x) = 6;5. Let A; = idz; A dz;. Then

w(z) = ZAj7

whz)=nlAy A A Ay,

W) = (= 21Y ATA - AAA NAG A A A,

i<j
Then at z,

(n(n — 1)) tr(QAQ) Aw" 2(z) =w™(@) Y > (REsRigg — RiqRigp)

i,k p#q

=w"(@) > Y (RipRigg — RiqRigp)

i,k pq

where the minus sign comes from
dzp NdZg Ndzg Ndzp, = —dz, NZp ANdzg N\ dZg.

Now since g;5(x) = d;;, we have at z,
ko _ _ g _ _ pk
D Ry =D Rigyp = Rigyge™ = R = Ry
P P

Thus we continue to compute

(n(n — 1)) tr(QAQ) Aw" %(z) = w™(z) (RFR}, — RE R}, -)

ipq” kqp

w"(z) (|Ric(w)\f, - IR\f,)

W™ (@) ()\Qn - |R|§) .

Combined with the computation of |R0|z above, we get

R e

n(n —1)

AZw™ B 2\2w™
n—1 (n+1)n-1)

= —tr(QAQ) A" %(z) + =—tr(QAQ)

Finally, integrate over X:
L

0< —

- /X 4dm2n(n — 1)

:/X(QCQ(X)—c%(X))Aw—u =/ M>2Awn_2

n+1

n— 1 n
:/X(QCQ(X)—cf(X))/\w 2+n+1/Xc§(X)/\w 2

:/X (2CQ(X) - nLﬁ(X)) Awn2.

This completes the proof.
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3.2 Applications in Classification
The Miyaoka-Yau inequality (Theorem further implies the following:

Theorem 3.6 (Conjecture of Severi, Proof by Hirzebruch-Kodaira '57, Yau '76). Let X2 be a compact
complex surface. If X is homotopy equivalent to P?, then X is biholomorphic to P2.

The most important ingredient of the proof is the following theorem of Hirzebruch and Kodaira. The proof
also uses Hirzebruch-Riemann-Roch formula, Serre duality, and Kodaira vanishing, to apply the Miyaoka-Yau
inequality.

Theorem 3.7 (Hirzebruch-Kodaira). Let X™ be a compact complex manifold, and L — X a holomorphic
line bundle. Suppose the following conditions hold:

1. L is positive (so X is projective by Kodaira embedding),
2. [ya(L)" =1, and
3. dime H(X,L) =n+ 1.

Then X is biholomorphic to P". Moreover, any basis {so, ..., s, } of H°(X, L) defines such a biholomorphic
map X 2 P" via x — [so(x) : -+ 1 sp(x)].

Proof. Let L be a line bundle satisfying the conditions above. Fix a basis {s1, ..., sp+1} of H°(X, L).
Define D; := {s; = 0}, which is a closed analytic hypersurface for each j. Indeed D; # 0, for otherwise s;
is nowhere vanishing global section, so that L = Ox, and ¢; (L) = 0, contradiction to the conditions above.
Define
Vn,j :Dlﬂ“'ﬂDj,

for each j = 0,1,...,n. In particular V;, = X. V; are hence closed analytic subvarieties. Observe the
following.

Claim 3.8. For each j =0,1,...,n,

1. V,_j is irreducible, dimV,,_; = n — j, and [V,—;] € Hopn_2;(X,Z) is Poincaré dual to c;(L)7 €
HY(X,Z).

2. There is exact sequence
0 — Spang{si, ...,s;} = H*(X,L) = H*(V,—;, Llv, _,),
where the last map H°(X,L) — H(V,—;, L|v,_,) is restriction.

We first assume the claim above and finish the proof. Letting j = n, we see that Vo = D1 N ---N D, is
a single point, since fx c1(L)" = 1, and hence H°(Vy, L|y;,) = C. Thus s, 41 does NOT vanish at V; by the
exact sequence. The zero locus of H°(X, L) is empty, so we can define a holomorphic map

f: X 2P ze[s1(x): - spp1(2)]

Finally, we show that f is bijective, and hence f is biholomorphism. The idea is to view f as the map
sending z to the hyperplane

{se H'(X,L) | s(z) =0} c H'(X,L) = C"".
To see this, we define another holomorphic map
f: X 5 PHX,L)*), z~— {seH(X,L)]s(z)=0},
where we identify each hyperplane in H°(X, L) with a line in H°(X, L)* (canonically this is the line of linear

functionals H°(X, L) — C vanishing on the hyperplane). Indeed {s € H°(X, L) | s(z) = 0} is a hyperplane
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3 Applications of Calabi-Yau Theorem 3.2 Applications in Classification

because the zero locus of HO(X, L) is empty. Now f is defined free of choice of basis for H(X, L). Picking
any basis {s1, ..., 8p11} of H°(X, L), we have commutative diagram

x 1, P(H°(X,L)*)

Sk

IEDTL

Thus f is bijective <= f is bijective. To see f is bijective, let H < H°(X, L) be any hyperplane. Now we
can choose a basis {s1, ..., sn11} of HO(X, L) such that H = Spanc{sy,...,sn}. Since f(z) = H if and only
if x € Vy under this basis, Claim yields a single point (hence both existence and uniqueness) Vo = {z}
such that f(x) = H. This completes the proof.

O

Proof of Claim[3.8 We prove by induction on j = 0,1, ..., n.
The base case j = 0 is trivial: V,, = X is trivially irreducible, and [X] is Poincaré dual to 1 = ¢;(L)° €
HO(X,Z).

Assume the claim is true for j — 1, we prove for j. By induction hypothesis, V,,—;4+1 is irreducible,
dimV,,_j+1 =n—j+ 1, and [V;,—;41] is Poincaré dual to ¢1 (L)1 € H*~2(X,Z). There is exact sequence
0 — Spanc{si, ...,sj-1} = H*(X,L) = H*(Vs_ji1, Llv,_,.,).

It follows that s; does not vanish identically on V,,_;41. Thus

Vi—j =12 € Vimji1 | sjlv, ;. (x) = 0}

is an analytic hypersurface of V;,_ ;1.
Since Vi—; = Vi j41 N Dy, [V,,—;] is Poincaré dual (PD) to

PD([Va—j1]) APD([Dy]) = ecr(LY " Aer(L) = er (LY € HY (X, Z),

where ¢1(L) = ¢1(O(Z(s;))) = c1(O([D;])) = [D;] under Poincaré duality (see Huybrechts §4).
Vi—; is irreducible. Suppose otherwise, V,,_; = U;UUsy, where U;, U are non-empty analytic subvarieties.

Then
1:/ Cl(L)n
X

_ /X er(L) A ey (L)

:/Vn cl(L)"*j

—J

:/Ul cl(L)"_j—i-/UQ e (L), (3.1)

Recall that L is positive, so ¢;(L) can be represented by a Kéhler metric w. Then

/cl(L)”_j:/ W' =Vol(Us,w) >0, i=1,2. (3.2)

Meanwhile, [U;] € Hap—2i(X,Z), so

/ e (L) = / PD(U) Aer(L)" € Z, i=1,2. (3.3)
U; X

32



3 Applications of Calabi-Yau Theorem 3.2 Applications in Classification

Thus (3.1)), (3.2), and (3.3) yield a contradiction.

To show exactness of the sequence
0 — Spanc{si, ...,s;} = H*(X,L) = H*(V,—j, Llv,_,), (3.4)

note first that we have exact sequence

0 —— HO(V,_j41,0) —1 HO(V,_;4s,

Ly —2+ H
|~ [

C HO(X,L)

O(V%—j>lA

where f is multiplication by s;|v,_,.,,, and g is restriction. f is injective since s; does not vanish identically
on V,,_;41 as shown above. The exactness follows from the restriction short exact sequence

® .

4 0y,

0— Oy, ®L— C)v%_j ®L—0,

—Jj+1 —Jj+1

which adapts from the twist of the structure sheaf

—>OV - — 0.

n—j

— C)V

n—j+1

0— IVn—j [Vi—jt+1

Suppose s € H°(X, L) restricts to the zero section in H%(V,,—;, L). By commutativity of restriction,
9(slv,_,,.) = 0. Thus by exactness above, s|v, ., = A-s;|v,_,,, for some A € C = H°(V,,_;41,0). Then
s—A-s; € H(X, L) restricts to the zero section in H°(V,,_;41,L). By induction hypothesis, s — X - s; €
Spanc{si,...,sj_1}, so that s € Spanc{si, ..., s;}. This proves the exactness of sequence .

This completes the induction and the proof. O

We have the following extension of Theorem to general dimension.

Theorem 3.9. Let X™ be a compact Kahler manifold. If X is homeomorphic to P™, then X is biholomorphic
to P™.

We can ask further the following question.

Question 3.10. Let X™ be a compact complex manifold. If X is diffeomorphic to P™, then X is biholomor-
phic to P™?

The answer is yes for n = 1,2, yet unknown for n > 3. If it is true for n = 3, then it follows that S° is
not complex manifold. This is also unknown.
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3.3 Degenerations of Ricci-Flat Kahler Metrics

Let X™ be a compact Calabi-Yau manifold, i.e. X is Kihler and ¢;(X) = 0 € H*(X,R). By Calabi-Yau
Theorem, the Ricci-flat Kéhler metrics on X are parametrized bijectively by the set

Cx = {[w] € H**(X,R) | w Kihler metric on X}.
Recall that by Hodge Theory (and 90 lemma as a consequence),
HY'(X,R) = H"(X)n H*(X,R) c H*(X,C)
= {[a] € H*(X,R) | [a] contains a closed real (1, 1)-form}

_ {d-closed real (1, 1)-forms}
B i00C> (X, R) '

(The last line is also the definition of Bott-Chern cohomology for non-Kéhler manifolds). We first derive
some basic properties of Cx.

Proposition 3.11. Cx C HY(X,R) is an open convex cone, called the Kéhler cone of X.

Cx is clearly a convex cone. To see openness, consider an R-basis of H'!(X,R) and use d9-lemma.

Example 3.12. Consider n = 1. Riemann surfaces are always Kéahler by existence of Hermitian metrics.
Then
C= H*(X,C)=H*"(X)® H"(X) ® H"*(X),

so that HMY(X) = C, and HY1(X,R) is a real line in C. Then Cy is a half-line. Also, [a] € HV1(X,|R)
belongs to Cx if and only if [, a > 0.

Ezample 3.13. Let X™ := C"/A be a torus. X is a Lie group, and X acts on itself by translations. By
averaging forms, we see that every class [a] € H1(X,R) has a unique representative o which is a constant
real (1, 1)-form. Writing o = ic;7dz; A dz;, we can associate the form with a Hermitian matrix (o). Thus
[a] € Cx if and only if this unique invariant representative is positive, i.e. the associated matrix is positive
definite. Therefore,

Cx = Herm™ (n) € Herm(n) = H“*(X, R),

which is indeed an open convex cone.
A natural question to ask is: which classes in H*!(X,R) lie on dCx :=Cx \ Cx?

Definition 3.14. We call dCx the numerically effective (NEF) cone, and a class in H>!(X,R) is called
NEF if it belongs to dCx.

Ezample 3.15. Continuing on the torus example above, the NEF cone is the subset of positive-semidefinite
Hermitian matrices under the identification Herm(n) = H%! (X, R).

Recall first the definition of (semi-)positive real (1, 1)-forms on complex manifold X (see Huybrechts
Def.4.3.14). If [a] € HY'(X,R) contains a closed real (1, 1)-type representative o > 0, then [a] € Cx,
because a+ew > 0 for any € > 0 and any Kéhler metric w, so that [a] +e]w] € Cx. The converse is not true
(too strong), however. Fujita made the conjecture, and Demailly-Peternell-Schneider gave counterexamples.
The correct statement is:

Proposition 3.16 (Characterization of NEF cone). Let (X™,w) be a compact Kihler manifold. Let « be a
closed real (1,1)-form on X. Then

[a] € Cx <= for any e > 0, there exists . € C°(X,R) such that a + i00p. > —ew on X.
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Proof. <: The condition means that [a] + ¢[w] € Cx for any & > 0. Letting ¢ — 0, we see [a] € Cx.

= Since [a] € Cx, we can find a sequence of Kihler metrics {w;} such that [w;] — [a] in HM(X,R).
Define [8;] := —[a] + [wi], so [B;] — 0 € HY1(X,R). Thus we can find representative 3; € [3;] that is closed
real (1, 1)-form and a + 8; = w; > 0.

Let {[a1], ..., [an]} be an R-basis for H1'1(X,R). We can thus write

N

[Bi] = Z)\ij[aj], 1=1,2,....

Jj=1

[8i] — 0 means that . [;j| — 0 as i — co. Thus we can choose for each € > 0 some io sufficiently large
such that

N
E /\inOéj < Ew,
j=1

by compactness of X. Combined, we get

N
0<wjy=0a+p6,=a+ Z Nigj@j + 100, < o+ 100, + ew = a + i00p;, > —ew.
j=1

Corollary 3.17. Cx +Cx = Cx in HV'(X,R).

Proof. Let [a] € Cx, [8] € Cx. By definition, we can pick a representative 3 = w for some Kihler metric w.
Let a be any closed real (1, 1)-form representing [o]. By Proposition [3.16] there is some ¢ € C*°(X,R) such
that a +400p > —w. Then [a] 4 [8] has representative a + 100y + w > 0, which is hence a Kéhler metric
on X. Therefore, [a] 4 [f] € Cx. O

Proposition 3.18. (—Cx)NCx = 0. (—Cx) NCx = {0}, i.e. the NEF cone is salient.

Proof. If (—Cx) NCx # 0, then 0 € Cx by convexity. Thus there is a Kéahler metric w with [w] = 0 €

HY'(X,R). Then
Vol(X,w) :/ w" :/ [w]™ =0,
X b's

a contradiction. Thus (—Cx)NCx = 0.

Clearly 0 € Cx. To see (—Cx) NCx C {0}, suppose 0 # [a] € (—Cx) NCx. Fix a Kéhler metric w. Then
by Corollary [w] + t[a] € Cx for all t € R. Pick a representative a € [a] which is a closed real (1,
1)-form. We can pick a Kéhler form w; representing the class [w] + t[a], and by compactness w; > w for
some &; > 0. This is essentially Proposition [3.16] Then

0</(w+ta)Aw"_1=/w”+t/ aAw"l VteR.
bl X X

Hence
/ aAw™t=0.
X
Similarly,
0< / (w+t1a) A (w + taa) Awn™2 = / w" + tltg/ a? Aw" 2, Vi, ty €R,
X X X
o)

/ a2 AW =0.
X

35
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By Lefschetz Decomposition (Cor.3.1.2 of Huybrechts), we can write « = 8+ cw, where f is primitive closed
real (1, 1)-form. Then S A w™ ! =0, so

Oz/a/\wn_lzc/ w" = c=0.
X X
/62/\w"7220
X

Since [a] # 0, we have by Hodge-Riemann bilinear relation (Prop.3.3.15 of Huybrechts)

/ BEAwW 2 <0,
X

a contradiction. This completes the proof that (—Cx) NCx = {0}.

Thus

O

Now consider V¥ € X™ a compact complex submanifold, or more generally a closed irreducible analytic
subvariety of dimension 1 < k < n. If [a] € Cx, and we pick « to be a Kéhler metric, then

/ / [a]*) = Vol(V, ) > 0

Thus if [o] € Cx, then there exists a sequence [a;] € Cx with [o;] — [a], so that

[t = [l = (vl = (V] o)) 2 0
1% 14

by Poincaré duality.
In fact,

Theorem 3.19 (Demailly-Paun ’01). Let X™ be a compact Kdihler manifold. If [a] € Cx, then
[a] €eCx — / [a]®™VY > 0 for all positive-dimensional closed irreducible analytic subvariety V.
1%

Therefore, if [a] € OCx, then there exists some irreducible analytic subvariety V of positive dimension,
such that fv [a]¥™V = 0. Theorem generalizes Nakai-Moishezon Theorem in algebraic geometry, which
characterizes ample line bundles on a proper scheme.

Another concept we need for studying degenerations of Ricci-flat Kéhler metrics is null locus, motivated
from Theorem of Demailly-Paun above.

Definition 3.20. The null locus of a class [o] € Cx is
Null(fa]):= ) VcXx

Vcx
fv [a]dzm V:O

where V' ranges over all positive-dimensional closed irreducible analytic subvarieties.

Therefore, Null([a]) =0 <= [a] € Cx by Theorem of Demailly-Paun.

Ezample 3.21. Let X™ = C"/A be a torus. We claim that for every [a] € ICx, one has Null([a]) = X. Recall
from examples above on complex tori, that dCx is the subset of positive-semidefinite Hermitian matrices
with at least one zero eigenvalue, under the identification of each class in H!(X,R) with its unique constant
representative. Thus the determinant vanish, and we integrate using this constant representative that

/X[a]":/X0=O.

Hence Null([a]) = X.
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Theorem 3.22 (Collins-Tosatti '13). Let X™ be a compact Kdahler manifold, [o] € OCx. Then Null([a]) is
a closed analytic subvariety of X (not necessarily irreducible), and

Null([o]) = X — / [a]™ =0.
X
Remark 3.23. Theorem [3.22] and work of Chiose combine to give a new proof of Theorem [3.19

We are now ready to start. Let X™ be a compact Kéahler Calabi-Yau manifold. Let w be a Ricci-flat
Kihler metric on X. Let [a;] be a C? path in HV1(X,R), ¢ € [0,1], such that [ay] € Cx for t € (0,1] and
[ag] € OCx. By Calabi-Yau Theorem, for each ¢t € (0, 1], there exists a unique Ricci-flat K&hler metric w; in
the class [a]. We hope to understand the ”degeneration” of (X,w;) as t — 0.

Ezample 3.24. Consider X" = C"/A a torus. Under the canonical representation of H>!(X,R) above, w; is
a family of constant closed real (1, 1)-forms such that w; — wg as t — 0. wyp is positive-semidefinite but not
positive-definite. We call wy the degenerate tensor.

In the general setting, we fix a; a C° family in ¢ of smooth closed real (1, 1)-forms on X, such that
a; € [oy]. This can be achieved by fixing a basis for H%!(X, R).
On t € (0,1], since wy and w are Ricci-flat, we have

A, <log (%)) =0 onJX,
o

so wy = cw™ on X for some constant ¢ by maximum principle. We then integrate boths sides over X to find
c= f"% In summary, we have a PDE problem
X

wy = o + 265%

Jx ot =0 n ()
(o +1i00¢p,)" = wit = Lot n

and

0</af%/ag ast — 0.
X X

For each t € (0, 1], since w; is fixed, we have a unique solution ; for And
Vol(X,w;) = / wy = / ay —>/ ag > 0.
X X X

I) [yaf >0 < Vol(X,w) > ¢~ > 0 for some ¢ > 0. We call this case volume non-collapsed.

Hence there are two cases:

) [yaf =0 < Vol(X,w;) = 0ast— 0. We call this case volume collapsed.

The method in Yau’s proof no longer applies here, as the reference Kahler metric w is now replaced by
ay, and we don’t know about the geometry of (X, ;) as t — 0. In fact, Yau’s estimates for ¢; blow up as
t — 0.

Conjecture 3.25. There exists some constant C > 0 such that supy || < C for all t € (0,1].

The statement is true when [ag] € OCx contains a smooth representative ag > 0. The torus case discussed
above is one such example. It is necessary that X is Calabi-Yau, for there are counterexamples when X is
not.
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Let us assume there is indeed oy > 0 such that [og] € dCx. Assume [ + ag > 0, i.e. volume non-collapsed.
To further simplify, assume a; = ag + tw for t € [0, 1], so that [ay] € Cx for t € (0,1]. oy is Kéhler metric,
but not necessarily Ricci-flat, so as above

Wy = o + z@&ot
Jx prw™ =0 (3.5)
YA n_ .n_ Jx%% n
(¢ +100ps)" = wit = ﬁw
Using Conjecutre which holds in this case, one gets

Theorem 3.26 (Tosatti ‘07, Collins-Tosatti '13). Under assumptions above, w; and ¢ have uniform C*(K)
bounds independent of t, for all k > 0 and for oll K € X \ Null([av]).

Proof Sketch. Since [y af > 0, we have Null([ag]) # X by Theorem One key claim in the proof, whose
proof we omit, is the following.

Claim 3.27. There exists a smooth function
¥ X\ Null([a]) = R
such that ¥(z) — —oc as x goes to Null([ay]), and ag + i00y > ew on X \ Null([ag]) for some e > 0.
Next apply Tsuji’s trick. Consider the quantity
Q = logtr, wr — A(pr — 1),

for t € (0,1], A > 0 a constant to be determined. By claim above, @ is a smooth function on X \ Null([ag]),
and @ — —oo near Null([a]). Thus @ attains its maximum, say at * € X \ Null([ag]). Compute at z:

A,,Q > —Ctry, w—C— AA,, o1 + AN, Y, (3.6)
using the calculations in the proof of Aubin-Yau Theorem (see (1.12))). Now
Ay, 1 = try, (100p;) = try, (W — o) = n — try, ay,
so

—AA,, 1 + AN, = —An + Atr,, oy + Atry, (1001)
= —An+ Atr,, (ao + tw +i00Y)
> —An + Actry,, w.

Combined, we get
AL, Q> —Ctry,w—C — An + Astry, w. (3.7)

Choose A > 1 such that Ae = C' 4 1, and replace C' if needed, to get
0> A, Q) > tr,, w() — C = tr,, wx) <C. (3.8)

Using the simultaneous diagonalization trick and inequality (3.8]),

n— wy'
traale) < o (b ()" 2 )
wy
< v
<)
< CfX o
Jxwn
<,
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so log try, we(z) < C. ¥ — —o0 near Null([ap]) and is smooth on X \ Null([ap]), so ¢ < C on X \ Null([ay)).
By Conjecture [3.25} supx || < C for all t. Combined, we get

Qr) < C = Apy(x) + Adp(z) < C,

so
Q< C on X\ Nul([ag)]).
Then
logtry,ws < C+ A(py — ) < C — Ay on X \ Null(Ja)),
so

tr,w, < Ce % on X \ Null([ag)), for all ¢ € (0,1].
On each K € X \ Null([ag]), we get bound on |¢|, so that

w <Ckgw oneach K @ X \ Null([ay]), for all ¢ € (0,1].

Applying the same trick again, on each K € X \ Null([av)),

< -1 @" fX " <
trwt W= n — 1)' (trw (A]t(.T)) w’tn (x) = CK fX " = CK7

for we assume that [, of — [ of > 0. Combined, we get
Ci'w < wy < Ogw on each K € X \ Null([ay)), for all ¢ € (0, 1].

Finally, we can apply local higher order estimates (Theorem to w; with some suitable fixed open
cover of K to bound [lwe||cn (g ) with constants independent of ¢ (it depends on the choice of open
cover, k, n, and w). Indeed w is comparable with the Euclidean metric in each local coordinate.

Since a; depends continuously on t € [0, 1], we also have uniform C*(K,w) bound on «; independent of
t. Thus i(‘?@pt = wy — o is bounded uniformly, as well as their trace

Aypr = try,(we — ay).

Finally apply Schauder estimates to give uniform bound on [|¢¢||cx g .- This completes the proof.
O

With this uniform bound on w¢, compactness results show that w, converges in the C22, (X \ Null([av]))
topology to some Ricci-flat Kéhler metric wg on X \ Null([ag]), as ¢ — 0.

We introduce K3 surface as an example of the case of degenerations of Ricci-flat K&hler metrics discussed
above.

Definition 3.28. A K3 surface X? is a 2-dimensional compact Kihler manifold that is Calabi-Yau (i.e.
c1(X) =0 € H?(X,R)) and simply connected (i.e. 71(X) = {1}).

Lemma 3.29. For every K3 surface X, the canonical bundle Kx is isomorphic to the trivial line bundle
Ox.

Proof. We know that
Hl(X, Z) =T (X)abclian = 0.

The Universal Coefficient Theorem in topology implies that i) the torsion of H?(X,Z) is isomorphic to the
torsion of Hy(X,Z), so H?(X,Z) is torsion-free; ii) H*(X,Z) is isomorphic to the free part of Hy(X,Z), so
HY(X,Z)=0.
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Since X is Kahler, Hodge thoery implies
0=HY(X,C)=H"(X)p H"(X) = H"(X) =0.
By the exponential exact sequence
0—-7Z—0Ox — 0% —0,
we have exact sequence
HY"Y(X) — Pic(X) — H*(X,Z) — H**(X).
As H%1(X) = 0, the map ¢; : Pic(X) — H?(X,Z) is injective. Note that
c1(Kx) = —c1(X) =0=1c1(Ox) € H*(X,R),
and H?(X,Z) is torsion-free, so ¢1(Kx) = ¢1(Ox) =0 € H*(X,Z), Kx = Ox. O

The statement is equivalent to the existence of a global holomorphic section s € H 9(X,Kx) that is
nowhere vanishing, i.e. a nowhere vanishing holomorphic 2-form (0-closed (2, 0)-form) on X. By maximum
principle, such s is unique up to scaling by C*.

Ezample 3.30. Smooth hypersurfaces X = {P = 0} C P? where P is homogeneous polynomial in C[z, ..., 23]
of degree 4, are K3 surfaces. Proof. We know that Cx 2 O(4 -3 —1)|x 2 Ox,s0 c1(X) =—c1(Kx)=0¢€
H?(X,R). By Lefschetz Hyperplane Theorem, 7y (X) = 7y (P3) = {1}.

We can use Hirzebruch-Riemann-Roch on K3 surfaces for more topological properties, like the Betti

numbers. Let X be a K3 surface, L := Ox. Then

xX(X,0x) = dim¢ H(X,Ox) — dime H (X, Ox) + dimec H*(X, Ox) dime X =2
=3 ([awr+ [amnaw)+ ([ amxra)
_x(X) _
= T Cl(X) =0

Also, H°(X,0x) = C. By Hodge theory, (we know already that H'(X,Z) = H;(X,Z) = 0 by Universal
Coefficient Theorem)

0=HY(X,C)=H"X)p H"(X) = H'(X,0x) = 0.
By Serre duality,
H*(X,0x) = H*(X) = H**(X)* 2 H'(X,Kx)* = H°(X,0x)* = dim¢c H*(X,O0x) = 1.
Therefore, x(X) = 24. On the other hand,
24 = x(X)
= dim H°(X,R) — dim H'(X,R) + dim H*(X,R) — dim H3(X,R) + dim H*(X,R)
=2+ dim H*(X,R)

by Poincaré duality. Thus the second Betti number by = dim H?(X,R) = 22. In summary, the Betti numbers
of X are

Moreover, by Hodge theory,
C* >~ H*(X,C) = H**(X) & H"'(X) & H*?*(X),
and we know from above that dim¢ H%?(X) = 1, so
dime H'(X) = 20.

Thus HY1(X,R) = HYY(X) N H?(X,R) C H?(X,C) is isomorphic to R?° (consider H>!(X,R) as the space
of real harmonic (1, 1)-forms), and Cx is a cone in R?°.
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Ezample 3.31. Let X be a Kummer K3 surface. X is constructed as follows. Take a torus Y = C?/A. The
map ¢:Y — Y via (21, 22) — (—21, —22) has 16 singular points. Resolve these singularities by a blow-up to
get m: X — Y/u. Take [ap] = m*[wez], then ag > 0 and [, o > 0. Moreover, Null([ayp]) is the preimage
under 7 of the 16 singular points on Y.
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