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1 Calabi Conjecture and Kähler-Einstein Metrics

Definition 1.1. A Kähler manifold X is called Calabi-Yau (CY) if its first Chern class vanishes in H2(X,R):

c1(X) =

[
Ric(ω)

2π

]
= 0 ∈ H2(X,R).

Definition 1.2. A Kähler manifold (X,ω) is called Kähler-Einstein (KE) if there exists a real number λ ∈ R
such that

Ric(ω) = λω.

Example 1.3. Ricci-flat Kähler manifolds are trivially KE, e.g. ωEuc on complex torus.
Pn is KE as Ric(ωFS) = (n+ 1)ωFS .
Bn is KE with Poincaré metric ωP satisfying Ric(ωP ) = (−n− 1)ωP .

We can always assume, by scaling the Kähler metric, that λ = 0, 1,−1. This follows immediately from
the local definition of Ricci curvature:

Ric(ω) := −i∂∂ log det
(
gjk

)
.

Thus if ω̃ = µω, and Ric(ω) = λω, then Ric(ω̃) = λ
µ ω̃.

Question 1.4. Which compact Kähler manifolds admit Kähler-Einstein metrics?

We approach this question from the definition. Suppose Ric(ω) = λω, consider the three cases:

i) λ = 0. By Yau’s theorem, this happens if and only if X is Calabi-Yau.

ii) λ = 1. In this case
2πc1(X) = [Ric(ω)] = [ω],

so it is necessary that X is Fano.

iii) λ = −1. As above, X must be canonically polarized, i.e. c1(X) < 0.

In case iii) we have the following result.

Theorem 1.5 (Aubin-Yau ’76). Let X be a compact Kähler manifold that is canonically polarized. Then
there exists a unique Kähler metric ω on X with Ric(ω) = −ω.

In contrast, not all Fano manifolds admit KE metrics. There is an if and only if characterization of which
Fano manifolds admit KE metrics, using algebraic geometry and theorem by Chen-Donaldson-Sun ’12.

We can prove Theorem 1.5 in tandem with Yau’s theorem solving the Calabi conjecture. Recall Yau’s
theorem:

https://arxiv.org/pdf/1302.0282
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Theorem 1.6 (Yau ’76). Let (Xn, ω) be a compact Kähler manifold. Given any closed real (1, 1)-form ψ
with

[ψ] = 2πc1(X) = [Ric(ω)] ∈ H2(X,R),

there exists a unique Kähler metric ω̃ such that{
[ω̃] = [ω] ∈ H2(X,R),

Ric(ω̃) = ψ.

Start proof of Yau’s Theorem. We first show that the assertion Ric(ω̃) = ψ we want is equivalent to a
”prescribed volume form” problem. By assumption, Ric(ω) − ψ is d-exact real (1, 1)-form. Hence by
∂∂-lemma, there exists F ∈ C∞(X,R), unique up to adding a constant, such that

Ric(ω)− ψ = i∂∂F.

We pick the unique constant added to F such that∫
X

eFωn =

∫
X

ωn.

Here we use compactness of X. Now F is uniquely determined.
Similarly, since we want to find ω̃ with [ω̃] = [ω] ∈ H2(X,R), by ∂∂-lemma there exists some unique

φ ∈ C∞(X,R) such that

ω̃ = ω + i∂∂φ and

∫
X

φωn = 0.

Then we compute the Ricci curvature:

Ric(ω̃) = Ric(ω)− i∂∂ log

(
ω̃n

ωn

)
= ψ − i∂∂

[
log

(
ω̃n

ωn

)
− F

]
.

Thus Ric(ω̃) = ψ if and only if the real function log
(
ω̃n

ωn

)
− F is a constant. Taking exponential and using∫

X

eFωn =

∫
X

ωn
Stokes

=

∫
X

ω̃n,

we see that this holds if and only if

log

(
ω̃n

ωn

)
− F = 0⇔ ω̃n = eFωn,

which is a prescribed volume form problem.

To conclude what we compute so far, Yau’s theorem is equivalent to

Theorem 1.7 (Yau ’76). Let (Xn, ω) be a compact Kähler manifold. Given F ∈ C∞(X,R) with∫
X

eFωn =

∫
X

ωn,

there exists a unique φ ∈ C∞(X,R) such that
ω̃ := ω + i∂∂φ > 0∫
X
φωn = 0.

ω̃n =
(
ω + i∂∂φ

)n
= eFωn.
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The last equation is a 2nd order scalar PDE for φ, of complex Monge-Ampère type. In local coordinates:det
(
gjk + ∂2φ

∂zj∂zk

)
= eF det

(
gjk

)(
gjk + ∂2φ

∂zj∂zk

)
> 0 on X.

The equation is non-linear for n ≥ 2. For n = 1, this is trivial Poisson equation we have discussed.

We analyze Aubin-Yau (Theorem 1.5) similarly. Suppose we find KE metric ω̃ such that Ric(ω̃) = λω̃,
λ = ±1. Then

2πc1(X) = [Ric(ω̃)]⇒ [ω̃] = λ · 2πc1(X),

which means the class λ · 2πc1(X) contains some Kähler metric. Fix a Kähler metric ω in λ · 2πc1(X). So
by ∂∂-lemma, if KE metric ω̃ exists, it must be of form

ω̃ = ω + i∂∂φ > 0,

where φ ∈ C∞(X,R) is unique up to adding a constant. On the other hand, since [Ric(ω)] = 2πc1(X), we
have

Ric(ω)− λω = i∂∂F

for some F ∈ C∞(X,R). Then

Ric(ω̃)− λω̃ = Ric(ω)− i∂∂ log

(
ω̃n

ωn

)
− λω − λi∂∂φ

= i∂∂

[
F − λφ− log

(
ω̃n

ωn

)]
Thus ω̃ is KE metric if and only if the real function F − λφ− log

(
ω̃n

ωn

)
is a constant. We can shift φ by this

constant such that the condition is equivalent to

F − λφ− log

(
ω̃n

ωn

)
= 0⇔ ω̃n = eF−λφωn.

Now the Aubin-Yau theorem reduces to

Theorem 1.8. Let (Xn, ω) be a compact Kähler manifold, and F ∈ C∞(X,R). Then there exists a unique
φ ∈ C∞(X,R) such that {

ω̃ := ω + i∂∂φ > 0

ω̃n = (ω + i∂∂φ)n = eF+φωn

This implies that if X is canonically polarized, we can find ω ∈ −2πc1(X) to start with, and find KE
metric ω̃ as defined above. The uniqueness of ω̃ follows from the analysis above.

Proof of Uniqueness in Theorem 1.7. This immediately follows from Calabi’s uniqueness.

Proof of Uniqueness in Theorem 1.8. Let ωi = ω + i∂∂φi > 0 solving ωni = eF+φiωn for i = 1, 2. Let
u := φ2 − φ1. Then

(ω1 + i∂∂u)n = ωn2 = eF+φ2ωn = euωn1 .

We want to show that u ≡ 0.
By compactness of X, we can pick a point x ∈ X where u attains maximum. Then

i∂∂u(x) ≤ 0,
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i.e. the matrix
(

∂2u
∂zj∂zk

(x)
)

is negative semi-definite. We can check this using the 2nd derivative test on the

real coordinates and translate to complex coordinates. Hence

0 < ω2(x) = (ω1 + i∂∂u)(x) ≤ ω1(x).

Taking n-th power wedge, which takes determinant on the matrices in coordinates, we get

eu(x)ωn1 (x) = ωn2 (x) ≤ ωn1 (x) > 0,

so that
eu(x) ≤ 1⇒ u ≤ 0 on X.

Similarly, consider a point x ∈ X where u attains minimum. Then

ω2(x) ≥ ω1(x) > 0⇒ eu(x)ωn1 (x) = ωn2 (x) ≥ ωn1 (x) > 0,

so that u ≥ 0 on X. In conclusion, u ≡ 0.

Proof of existence in Theorem 1.7 and 1.8. We use the method of continuity. More precisely, we deform our
PDE in a continuous way to another one that we can solve explicitly, and show that solvability persist
through the deformation.

Let t ∈ [0, 1] be the deformation parameter. Let µ = 0 and +1 for Theorem 1.7 and 1.8 respectively. Our
PDE is 

look for φt ∈ C∞(X,R) s.t.

ω + i∂∂φt > 0∫
X
φtω

n = 0 if µ = 0

(ω + i∂∂φt)
n = cte

tF+µφtωn on X

0 < ct =

{
1 µ = 1∫

X
ωn∫

X
etFωn µ = 0

(∗t)

The choice of ct when µ = 0 ensures that∫
X

(ω + i∂∂φt)
n =

∫
X

ωn

for all t ∈ [0, 1]. Indeed, problem (∗1) is our desired PDE.
Let’s define the set

I := {t ∈ [0, 1] | PDE (∗t) has a C∞ solution φt}.

I is non-empty since 0 ∈ I with trivial solution φ0 = 0. We next show that I is open and closed in [0, 1].
Openness means that for each solution φt of (∗t), we can deform it slightly to get a solution of (∗s) for s
sufficiently close to t. Closedness means that if φti solves (∗ti) and ti → t0, then φti → φt0 solving (∗t0).

First consider ct as a function of t. For µ = 0, we have c0 = c1 = 1. We claim that

e−∥F∥L∞(X) ≤ ct ≤ e∥F∥L∞(X) . (1.1)

Indeed, ∫
X

etFωn ≤ et∥F∥L∞(X)

∫
X

ωn ≤ e∥F∥L∞(X)

∫
X

ωn,∫
X

etFωn ≥ e−t∥F∥L∞(X)

∫
X

ωn ≥ e−∥F∥L∞(X)

∫
X

ωn.

In particular, ct does not approach 0 or ∞ as t varies.
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Recall the Hölder space Ck,α(U) defined by Hölder norm

∥u∥Ck,α(U) = ∥u∥Ck(U) + [Dku]Cα(U)

=

k∑
i=0

∥∥Diu
∥∥
L∞(U)

+ sup
|I|=k

sup
x ̸=y∈U

∣∣DIu(x)−DIu(y)
∣∣

|x− y|α
.

We know that Ck,α(U) is Banach space containing C∞(U), and C∞(U) is not dense in Ck,α(U). We now
move from local to global. Fix (Xn, ω) a compact Kähler manifold, or more generally a closed Riemannian
manifold. Fix an atlas {(Uj, φj : Uj ∼= Vj ⊂ Cn)}Nj=1, and {ρj} a partition of unity subordinate to {Uj}.

Define for a k times differentiable function u : X → R the Ck,α(X) norm, depending on the choices of
atlas and POU above:

∥u∥Ck,α(X) :=

N∑
j=1

∥∥(ρju) ◦ φ−1
j

∥∥
Ck,α(Vj)

Then the Hölder space

Ck,α(X) := {u : X → R | u is k times differentiable and ∥u∥Ck,α(X) <∞}

is a Banach space containing C∞(X), and C∞(X) is not dense in Ck,α(X).

We fix k = 3 and any α ∈ (0, 1) to prove openness of I. First consider µ = 0. Define

U =

{
u ∈ C3,α(X) | ω + i∂∂u > 0 on X and

∫
X

uωn = 0

}
.

V =

{
v ∈ C1,α(X) |

∫
X

vωn =

∫
X

ωn
}
.

U is an open subset of the Banach space of the kernel of the bounded linear operator
∫
X

(·)ωn : C3,α(X)→ R.
Similarly, V is an affine linear closed subspace of C1,α. Then define an opeartor

E : U → V, E(u) :=

(
ω + i∂∂u

)n
ωn

.

We can immediately see that E maps into V. Functional analysis theory yields E is Fréchet differentiable as
a map between Banach spaces.

Now we prove openness of I under µ = 0. Suppose φt solves PDE (∗t) for some t ∈ I. By definition of E ,

E(φt) = cte
tF .

We try to find φs ∈ U (for now) solving E(φs) = cse
sF for all s ∈ [0, 1] sufficiently close to t. The key point

is that if s is sufficiently close to t, then cse
sF is as close as I want to cte

tF in ∥·∥C1,α(X). To show this, we
want to apply the Inverse Function Theorem for Banach spaces: if Dφt

E is an isomorphism between
(tangent) Banach spaces, then E is locally a bijection near φt and E(φt).

The tangent space to φt in U is

TφtU =

{
ψ ∈ C3,α(X) |

∫
X

ψωn = 0

}
.

The tangent space to E(φt) in V is

TE(φt)V =

{
η ∈ C1,α(X) |

∫
X

ηωn = 0

}
.
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We compute the Gateaux derivative DφtE : TφtU → TE(φt)V :

Dφt
E(ψ) =

d

ds

∣∣∣∣
s=0

E(φt + sψ)

=
d

ds

∣∣∣∣
s=0

(
ω + i∂∂ (φt + sψ)

)n
ωn

=
n
(
ω + i∂∂φt

)n−1 ∧ i∂∂ψ
ωn

=
n
(
ω + i∂∂φt

)n−1 ∧ i∂∂ψ(
ω + i∂∂φt

)n ·
(
ω + i∂∂φt

)n
ωn

=
(

∆ω+i∂∂φt
ψ
)
· E(φt)

We then use the following linear PDE theory on manifolds.

Theorem 1.9 (Poisson equation in Hölder spaces). Let (Xn, ω) be a compact Kähler manifold. For any
k ∈ N, α ∈ (0, 1), there exists C > 0 such that

1) given any f ∈ Ck,α(X) with
∫
X
fωn = 0, there exists a unique u ∈ Ck+2,α(X) solving{

∆gu = f on X∫
X
uωn = 0

and we have
∥u∥Ck+2,α(X) ≤ C∥f∥Ck,α(X) ≤ C

′∥u∥Ck+2,α(X),

where the first inequality is global Schauder estimate and the second inequality is trivial by ∆gu = f .
Hence the map

∆g :

{
u ∈ Ck+2,α(X) |

∫
X

uωn = 0

}
→
{
f ∈ Ck,α(X) |

∫
X

fωn = 0

}
is a Banch space isomorphism.

2) given any λ > 0, and any f ∈ Ck,α(X), there exists a unique u ∈ Ck+2,α(X) solving the Helmholtz
equation or eigenvalue equation

∆gu = λu+ f on X,

and we have the same Schauder estimate (second inequality is again trivial by f = ∆gu− λu)

∥u∥Ck+2,α(X) ≤ C∥f∥Ck,α(X) ≤ C
′∥u∥Ck+2,α(X).

Hence the map
∆g − λ Id : Ck+2,α(X)→ Ck,α(X)

is a Banach space isomorphism.

Back to our proof. Let ωt := ω + i∂∂φt, a C∞ Kähler metric. By computation above,

Dφt
E(ψ) = (∆ωt

ψ) · ω
n
t

ωn
.

Then applying Theorem 1.9 1) to (X,ωt), we see that Dφt
E : Tφt

U → TE(φt)V is a Banach space isomorphism
using trivial isomorphisms between kernel of

∫
X

(·)ωn and
∫
X

(·)ωnt . Therefore, by Inverse Function Theorem,
there exist open neighborhoods

φt ∈ U ⊂ U , cte
tF ∈ V ⊂ V,
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such that E : U → V is bijection. Hence for all s sufficiently close to t, cse
sF ∈ V , and we can solve for φs

using (E|U )
−1

. We now have 
φs ∈ C3,α(X)

ω + i∂∂φs > 0 on X∫
X
φsω

n = 0

(ω + i∂∂φs)
n = cse

sFωn

The last question to ask is whether φs ∈ C∞(X,R). This is true by the following regularity theorem.

Theorem 1.10 (Regularity). Let (X,ω) be a compact Kähler manifold. Suppose φ ∈ C3,α(X) for some
α ∈ (0, 1) solves

ω + i∂∂φ > 0, (ω + i∂∂φ)n = eF+µφωn

for some F ∈ C∞(X), µ ∈ R, then φ ∈ C∞(X).
The same statement holds if we only assume φ ∈ C2(X). The proof is harder.

The proof of Theorem 1.10 uses local Schauder theory:

Theorem 1.11 (Schauder estimate). Let g be any Kähler metric on the unit ball B1 = B1(0) ⊂ Cn, and
gCn the Euclidean metric. Fix k ∈ N, α ∈ (0, 1). Suppose{

A−1gCn ≤ g ≤ AgCn

∥g∥Ck,α(B1)
≤ A

for some A > 0. Let f ∈ Ck,α(B1), u ∈ C2,α(B1) solve

∆gu = f on B1.

Then for any ε > 0, there exists some constant C = C(n,A, k, α, ε) such that u ∈ Ck+2,α(B1−ε), and

∥u∥Ck+2,α(B1−ε)
≤ C

(
∥f∥Ck,α(B1)

+ ∥u∥L∞(B1)

)
.

In particular, on B1/2, we have u ∈ Ck+2,α(B1/2) and there exists some constant C = C(n,A, k, α) such
that

∥u∥Ck+2,α(B1/2)
≤ C

(
∥f∥Ck,α(B1)

+ ∥u∥L∞(B1)

)
.

Proof of Regularity Theorem 1.10 assuming Schauder Theorem 1.11. The regularity is a local statement, so
we can work in a chart isomorphic to B1(0) ⊂ Cn. Let our Kähler metric g given by metric g on B1. In this
coordinate, the Monge-Ampère equation that φ solves is

det
(
gij + ∂i∂jφ

)
= eF+µφ det

(
gij

)
.

Taking log,

log det
(
gij + ∂i∂jφ

)
= F + µφ+ log det

(
gij

)
.

Taking ∂
∂zk

, as φ ∈ C3,α(B1), we get

∆g̃(∂kφ) = g̃ij∂k∂i∂jφ

= g̃ij∂k

(
g̃ij − gij

)
= −g̃ij∂kgij + ∂kF + µ∂kφ+ gij∂kgij

where

g̃ij = gij + ∂i∂jφ,
(
g̃ij
)

=
(
g̃ij

)−t
.
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Note that −g̃ij∂kgij ∈ C1,α(B1), ∂kφ ∈ C2,α(B1), ∂kF +gij∂kgij ∈ C∞(B1). To see the first one g̃ij ∈ C1,α,

use that C1,α is closed under product and division by function nowhere vanishing (work on a slightly larger
ball and use compactness in division). By definition, g̃ has C1,α(B1) coefficients, and is comparable
to the Euclidean metric on B1. Thus we can apply Schauder Theorem 1.11 with k = 1 to conclude that
∂kφ ∈ C3,α(B1/2). Repeat the argument above with ∂k to get ∂kφ ∈ C3,α(B1/2). Thus φ ∈ C4,α(B1/2).

We can repeat the argument above with k = 2 now, since we already have φ ∈ C4,α(B1/2). This yields
φ ∈ C5,α(B1/4). Repeat this argument to see that φ is smooth at 0. This completes the proof.

Therefore, the solution φs we get from E−1 is smooth. This concludes openness of I when µ = 0.

Next we show openness of I when µ = 1. The proof can be adapted from above slightly. Suppose φt
solves PDE (∗t) for some t ∈ I. Define

F :W → C1,α(X), F(w) := log

(
ω + i∂∂w

)n
ωn

− w

where
W := {w ∈ C3,α(X) | ω + i∂∂w > 0}

is an open subset of the Banach space C3,α(X). Indeed F maps W into C1,α: logarithm of a positive
C1,α(X) function is still C1,α(X) by compactness of X. Then

F(φt) = tF,

so for all s ∈ [0, 1] sufficiently close to t, the function sF is close to tF in C1,α(X). As above, we compute
the Gateaux derivative of F at φt to apply Inverse Function Theorem in Banach spaces.

Dφt
F : Tφt

W = C3,α(X)→ C1,α,

and follow the calculaations above for E to get

Dφt
F (ψ) =

d

ds

∣∣∣∣
s=0

F(φt + sψ)

= ∆ωt:=ω+i∂∂φt
ψ − ψ

⇒ Dφt
F = ∆ωt

− Id .

By Theorem 1.9 2), Dφt
F is a Banach space isomorphism. Thus we solve for φs ∈ C3,α(X) using local

inverse F−1(sF ). By Regularity Theorem 1.10, φs ∈ C∞(X). This concludes openness of I.

We are left to show that I ⊂ [0, 1] is closed. The main claim is the following:

Theorem 1.12 (Yau’s a priori estimates). Let (Xn, ω) be a compact Kähler manifold. Let F ∈ C∞(X,R),
µ = 0 or 1. Suppose φ ∈ C∞(X,R) solves

ω + i∂∂φ > 0∫
X
φωn = 0 if µ = 0

(ω + i∂∂φt)
n = eF+µφωn on X.

Then given any α ∈ (0, 1), there exists a constant C = C((X,ω), ∥F∥C3,α(X), α) such that{
ω + i∂∂φ ≥ C−1ω

∥φ∥C2,α(X) ≤ C.
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This means that if at x ∈ X we pick coordinates that simultaneously diagonalize ω and ω + i∂∂φ at x:{
gij(x) = δij(
gij + ∂i∂jφ

)
(x) = λjδij ,

then the first a priori estimate says λj ≥ C−1 for each j = 1, ..., n; the second estimate says∥∥∥∂i∂jφ∥∥∥
C0,α(X)

≤ C ⇒ λj ≤ C

Let us assume Yau’s a priori estimates first and finish the proof of closedness of I. See proof of Theorem
1.12 below.

Assume there is a sequence ti ∈ I such that ti → t̄ ∈ [0, 1], we want to show that t̄ ∈ I. By assumption,
let φti ∈ C∞(X,R) be solutions to the PDE (∗ti). Let ω̃i := ω+ i∂∂φti > 0, such that ω̃ni = ctie

tiF+µφtiωn.

Fix any α ∈ (0, 1). To apply a priori estimates, we want F̃ := log cti + tiF , such that eF̃ = ctie
tiF . Recall

from (1.1) that |log cti | ≤ ∥F∥L∞(X), so there exists some constant C independent of i such that

∥log cti + tiF∥C3,α(X) ≤ C.

Thus Theorem 1.12 does apply, and there exists some constant C such that for all i,{
ω̃i ≥ C−1ω

∥φti∥C2,α(X) ≤ C.

In local coordinates on B1, write (g̃i)ij = gij + ∂i∂jφti . Then the matrices g̃i satisfy{
∥g̃i∥C0,α(X) ≤ C
C−1g ≤ g̃i ≤ Cg

for some constant C independent of i. Then

∆g̃i(∂kφti) = −g̃pqi ∂kgpq + ∂kF̃ + µ∂kφti + gpq∂kgpq.

The RHS has uniform C0,α(B1)-norm bound independent of i. The only non-trivial part is the first term,
where we use g̃−1

i = 1
det(g̃i)

Adj(g̃i), and compare det(g̃i) ≥ C det(g) using the results above.

By Schauder Theorem 1.11, there exists some uniform constant Cε such that

∥∂kφti∥C2,α(B1−ε)
≤ Cε + Cε∥∂kφti∥L∞(B1)

≤ C,

where the last inequality follows from above: ∥φti∥C2,α(X) ≤ C.

Similarly,
∥∥∂kφti∥∥C2,α(B1−ε)

≤ C for some uniform constant C. Hence ∥φti∥C3,α(B1−ε)
≤ C for some

constant C independent of i. Now we use compactness of X to pick ε > 0 small, and pick my charts ”dense”
such that the union of balls B1−ε ⊂ B1 still covers all of X. We can therefore conclude that

∥φti∥C3,α(X) ≤ C

where C is independent of i.
Fix 0 < α′ < α < 1. We have compact embedding C3,α(X) ↪→ C3,α′

(X). Thus there exists a subsequence
tij → t such that φtij converges in C3,α′

(X), say to some φt ∈ C3,α′
(X). We want to verify that φt solves

the PDE (∗t). First, for positivity, we have

0 < C−1ω ≤ ω̃ij → ω + i∂∂φt as j →∞.
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Hence ω + i∂∂φt ≥ C−1ω is a Kähler metric with C1,α′
-coefficients.

Also, passing to limit in the PDE, as j →∞,

cte
tF+µφtωn ← ctij e

tijF+µφtij ωn = ω̃nij →
(
ω + i∂∂φt

)n
,

so that (
ω + i∂∂φt

)n
= cte

tF+µφtωn.

If µ = 0, we check in addition

0 =

∫
X

φtijω
n →

∫
X

φtω
n = 0.

Finally, by Regularity Theorem 1.10, φt is in fact C∞(X,R). Therefore, φt solves the PDE (∗t). This
completes the proof of closedness of I.

Therefore, I = [0, 1], and in particular our desired PDE (∗1) has a solution.

We are now left only with proving Yau’s a priori estimates. We first need the following.

Proposition 1.13 (Compact embeddings of Hölder spaces). Let (Xn, ω) be a compact Kähler manifold. Let
k, l ∈ N, α, β ∈ (0, 1) such that

l + β > k + α.

Hence l ≥ k, and β > α if l = k. Then the natural inclusion Cl,β(X) ↪→ Ck,α(X) is compact operator
(mapping bounded subsets to precompact subsets).

Proof. The map Cl,β(X) ↪→ Ck,α is clearly a bounded linear operator.
To show compactness, it suffices to consider k = l = 0. The rest of the cases follow by induction. Now

β > α > 0. Suppose ui is a bounded sequence of functions in C0,β(X) = Cβ(X). We want to show that ui
has a subsequence convergent in Cα(X). We have

∥ui∥Cβ(X) := ∥u∥L∞(X) + [ui]Cβ(X) ≤ C

[ui]Cβ(X) := sup
x̸=y∈X

|ui(x)− ui(y)|
d(x, y)β

.

∥u∥L∞(X) ≤ C implies that ui are uniformly bounded in C(X), and [ui]Cβ(X) ≤ C implies that ui are

equicontinuous in C(X). Thus by Arzela-Ascoli, there exists a subsequence uij that converges in C(X), say
to u ∈ C(X). By pointwise convergence in particular, for any x ̸= y ∈ X,

|u(x)− u(y)|
d(x, y)β

= lim
j

∣∣uij (x)− uij (y)
∣∣

d(x, y)β
≤ C,

⇒ [u]Cβ(X) ≤ C.

Thus u ∈ Cβ(X).
It remains to show that uij → u in Cα(X) as j → ∞. Convergence in C(X) is known already, so we

want to show that
[uij − u]Cα(X) → 0 as j →∞.

For x ̸= y ∈ X, the value we consider is∣∣uij (x)− u(x)− uij (y) + u(y)
∣∣

d(x, y)β
· d(x, y)β

d(x, y)α
.

When d(x, y) is small, the second term is small, and the first term is uniformly bounded by 2C. When
d(x, y) is not small, d(x, y)−α is bounded, and

∣∣uij (x)− u(x)− uij (y) + u(y)
∣∣ is small for all j large and for

all x ̸= y. This proves that [uij − u]Cα(X) → 0 as j →∞, and completes the proof.

10
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Proof of Theorem 1.12. We shall prove these in 3 steps.
Step 1. Prove the uniform bound

∥φ∥L∞(X) ≤ C = C((X,ω), ∥F∥L∞(X)).

We first consider the easier case µ = 1: {(
ω + i∂∂φ

)n
= eF+φωn

ω + i∂∂φ > 0.

Let x ∈ X be a point where φ attains its maximum on X. By 2nd derivatives test, i∂∂φ ≤ 0, so

0 < (ω + i∂∂φ)(x) ≤ ω(x).

Taking n-th wedge product, we see eF+φ(x) ≤ 1, so F (x) + φ(x) ≤ 0, φ(x) ≤ ∥F∥L∞(X). Similarly,

considering any point y ∈ X where φ attains its minimum, we get −φ(y) ≤ F (y) ≤ ∥F∥L∞(X), so that

∥φ∥L∞(X) ≤ ∥F∥L∞(X).

The case µ = 0 is more delicate. Recall first the Euclidean Sobolev inequality.

Theorem 1.14 (Sobolev inequality in Rn≥2). Given 1 ≤ p < n, and q ∈ R such that

1

q
=

1

p
− 1

n
,

then for all f ∈ C∞
c (Rn), we have

∥f∥Lq(Rn) ≤
q(n− 1)

2n
∥∇f∥Lp(Rn)

The proof of this is standard real analysis. See, e.g. Evans §5.
We now bring Sobolev inequality onto compact Kähler manifolds.

Theorem 1.15 (Sobolev inequality on compact manifolds). Let (Xn≥1, ω) be a compact Kähler manifold.
Given 1 ≤ p < 2n, let q ∈ R such that

1

q
=

1

p
− 1

2n
.

Then there exists some constant C = C((X,ω), p) such that for all f ∈ C∞(X,R), we have

∥f∥Lq(X) ≤ C
(
∥f∥Lp(X) + ∥∂f∥Lp(X)

)
,

where

∥f∥Lp(X) :=

(∫
X

|f |pωn
) 1

p

,

∥∂f∥Lp(X) :=

(∫
X

(
|∂f |2g

) p
2

ωn
) 1

p

,

and recall that in local coordinates,

|∂f |2g = gij
∂f

∂zi

∂f

∂zj
.

11
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Proof. First cover X by a finite atlas {Uj , φj : Uj ∼= Vj ⊂ Cn}Nj=1, such that in local coordinates on Uj , we
have

1

2
Id ≤ (gij) ≤ 2 Id .

Hence if we denote the Lebesgue measure by dx, we have

dx ≤ ωn ≤ 22ndx

on each Uj .
This atlas can be attained, because for each x ∈ X we can pick local coordinates such that gij(x) = Id,

so that the condition above is satisfied in a neighborhood of x.
Fix a partition of unity {ρj} subordinate to {Uj}. Then

∥f∥Lq(X) =

∥∥∥∥∥∥
N∑
j=1

ρjf

∥∥∥∥∥∥
Lq(X)

≤
N∑
j=1

∥ρjf∥Lq(Uj)
.

Apply Euclidean Sobolev inequality to (ρjf) ◦ φ−1
j ∈ C∞

c (R2n):

∥ρjf∥Lq(Uj)
=

(∫
Uj

|ρjf |qωn
) 1

q

≤ C

(∫
φj(Uj)

∣∣(ρjf) ◦ φ−1
j

∣∣qdx) 1
q

by choice of coordinates above

≤ C

(∫
φj(Uj)

∣∣D ((ρjf) ◦ φ−1
j

)∣∣pdx) 1
p

Sobolev inequality

≤ C

(∫
Uj

|∂ (ρjf)|pgω
n

) 1
p

by choice of coordinates

≤ C

(∫
Uj

(
|∂ρj |pg · |f |

p
+ |ρj |p · |∂f |pg

)
ωn

) 1
p

≤ C

(∫
Uj

|f |pωn
) 1

p

+ C

(∫
Uj

|∂f |pgω
n

) 1
p

≤ C
(
∥f∥Lp(X) + ∥∂f∥Lp(X)

)
where in the final steps we use the equivalence of all Lp norms on a finite dimensional space. Summing
over j, we have the desired result. Indeed the constant C depends on partition of unity {ρj}, and hence on
(X,ω), but not on f .

We next recall Poincaré inequality on compact Kähler manifolds.

Theorem 1.16 (Poincaré inequality on compact manifolds). Let (Xn, ω) be a compact Kähler manifold (or
closed Riemannian manifold). Fix any 1 ≤ p <∞. Then there exists some constant C = C(p) > 0 such that
for all f ∈ C∞(X,R), we have ∫

X

|f − af |p ≤ C
∫
X

|∇f |pg,

12
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where

af :=

∫
X
f

Vol(X, g)

denotes the average of f .

There is a more general version of Poincaré inequality for all 1 ≤ p < ∞ and the constant C depends
only on (X, g) and p. The proof uses Rellich-Kondrachov W 1,p(X) ⋐ Lp(X) and argue by contradiction.

Formally speaking, Poincaré inequality says that the operator −∆g acting on C∞(X,R) with L2 inner
product has the zero eigenvalue first (one-dimensional space of constant functions), and then the next
eigenvalue is positive (1/C from above). Indeed eigenvalues of −∆g have zero average.

Let’s now continue the proof of Yau’s a priori estimate. Consider case µ = 0 in Step 1. Notice the
following lemma:

Lemma 1.17. For each continuous function f : X → R on a compact space X, we have

lim
p→∞

∥f∥Lp(X) = ∥f∥L∞(X).

Proof. Notice that it suffices to consider the case ∥f∥L∞(X) = 1, as we can scale any non-zero function by

its L∞(X)-norm.
Clearly, ∥f∥Lp(X) ≤ ∥f∥L∞(X) = 1 for each p ≥ 1.

For the other direction, split X according to the value of |f |. We claim that for each 0 < δ < 1, we can
pick ε(δ) > 0 and p0 large such that ∀p ≥ p0,

∥f∥Lp(X) =

(∫
{|f |>1−ε}

|f |p +

∫
{|f |≤1−ε}

|f |p
) 1

p

≥ (1− ε) ·M({|f | > 1− ε})1/p

> 1− δ.

Indeed this can be achieved. For example, pick ε < δ/2, and sinceM({|f | > 1− ε}) > 0 due to ∥f∥L∞(X) = 1,

we can find p0 large enough such that M({|f | > 1− ε})1/p > 1− ε for all p ≥ p0. Therefore,

lim
p→∞

∥f∥Lp(X) = 1.

Thus to bound ∥φ∥L∞(X) uniformly, it suffices to bound ∥φ∥Lp(X) uniformly. Observe that though |t|p is

not differentiable at t = 0, the function t|t|α is differentiable on R for any α ≥ 0, with derivative (α+ 1)|t|α.
Hence for p ≥ 2, compute∫

X

φ|φ|p−2
(ωn − ω̃n) =

∫
X

φ|φ|p−2
(1− eF )ωn by assumption PDE

≤
∫
X

|φ|p−1
(1 + eF )ωn

≤ C
∫
X

|φ|p−1
ωn

13
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where C depends on
∥∥eF∥∥

L∞(X)
. On the other hand, as in Calabi’s uniqueness argument,

∫
X

φ|φ|p−2
(ωn − ω̃n) =

∫
X

φ|φ|p−2
(ω − ω̃) ∧

n−1∑
j=0

(
ωj ∧ ω̃n−1−j)

= −
∫
X

φ|φ|p−2
i∂∂φ ∧

n−1∑
j=0

(
ωj ∧ ω̃n−1−j)

=

∫
X

d
(
φ|φ|p−2

)
∧ i∂φ ∧

n−1∑
j=0

(
ωj ∧ ω̃n−1−j) Stokes and closedness of ω, ω̃

= (p− 1)

∫
X

|φ|p−2
idφ ∧ ∂φ ∧

n−1∑
j=0

(
ωj ∧ ω̃n−1−j)

= (p− 1)

∫
X

|φ|p−2
i∂φ ∧ ∂φ ∧

n−1∑
j=0

(
ωj ∧ ω̃n−1−j)

≥ (p− 1)

∫
X

|φ|p−2
i∂φ ∧ ∂φ ∧ ωn−1 proved in Calabi uniqueness

=
p− 1

n

∫
X

|φ|p−2|∂φ|2gω
n nα ∧ ωn−1 α real (1, 1)

= (trω α) · ωn

=
4(p− 1)

np2

∫
X

∣∣∣∂ (φ|φ| p−2
2

)∣∣∣2
g
ωn

Remark 1.18. The wedge product of n positive real (1, 1)-forms on (Xn, ω) is positive multiple of the volume
form.

In conclusion, we now have some kind of ”reverse Sobolev inequality”.∫
X

∣∣∣∂ (φ|φ| p−2
2

)∣∣∣2
g
ωn ≤ C np2

4(p− 1)

∫
X

|φ|p−1
ωn ≤ Cp

∫
X

|φ|p−1
ωn (1.2)

for all p ≥ 2 and C uniform independent of p. In particular, for p = 2, we have∫
X

|∂φ|2gω
n ≤ C

∫
X

|φ|ωn. (1.3)

Let’s now assume n ≥ 2 and combine the inequality above with Sobolev inequality. Let β := n
n−1 .

Applying Sobolev inequality to f := φ|φ|
p−2
2 , we have(∫

X

|f |2βωn
) 1

β

≤ C
(∫

X

|∂f |2gω
n +

∫
X

f2ωn
)
.

Then using the reverse Sobolev inequality above for the second term on RHS,(∫
X

|φ|pβωn
) 1

β

≤ C
(
p

∫
X

|φ|p−1
ωn +

∫
X

|φ|pωn
)

(1.4)

≤ C

(
p

(∫
X

|φ|pωn
) p−1

p

+

∫
X

|φ|pωn
)

Hölder. (1.5)

Note that (∫
X

|φ|pωn
) p−1

p

≤ max

(
1,

∫
X

|φ|pωn
)
,

14
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so (∫
X

|φ|pβωn
) 1

β

≤ Cpmax

(
1,

∫
X

|φ|pωn
)
.

Clearly, we also have 1 ≤ RHS, so

max
(

1, ∥φ∥Lpβ(X)

)
≤ C

1
p p

1
p max

(
1, ∥φ∥Lp(X)

)
(1.6)

for all p ≥ 2 and some uniform constant C independent of p. This looks like a ”reverse Hölder inequality”.
We are now ready to apply the Moser iteration technique. Since β = n

n−1 > 1, iterate reverse Hölder
inequality (1.6) to get

max
(

1, ∥φ∥Lpβ2 (X)

)
≤ C

1
pβ (pβ)

1
pβ max

(
1, ∥φ∥Lpβ(X)

)
≤ C

1
pβ (pβ)

1
pβC

1
p p

1
p max

(
1, ∥φ∥Lp(X)

)
.

The k-th iteration of (1.6) becomes

max
(

1, ∥φ∥
Lpβk (X)

)
≤ C

1
p ·

∑k−1
i=0

1

βi · p
1
p ·

∑k−1
i=0

1

βi · β
1
p ·

∑k−1
i=1

i

βi max
(

1, ∥φ∥Lp(X)

)
.

Using β > 1 and Lemma 1.17, letting k →∞, and p = 2, we get

max
(

1, ∥φ∥L∞(X)

)
≤ C max

(
1, ∥φ∥L2(X)

)
. (1.7)

Here we use the covergence
∑∞
i=1

i
βi <∞.

We can further deal with ∥φ∥L2(X) using Poincaré inequality, Theorem 1.16. Indeed,

C−1

∫
X

φ2ωn ≤
∫
X

|∂φ|2gω
n

∫
X

φωn = 0 and Theorem 1.16

≤ C
∫
X

|φ|ωn reverse Sobolev inequality (1.3)

≤ C
(∫

X

φ2ωn
) 1

2

, Hölder

so that ∥φ∥L2(X) ≤ C for some uniform constant C. Combined with inequality (1.7), we have uniform bound

∥φ∥L∞(X) ≤ C, as desired.

Remark 1.19. Here the constant C = C
(

(X,ω),
∥∥eF∥∥

L∞(X)

)
. In fact, we can modify this argument to get

∥φ∥L∞(X) ≤ C = C
(

(X,ω),
∥∥eF∥∥

Lq(X)
, q
)

for any q > n. The same claim holds for all q > 1, but with a

different proof given by Ko lodziej.

Question 1.20. What about the case n = 1? Let β = 2. Sobolev inequality with p = 4/3, q = 2p/(2−p) = 4
gives (∫

X

|f |4ω
) 1

4

≤ C

((∫
X

|f |
4
3ω

) 3
4

+

(∫
X

|∂f |
4
3
g ω

) 3
4

)
.

Plug in f = φ|φ|
p−2
2 for p ≥ 2,(∫

X

|φ|2pω
) 1

4

≤ C

((∫
X

|φ|
2p
3 ω

) 3
4

+

(∫
X

∣∣∣∂ (φ|φ| p−2
2

)∣∣∣ 43
g
ω

) 3
4

)

≤ C

((∫
X

|φ|pω
) 1

2

+

(∫
X

∣∣∣∂ (φ|φ| p−2
2

)∣∣∣2
g
ω

) 1
2

)
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by Hölder. Then as above,(∫
X

|φ|2pω
) 1

2

≤ C
(∫

X

|φ|pω +

∫
X

∣∣∣∂ (φ|φ| p−2
2

)∣∣∣2
g
ω

)
≤ C

(∫
X

|φ|pω + p

∫
X

|φ|p−1
ω

)
by reverse Sobolev inequality (1.2)

which is now the same as (1.4) in the case n ≥ 2. We then proceed exactly as before with β = 2 now.

We have now finished Step 1 in the proof of Theorem 1.12, giving a uniform bound on the L∞-norm of
all solutions φ.

Step 2. We next show that there exists some constant C = C
(

(X,ω), ∥F∥C2(X)

)
such that

C−1ω ≤ ω̃ := ω + i∂∂φ ≤ Cω (1.8)

Locally, inequality (1.8) means that
C−1(gij) ≤ (g̃ij) ≤ C(gij).

If we simultanesouly diagonalize g and g̃ at x ∈ X such that (gij)(x) = δij , (g̃ij)(x) = λjδij , λj > 0 indeed.

Then C−1 ≤ λj ≤ C for all j = 1, ..., n.
We first reduce the inequality between matrices/metrics/tensors to an inequality between functions.

Recall the trace of a real (1, 1)-form defined by

trω ω̃ = gij g̃ij ⇔ nωn−1 ∧ ω̃ = trω ω̃ · ωn.

Indeed trω ω̃ ∈ C∞(X,R+), for in the diagonalized local coordinates above, trω ω̃(x) =
∑
j λj .

Claim 1.21. If trω ω̃ ≤ C on X for some uniform constant C, then inequality (1.8) follows.

Proof of Claim 1.21. In local coordinates above, we have

λj <
∑
j

λj ≤ C ⇒ ω̃(x) ≤ Cω(x)

Thus the inequality ω̃ ≤ Cω follows immediately.
The other side needs uniform lower bound on λj . We use the PDE:

n∏
j=1

λj =
det
(
g̃ij

)
det
(
gij

) =
ω̃n

ωn
(x) = eF+µφ(x).

∥F∥L∞(X) ≤ ∥F∥C2(X) trivially, and we proved in Step 1 that ∥φ∥L∞(X) ≤ C = C((X,ω), ∥F∥L∞(X)).
Thus

n∏
j=1

λj ≥ e−∥F+µφ∥L∞(X) ≥ C−1

for some constant C = C
(

(X,ω), ∥F∥C2(X)

)
. Meanwhile,

∑
j λj ≤ C, so that λj ≥ C−n for all j. This

proves the claim.

We are left to show that
trω ω̃ ≤ C.
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The trick is to use maximum principle. We choose ∆g̃ over ∆g as the former is the linearized opeartor
of PDE. We compute

∆g̃ trω ω̃ = g̃kl∂k∂l

(
gij g̃ij

)
.

To simplify, we choose a coordinate at x that is normal for g and diagonalizes g̃. That is,
gij(x) = δij

∂kgij(x) = 0

g̃ij(x) = λjδij

and hence
∂kg

ij(x) = 0.

This can be achieved: start from the simultaneously diagonalized coordinates as above, and then
perturb the coordinate by terms of order 2 such that dgij vanishes at x; meanwhile it’s easy to
check that g̃(x) remains the same. See e.g. Huybrechts §1.3. Then at x, (typo for line 2?)

∆g̃ trω ω̃ = g̃kl∂k∂l

(
gij g̃ij

)
=
∑
i,j,k,l

g̃klg̃ijRjikl + g̃klgij∂k∂lg̃ij

=
∑
i,k

g̃kkg̃iiRiikk −
∑
i,j,k,l

g̃klgijR̃ijkl +
∑

i,j,k,l,p,q

g̃klgij g̃pq∂lg̃pj∂kg̃iq

=
∑
i,k

g̃kkg̃iiRiikk − trω Ric(ω̃) +
∑

i,j,k,l,p,q

g̃klgij g̃pq∂lg̃pj∂kg̃iq

where we recall that
Rijkl := gpq∂lgpj∂kgiq − ∂k∂lgij

Rij = gklRijkl = −∂i∂j log det(gpq)

Ric(ω) = iRijdzi ∧ dzj

R = trω Ric(ω) = gijRij .

By PDE, ω̃n = eF+µφωn, so det(g̃) = eF+µφ det(g), and

Ric(ω̃)− Ric(ω) = −i∂∂(F + µφ) = −i∂∂F − µω̃ + µω. (1.9)

Since trω ω̃ > 0, trω ω = n, it follows that

− trω Ric(ω̃) = −R+ ∆gF + µ trω ω̃ − µn ≥ −C

for some uniform constant C = C
(

(X,ω), ∥F∥C2(X)

)
by compactness of X.

Also, ∑
i,k

g̃kkg̃iiRiikk ≥ −C
∑
i,k

g̃kkg̃ii = −C
∑
i,k

λiλ
−1
k = −C trω ω̃ · trω̃ ω

for some uniform constant C = C(X,ω). In summary, in this normal coordinate at x, we have

∆g̃ trω ω̃ ≥ −C trω ω̃ · trω̃ ω − C +
∑

i,j,k,l,p,q

g̃klg̃pqgij∇lg̃pj∇kg̃iq. (1.10)
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Both LHS and RHS are coordinate-free quantities (tensorial). To apply maximum principle and show
uniform bound on trω ω̃, we need some correction function on the LHS under ∆g̃. Observe that

∆g̃φ = g̃ij∂i∂jφ = g̃ij
(
g̃ij − gij

)
= n− trω̃ ω,

and for u ∈ C∞(X,R+),

∆g̃ log u = g̃ij
(
∂i∂j log u

)
=

∆g̃u

u
−
|∂u|2g̃
u2

.

It follows that

∆g̃ log trω ω̃ =
∆g̃ trω ω̃

trω ω̃
−
|∂ trω ω̃|2g̃
(trω ω̃)

2

≥ −C trω̃ ω −
C

trω ω̃
+

∑
i,j,k,l,p,q g̃

klg̃pqgij∇lg̃pj∇kg̃iq
trω ω̃

−
|∂ trω ω̃|2g̃
(trω ω̃)

2 .

Observe that
trω ω̃ · trω̃ ω =

∑
j,k

λjλ
−1
k ≥ n,

so the second term

− C

trω ω̃
≥ −C trω̃ ω

n

and can be absorbed into the first term −C trω̃ ω. Now we have

∆g̃ log trω ω̃ ≥ −C trω̃ ω +

∑
i,j,k,l,p,q g̃

klg̃pqgij∇lg̃pj∇kg̃iq
trω ω̃

−
|∂ trω ω̃|2g̃
(trω ω̃)

2 .

Taking A := C + 1, and replacing C by the new constant An, we get

∆g̃ (log trω ω̃ −Aφ) ≥ trω̃ ω − C +

∑
i,j,k,l,p,q g̃

klg̃pqgij∇lg̃pj∇kg̃iq
trω ω̃

−
|∂ trω ω̃|2g̃
(trω ω̃)

2

We claim that the error term is non-negative:∑
i,j,k,l,p,q g̃

klg̃pqgij∇lg̃pj∇kg̃iq
trω ω̃

−
|∂ trω ω̃|2g̃
(trω ω̃)

2 ≥ 0 (1.11)

Assuming this claim first, we get

∆g̃ (log trω ω̃ −Aφ) ≥ trω̃ ω − C. (1.12)

We now apply maximum principle. Pick x ∈ X where log trω ω̃ −Aφ attains its maximum. Then

0 ≥ ∆g̃ (log trω ω̃ −Aφ) (x) ≥ trω̃ ω(x)− C ⇒ trω̃ ω(x) ≤ C.

To compare trω̃ ω and trω ω̃, note the elementary inequality

trω ω̃ ≤
1

(n− 1)!
(trω̃ ω)

n−1 · ω̃
n

ωn
, (1.13)
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which can be easily checked at each point on X using the diagonalized coordinates above:

trω ω̃ =
∑
i

λi

≤ 1

(n− 1)!

∑
j

λ−1
j

n−1(∏
k

λk

)

=
1

(n− 1)!
(trω̃ ω)

n−1 · ω̃
n

ωn
.

Then by (1.13),

trω ω̃(x) ≤ C ω̃
n

ωn
(x) = CeF+µφ(x) ≤ C

using ∥φ∥L∞(X) ≤ C from Step 1. Hence log trω ω̃(x) ≤ C. Using ∥φ∥L∞(X) ≤ C again, we get

log trω ω̃(x)−Aφ(x) ≤ C.

Then by maximality at x,
log trω ω̃ −Aφ ≤ C on X.

Again, since ∥φ∥L∞(X) ≤ C, we have the desired inequality

trω ω̃ ≤ C = C
(

(X,ω), ∥F∥C2(X)

)
.

It remains to prove inequality (1.11). We claim that∑
i,j,k,l,p,q g̃

klg̃pqgij∇lg̃pj∇kg̃iq
trω ω̃

−
|∂ trω ω̃|2g̃
(trω ω̃)

2 =
1

trω ω̃
g̃klg̃pqgijBkiqBljp =

|B|2mixed
trω ω̃

≥ 0, (1.14)

where

Bkiq := ∇kg̃iq −
∂k (trω ω̃)

trω ω̃
g̃iq.

are coordinates of the 3-tensor
B := ∇g̃ − ∂ (log trω ω̃)⊗ g̃,

and we define the mixed norm exactly as above:

|B|2mixed := g̃klg̃pqgijBkiqBljp.

Clearly |B|2mixed ≥ 0, for if we choose coordinates near x ∈ X normal to g and diagonal to g̃ as above,
we get

|B|2mixed =
∑
k,i,p

λ−1
k λ−1

p BkipBkip ≥ 0.

To see the first equality in (1.14), we compute by hand:

g̃klg̃pqgijBkiqBljp = g̃klg̃pqgij∇lg̃pj∇kg̃iq

− 1

trω ω̃
g̃klgij∇kg̃ij · ∂l (trω ω̃)

− 1

trω ω̃
g̃klgij∇lg̃ij · ∂k (trω ω̃)

+
1

(trω ω̃)
2 g̃

klg̃pqgij∂k (trω ω̃) ∂l (trω ω̃) g̃iq g̃pj .
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The first term is as desired. For the rest, compute in coordinates chosen as above at a fixed point x ∈ X.

gij∂kg̃ij = ∂k

(
gij g̃ij

)
= ∂k (trω ω̃)⇒ g̃klgij∇kg̃ij · ∂l (trω ω̃) = |∂ trω ω̃|2g̃,

and similarly,

g̃klgij∇lg̃ij · ∂k (trω ω̃) = |∂ trω ω̃|2g̃.

For the last term,

g̃klg̃pqgij∂k (trω ω̃) ∂l (trω ω̃) g̃iq g̃pj = gij g̃ij · g̃
kl∂k (trω ω̃) ∂l (trω ω̃) = trω ω̃ · |∂ trω ω̃|2g̃.

Combined, this yields the first equality in (1.14). This completes Step 2.
Step 3. Last step in the proof of Yau’s a priori estimates is the following.

Theorem 1.22 (Calabi-Yau-Nirenberg). Let (Xn, ω) be a compact Kähler manifold. Let F ∈ C∞(X,R),

µ = 0 or 1. Then there exists some constant C = C
(

(X,ω), ∥F∥C3(X)

)
such that for all φ ∈ C∞(X,R)

solving the problem 
ω̃ := ω + i∂∂φ > 0∫
X
φωn = 0 if µ = 0

ω̃n = eF+µφωn on X,

we have uniform bound
∥ω̃∥C1(X,g) ≤ C.

Let’s first finish the proof of Theorem 1.12 assuming Theorem 1.22, whose proof is further below. Since
ω is given, the estimate above implies ∥∥i∂∂φ∥∥

C1(X,g)
≤ C

⇒ ∥∆gφ∥C1(X,g) ≤ C

⇒ ∥∆gφ∥Cα(X,g) ≤ C, ∀α ∈ (0, 1), C independent of α.

Our goal is to bound ∥φ∥C2(X,g) uniformly. Thus we apply global Schauder estimate, Theorem 1.9. Let

φ̃ := φ−
∫
X
φωn∫

X
ωn

,

so that
∫
X
φ̃ωn = 0 and ∆gφ̃ = ∆gφ. Then Theorem 1.9 1) gives

∥φ̃∥C2,α(X,g) ≤ C∥∆gφ∥Cα(X,g)

⇒ ∥φ∥C2,α(X,g) ≤ ∥φ̃∥C2,α(X,g) +

∣∣∣∣
∫
X
φωn∫

X
ωn

∣∣∣∣ ≤ C∥∆gφ∥Cα(X,g) + ∥φ∥L∞(X).

Combining with the uniform bound ∥φ∥L∞(X) ≤ C proved in Step 1, we get

∥φ∥C2,α(X,g) ≤ C = C
(

(X,ω), ∥F∥C3(X), α
)
, ∀α ∈ (0, 1).

Along with the metric comparison result in Step 2, this concludes the proof of Theorem 1.12.

Question 1.23. The dependence of C on α comes solely from global Schauder Theorem 1.9.
Also C only depends on ∥F∥C3(X), instead of ∥F∥C3,α(X) as stated in Theorem 1.12? This is because

∥∆gφ∥C1(X,g) ≤ C implies ∥∆gφ∥Cα(X,g) ≤ C for another C independent of α?
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Proof of Theorem 1.22. Recall from Step 2 that

C−1ω ≤ ω̃ ≤ Cω (1.15)

for some uniform constant C. Thus

∥ω̃∥C1(X,g) = ∥g̃∥C1(X,g) := ∥g̃∥C0(X,g) + ∥∇g̃∥C0(X,g) ≤ C + ∥∇g̃∥C0(X,g),

where ∇ = ∇g is the Chern connection with respect to metric g.
We are left to show that

∥∇g̃∥C0(X,g) = sup
X
|∇g̃|g ≤ C,

which by (1.15) is equivalent to

sup
X
|∇g̃|2g̃ ≤ C.

As before, the idea for such uniform bound is to apply the maximum principle. We first claim that

|∇g̃|2g̃ = |T |2g̃ (1.16)

where T is a 3-tensor defined by
T kij := Γ̃kij − Γkij ,

the difference of Christoffel symbols of ∇g̃ and ∇g. Recall that in general local coordinates

Γkij :=
∑
l

gkl∂igjl.

To see (1.16), compute ∇g̃ in coordinates:

∇ig̃jl = ∂ig̃jl − Γpij g̃pl

This is in fact the coefficient for dzj ∧ dzl in ∇ig̃. Then observe that

g̃kl∇ig̃jl = g̃kl∂ig̃jl − Γkij = T kij .

Since raising the l index is an isometry for g̃, we get (1.16).

Remark 1.24. More details to expalin this. S := ∇g̃ is a tensor of type (0, 3), i.e. tensor product of 3
covectors. On the other hand, we view T as a tensor of type (1, 2), which is tensor product of a vector with
two covectors. Raising index is the sharp # isomorphism that relates S and T . In coordinates,

|∇g̃|2g̃ =
∣∣∣∇ig̃jldzi ⊗ (dzj ∧ dzl)

∣∣∣2
g̃

= ∇ig̃jl∇αg̃βρg̃
iαg̃jβ g̃ρl

= ∇ig̃jl∇αg̃βρg̃
iαg̃jβ g̃klg̃γρg̃kγ g̃ij = g̃ji

= T kijT
γ
αβ g̃

iαg̃jβ g̃kγ

=

∣∣∣∣T kijdzi ⊗ dzj ⊗ ∂

∂zk

∣∣∣∣2
g̃

= |T |2g̃.
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To apply the maximum principle to |∇g̃|2g̃, we must compute its Laplacian. We choose the Laplacian
with respect to g̃. This is the linearized operator of Monge-Ampère equation. Compute

∆g̃|∇g̃|2g̃ = ∆g̃|T |2g̃
= g̃pq∂p∂q

(
T kijT

γ
αβ g̃

iαg̃jβ g̃kγ

)
= g̃pq∇̃p∇̃q

(
T kijT

γ
αβ g̃

iαg̃jβ g̃kγ

)
(∗)

= g̃pq
(
∇̃pT kij

)(
∇̃qT γαβ

)
g̃iαg̃jβ g̃kγ + g̃pq

(
∇̃pT γαβ

)(
∇̃qT kij

)
g̃iαg̃jβ g̃kγ

+ g̃pq∇̃p∇̃q
(
T kij
)
T γαβ g̃

iαg̃jβ g̃kγ + g̃pqT kij∇̃p∇̃q
(
T γαβ

)
g̃iαg̃jβ g̃kγ (∗∗)

=
∣∣∣∇̃T ∣∣∣2

g̃
+
∣∣∣∇̃T ∣∣∣2

g̃
+ g̃pqT γαβ∇̃p∇̃q

(
T kij
)
· g̃iαg̃jβ g̃kγ + g̃pqT kij∇̃p∇̃q

(
T γαβ

)
· g̃iαg̃jβ g̃kγ .

Remark 1.25. For lines (∗) and (∗∗) above, the following facts about the Chern connection ∇ are used:

• For a function f one has ∇if = ∂if .

• For a tensor, e.g. T represented by T kij above, one has ∇pT kij = ∂pT
k
ij−ΓlpiT

k
lj−ΓlpjT

k
il+ΓkplT

l
ij . This is

abuse of notation, and ∇pT kij actually denotes the coordinate entries of ∇pT . In particular,

∇pgij = ∂pgij − Γlpiglj = ∂pgij − glm (∂pgim) glj = 0, which means ∇pg = 0. Similarly, ∇p
(
g##

)
= 0,

as ∇pgij = ∂pg
ij + Γiplg

lj = ∂pg
ij + gim (∂pglm) glj = 0.

• ∇p satisfies the ”Leibniz rule” for the natural pairing between vector fields and covector fields, or
more generally the natural pairing between a (k, l)-tensor field and a (m,n)-tensor field.

∇⟨S, T ⟩g = ⟨∇S, T ⟩g + ⟨S,∇T ⟩g

In the computation above, the function T kijT
γ
αβ g̃

iαg̃jβ g̃kγ is a natural pairing of a (2, 4)-tensor T ⊗ T
with the (4, 2)-tensor g ⊗ g## ⊗ g##, where g is (0, 2)-tensor.

• ∇p also satisfies the ”Leibniz rule” for the tensor product of tensor fields: ∇p(F ⊗ G) = ∇pF ⊗ G +
F ⊗∇pG.

• Another way to see this is to view ∥T∥2g̃ = ⟨T, T ⟩g̃ as an inner product on tensor fields extended from
g̃, an inner product on vector fields. Thus we have Cauchy-Schwarz inequality which will be useful
below.

The last two terms are almost complex conjugates of each other, except that ∇̃∇̃ are in wrong order.
This motivates the use of curvature to relate them. Thus compute

∇̃p∇̃qT cab − ∇̃q∇̃pT cab
= ∂p

(
∂qT

c
ab − Γ̃lqaT

c
lb − Γ̃lqbT

c
al + Γ̃cqlT

l
ab

)
−
(
∂q∂pT

c
ab − Γ̃lqa∂pT

c
lb − Γ̃lqb∂pT

c
al + Γ̃cql∂pT

l
ab

)
= −∂pΓ̃lqa · T clb − ∂pΓ̃lqb · T cal + ∂pΓ̃

c
ql · T lab.

Observe that

g̃qp
(
−∂pΓ̃lqa

)
= −g̃qp∂p

(
g̃lm∂q g̃am

)
= −g̃qp∂p

(
g̃lm
)
∂q g̃am − g̃qpg̃lm∂p∂q g̃am

= g̃qpg̃lβ g̃αm∂pgαβ∂q g̃am − g̃
qpg̃lm∂p∂q g̃am

= g̃lm
(
g̃qpg̃αβ∂pgαm∂q g̃aβ − g̃

qp∂p∂q g̃am

)
= g̃lmR̃am

= R̃la,
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and similarly,

g̃qp
(
−∂pΓ̃lqb

)
= R̃lb, g̃qp

(
∂pΓ̃

c
ql

)
= −R̃cl .

Combining, we get
g̃qp∇̃p∇̃qT cab = g̃qp∇̃q∇̃pT cab + R̃laT

c
lb + R̃lbT

c
al − R̃clT lab.

By the Monge-Ampère equation (assumption PDE), we have computed in equality (1.9) above that

R̃ij = Rij − ∂i∂jF − µg̃ij + µgij . (1.17)

We know from Step 2 (1.8) that g̃ and g are uniformly equivalent. Hence∣∣∣R̃∣∣∣2
g̃

= g̃ikg̃ljR̃ijR̃kl ≤ C

for some uniform constant C. This is easily seen at each point in the nice coordinate chosen in
Step 2. By the same reason,∣∣∣R̃laT clb∣∣∣2

g̃
≤ C|T |2g̃,

∣∣∣R̃lbT cal∣∣∣2
g̃
≤ C|T |2g̃,

∣∣∣R̃clT lab∣∣∣2
g̃
≤ C|T |2g̃.

Combining the computation of ∆g̃|T |2g̃ and estimates above, and using Cauchy-Schwarz,

∆g̃|T |2g̃ ≥ 2 Re
{
g̃pqT γαβ∇̃p∇̃q

(
T kij
)
· g̃iαg̃jβ g̃kγ

}
− C|T |2g̃. (1.18)

Now we use the definition of T to understand the first term on RHS. Compute

g̃pq∇̃p∇̃q
(
T kij
)

= g̃pq∇̃p∂q
(
T kij
)

= g̃pq∇̃p∂q
(

Γ̃kij − Γkij

)
= g̃pq∇̃p

(
Rkjiq − R̃kjiq

)
= g̃pq∇̃p

(
Rkijq − R̃kijq

)
Bianchi I: Rijkl = Rkjil

= g̃pq
(
∇pRkijq − T rpiRkrjq − T rpjRkirq + T kprR

r
ijq

)
− g̃pq∇̃pR̃kijq.

By Bianchi identities, the last term above yields Ricci of g̃:

g̃pq∇̃pR̃kijq = g̃pq∇̃p
(
R̃iljq g̃

kl
)

= g̃pq∇̃p
(
R̃iljq

)
g̃kl ∇̃pg̃kl = 0

= g̃pq∇̃j
(
R̃pliq

)
g̃kl

= ∇̃j
(
g̃pqR̃pliq g̃

kl
)

= ∇̃jR̃ki
= g̃kl∇̃jR̃il
= g̃kl∇jR̃il − g̃

klT pjiR̃pl.

Again, the Monge-Ampère equation implies (1.17) and furthermore,

∇jR̃il = ∇jRil −∇j∂i∂lF − µ∇j g̃il. (1.19)
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Combined, we estimate as above to get∣∣∣g̃pq∇̃p∇̃q (T kij)∣∣∣2
g̃
≤ C + C|T |2g̃ ⇒

∣∣∣g̃pq∇̃p∇̃q (T kij)∣∣∣
g̃
≤ C + C|T |g̃.

Now the term g̃pqT γαβ∇̃p∇̃q
(
T kij
)
· g̃iαg̃jβ g̃kγ in (1.18) can be viewed as the g̃-inner product of the tensor

g̃pq∇̃p∇̃q
(
T kij
)

(which is Laplcacian of tensor T ) with the tensor T . Hence Cauchy-Schwarz yields

∆g̃|T |2g̃ ≥ C|T |
2
g̃ − C|T |g̃ ≥ −C|T |

2
g̃ − C. (1.20)

Recall from Step 2, the inequality (1.10) and bounds on trω ω̃ and trω̃ ω, that

∆g̃ trω ω̃ ≥ −C + g̃klg̃pqgij∇lg̃pj∇kg̃iq ≥ −C + C−1|∇g̃|2g̃, (1.21)

as we can replace gij by C−1g̃ij by uniform comparability of g̃ and g deduced in Step 2.
Combining (1.16), (1.20), and (1.21), we can pick a sufficiently large but uniform constant A such that

∆g̃(|∇g̃|2g̃ +A trω ω̃) ≥ |∇g̃|2g̃ − C. (1.22)

We are now ready to apply the maximum principle. Consider some point x ∈ X where |∇g̃|2g̃ + A trω ω̃
attains its maximum. Then

|∇g̃|2g̃(x)− C ≤ 0⇒ |∇g̃|2g̃(x) +A trω ω̃(x) ≤ C,

as we derived the uniform bound on trω ω̃ in Step 2. Thus

|∇g̃|2g̃ ≤ |∇g̃|
2
g̃ +A trω ω̃ ≤ C on X

for some uniform constant C = C
(

(X,ω), ∥F∥C3(X)

)
. This completes the proof of Theorem 1.22.

Remark 1.26. The uniform bound on the third derivative of F is used at (1.19).

The computation of ∆g̃|T |2g̃ above is the complex version of the Bochner Formula: in summary,

∆|T |2 = |∇T |2 +
∣∣∇T ∣∣2 + 2 Re⟨∆T, T ⟩+Q(T ),

where Q(T ) is the error term above involving Ricci curvature. Compare with the real version on smooth
manifolds:

1

2
∆|T |2 = |∇T |2 + ⟨∆T, T ⟩+Q(T ), T any tensor field.

1

2
∆|X|2 = |∇X|2 + ⟨∆X,X⟩+ Ric(X,X), X any vector field.

We have so far finished the proof of Yau’s answer to the Calabi conjecture (Theorem 1.6) and Aubin-Yau’s
Theorem 1.5 on the existence of Kähler-Einstein metrics on canonically polarized compact Kähler manifolds.

We add another digression from the proof of Theorem 1.22, on the localized higher order estimates of a
Kähler metric, for later use.

Theorem 1.27 (Local higher order estimates). Let B1 = B1(0) ⊂ Cn denote the unit ball. For each
A ≥ 1, k ∈ N, there exists some constant C = C(k, n,A) such that for any Ricci-flat Kähler metric ω on B1

satisfying
A−1ωCn ≤ ω ≤ AωCn on B1,

we have
∥ω∥Ck(B 1

2
,gCn ) ≤ C(k, n,A).

Here ωCn denotes the Euclidean metric on B1.
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Proof. We start the same as in proof of Theorem 1.22. By uniform comparability of ω and ωCn , it suffices
to bound |∇g|2g on B 1

2
. ∇ is the Chern connection with respect to gCn , which is now trivial in the standard

coordinate.
In particular, the Christoffel symbols with respect to gCn vanish, so letting T be the tensor with entries

T kij := Γkij ,

the Christoffel symbols of g, we have
|∇g|2g = |T |2g.

Since ω is Ricci flat and ωCn is flat, the Bochner formula we computed above simplifies to

∆g|∇g|2g = ∆g|T |2g = |∇T |2g +
∣∣∇T ∣∣2

g
.

Let ρ ∈ C∞
c (B1) be a cutoff function that is 1 on B1/2. As ∆g = gpq∇p∇q, compute

∆g

(
ρ2|∇g|2g

)
= ρ2

(
|∇T |2g +

∣∣∇T ∣∣2
g

)
+ |∇g|2g∆g(ρ

2) + 2 Re⟨∇(ρ2),∇|T |2g⟩g

≥ ρ2
(
|∇T |2g +

∣∣∇T ∣∣2
g

)
− C|∇g|2g − 4ρ

∣∣∣⟨∇ρ,∇|T |2g⟩g∣∣∣.
Again by uniform comparability of ω and ωCn , we have |∇ρ|g ≤ C. Thus the last term above can be further
estimated:

4ρ
∣∣∣⟨∇ρ,∇|T |2g⟩g∣∣∣ ≤ Cρ∣∣∣∇|T |2g∣∣∣

g

≤ Cρ
∣∣⟨∇T, T ⟩g + ⟨T,∇T ⟩

∣∣
g

≤ Cρ
(
|∇T |g|T |g +

∣∣∇T ∣∣
g
|T |g

)
≤ ρ2

(
|∇T |2g +

∣∣∇T ∣∣2
g

)
+ C|T |2g.

Combine to get

∆g

(
ρ2|∇g|2g

)
≥ −C|∇g|2g. (1.23)

Compare this with (1.20). Thus as before the analogous of (1.21) now is

∆g trωCn ω = δijg
klgpq∂kgiq∂lgpj = gijCng

klgpq∇kgiq∇lgpj ≥ C
−1|∇g|2g, (1.24)

using Ricci flatness of ω and comparability of ω and ωCn . We have checked the first equality of (1.24) in
order to conclude (1.10). The second equality makes the quantity coordinate-free as a mixed norm of ∇g.

Combining (1.23) and (1.24), we can again pick constant A sufficiently large such that

∆g

(
ρ2|∇g|2g +A trωCn ω

)
≥ 0 in B1.

By maximum principle, the maximum of function ρ2|∇g|2g + A trωCn ω is attained on the boundary, say
x ∈ ∂B1. Since ρ = 0 on ∂B1,

ρ2|∇g|2g +A trωCn ω ≤
(
ρ2|∇g|2g +A trωCn ω

)
(x) = A trωCn ω(x) ≤ C

as trωCn ω is uniformly bounded by comparability of ω and ωCn . Thus on B1/2 where ρ = 1,

|∇g|2g ≤ ρ
2|∇g|2g +A trωCn ω ≤ C.

This is uniform bound on |∇g|2g, which completes the proof.
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For the case k ≥ 2, we use a standard bootstrap argument. The Ricci-flatness condition implies that the
component functions gij of ω satisfies

∆ggij = gkl∂k∂lgij = gklgpq∂kgiq∂lgpj := Qij .

For any nested balls B ⊂ B′ ⊂ B′′, we first have∥∥∥Qij∥∥∥
Lp(B′′,gCn )

≤ CB

for all p ≥ 1 by the result for k = 1 proved above. Then∥∥∥gij∥∥∥
W 2,p(B′,gCn )

≤ CB,p

by Lp estimates (see e.g. Gilbarg-Trudinger §9.5) for p > 1. Then∥∥∥gij∥∥∥
C1,α(B′,gCn )

≤ CB,α

for all α ∈ (0, 1) by Morrey’s inequality.
We can thus apply local Schauder estimates repeatedly to get uniform bound on ∥ω∥Ck(B1/2,gCn ) for

shrinking balls and increasing k = 2, 3, .... This completes the proof for all k ≥ 2.
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2 Intermezzo

Before seeing applications of Calabi-Yau Theorem, we first recall some important concepts and properties.
Consult, in addition to the lecture notes, Huybrechts or Griffiths-Harris, for basic definitions of holo-

morphic vector bundles, sections, hermitian metrics, curvature, and Chern classes. We emphasize some
important points below.

Proposition 2.1. The space H0(Pn,O(k)) for each k > 0 is isomorphic to C[z0, ..., zn]k, the space of
homogeneous polynomials of degree k, which is C-vector space of dimension

(
n+k
k

)
.

Corollary 2.2. H0(Pn,O(k)) = 0 for each k < 0.

Theorem 2.3 (Birkar-Cascini-Hacon-McKernan, Siu ’06). The canonical ring

R(X,KX) =
⊕
m≥0

H0(X,KmX )

of any compact Kähler manifold X is a finitely generated C-algebra.

For an example of a compact complex non-Kähler manifold whose canonical ring is not finitely generated,
see Example 6.4 of https://arxiv.org/pdf/1309.3015

Lemma 2.4. For each complex manifold X, c1(X) = −c1(KX) = c1(K∗
X). We can see this using the metric

h = (det g)
−1

on KX .

Recall the holomorphic sectional curvature (HSC) for a (1, 0)-tangent vector V = V i ∂
∂zi

with |V |2g = 1:

HSC(V ) := RijklV
iV jV kV l,

which is real and coordinate-free.
The complex space forms are the three model spaces of constant HSC: (Cn, ωEuc), (Pn, ωFS), and

(Bn, ωP ). Recall the Poincaré metric on Bn has constant HSC = −2.

Theorem 2.5 (Hopf, see Kobayashi-Nomizu Vol.II §IX.7). Let (Xn, ω) be a Kähler manifold. Then

1. ω has constant HSC = λ ∈ R if and only if Rijkl = λ
2

(
gijgkl + gilgkj

)
.

2. If we further assume X is compact, and ω has constant HSC = λ ∈ R, then

(a) λ = 0 if and only if X has a finite covering space π : X̃ → X such that X̃ is biholomorphic to
a torus Cn/Λ and π∗ω is a Euclidean metric. This is true if and only if the universal covering
p : X̂ → X is biholomorphic to Cn and p∗ω is a Euclidean metric.

(b) λ > 0 if and only if X is biholomorphic to Pn and ω is isometric to 2
λωFS.

(c) λ < 0 if and only if X is biholomorphic to Bn/Γ for some discrete subgroup Γ acting on Bn by
isometries of ωP , and ω is isometric to − 2

λωP . This is true if and only if the universal covering

p : X̂ → X is biholomorphic to Bn and p∗ω = − 2
λωP .
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3 Applications of Calabi-Yau Theorem

3.1 Positivity of Chern Classes

We are now ready to state and prove two consequences of Theorem 1.6.

Theorem 3.1 (Positivity of 2nd Chern class). Let Xn≥2 be a compact Calabi-Yau manifold, i.e. c1(X) = 0.
Then for every Kähler metric ω on X, we have∫

X

c2(X) ∧ ωn−2 ≥ 0,

Moreover, ∫
X

c2(X) ∧ ωn−2 = 0 for some Kähler metric ω ⇐⇒ X is finitely covered by Cn/Λ.

Corollary 3.2. A compact Kähler manifold Xn≥2 is finitely covered by Cn/Λ if and only if c1(X) = 0 ∈
H2(X,R) and c2(X) = 0 ∈ H4(X,R).

Proof. ⇐. this is immediate consequence of Theorem 3.1.
⇒. Let π : Cn/Λ→ X be a (holomorphic) finite cover. Then π∗ : Hi(X,R)→ Hi(Cn/Λ,R) is injective.

We consider
π∗ck(X) = ck(Cn/Λ) = 0, k = 1, 2

since Cn/Λ admits a flat metric. Thus c1(X) = 0 and c2(X) = 0.

Question 3.3. Following the same essential idea, we can also descend a Kähler metric ω̃ on Cn/Λ to a
Kähler metric on X via π by averaging over the fibers of each point:

ω(x)(u, v) :=
1

|p−1(x)|
∑

p(x̃)=x

ω̃(x̃)(dπ−1
x̃ (u), dπ−1

x̃ (v)).

It is easy to check that ω is closed positive real (1, 1)-form, and it is flat.

Another consequence of Theorem 1.6 is:

Theorem 3.4 (Miyaoka-Yau inequality). Let Xn≥2 be a compact Kähler manifold that is canonically polar-
ized, i.e. c1(X) < 0. Then

(−1)n
∫
X

(
2(n+ 1)

n
c2(X)− c21(X)

)
∧ c1(X)n−2 ≥ 0.

Moreover, the equality holds if and only if X is biholomorphic to Bn/Γ.

Both Theorem 3.1 and Theorem 3.4 follow from Theorem 1.6 and Theorem 1.5, together with the fol-
lowing.

Theorem 3.5. Let (Xn≥2, ω) be a compact Kähler-Einstein manifold. Say Ric(ω) = λω for some λ ∈ R.
Then ∫

X

(
2(n+ 1)

n
c2(X)− c21(X)

)
∧ ωn−2 ≥ 0.

Moreover, the equality holds if and only if ω has constant HSC = 2λ
n+1 .
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Proof of Theorem 3.1. Let ω be any fixed Kähler metric. By Yau’s Theorem 1.6, there exists some unique
metric ω̃ = ω + i∂∂ω such that Ric(ω̃) = 0 ∈ c1(X). Thus Theorem 3.5 applies to ω̃ to yield∫

X

c2(X) ∧ ωn−2 =

∫
X

c2(X) ∧ ω̃n−2 ≥ 0.

Here we use Stokes’ theorem and closedness of any representative of c2(X). Moreover, the equality holds if
and only if ω̃ has constant HSC = 0. By Hopf’s Theorem 2.5, this holds if and only if X is finitely covered
by a torus Cn/Λ.

Proof of Theorem 3.4. By Theorem 1.5, there exists a unique Kähler metric ω such that Ric(ω) = −ω. Then

c1(X) =

[
Ric(ω)

2π

]
= − 1

2π
[ω] ∈ H2(X,R).

Thus we can pick the representative −ω
2π for c1(X), and it follows immediately from Theorem 3.5 that

(−1)n
∫
X

(
2(n+ 1)

n
c2(X)− c21(X)

)
∧ c1(X)n−2 =

∫
X

(
2(n+ 1)

n
c2(X)− c21(X)

)
∧ ωn−2 ≥ 0.

Moreover, the equality holds if and only if ω has constant HSC = −2
n+1 . By Hopf’s Theorem 2.5, this holds

if and only if X is biholomorphic to Bn/Γ.

Proof of Theorem 3.5. By assumption, Rij = λgij , and hence R = Rijg
ij = nλ.

Consider the 4-tensor R0 defined by

R0
ijkl

:= Rijkl −
λ

n+ 1

(
gijgkl + gilgkj

)
.

Hence by Theorem 2.5, ω has constant HSC = 2λ
n+1 if and only if R0 = 0, i.e.

∣∣R0
∣∣2
g

= 0. This suggests we

compute
∣∣R0
∣∣2
g
.

∣∣R0
∣∣2
g

= R0
ijkl

R0
pqrsg

iqgpjgksgrl Rijkl = Rjilk

= |R|2g +
λ2

(n+ 1)2

(
gijgkl + gilgkj

)
(gpqgrs + gpsgrq) g

iqgpjgksgrl

− λ

n+ 1
Rijkl (gpqgrs + gpsgrq) g

iqgpjgksgrl

− λ

n+ 1
Rjilk (gqpgsr + gqrgsp) g

qigjpgskglr

= |R|2g +
2λ2

(n+ 1)2
(n2 + n)− 2λ

n+ 1
Re
{
Rijkl (gpqgrs + gpsgrq) g

iqgpjgksgrl
}

= |R|2g +
2nλ2

(n+ 1)
− 4nλ2

n+ 1

= |R|2g −
2nλ2

(n+ 1)
.

Recall that
1

4π2
tr(Ω ∧ Ω) =

1

4π2
RkipqR

i
krs (idzp ∧ dzq) ∧ (idzr ∧ dzs)
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3 Applications of Calabi-Yau Theorem 3.1 Positivity of Chern Classes

is a real (2, 2)-form representing the class c21(X)−2c2(X) ∈ H4(X,R), where Ω ∈ A2(X,End(T 1,0X)) is the
curvature form. We consider the integral of 1

4π2 tr(Ω ∧ Ω) ∧ ωn−2.
For each x ∈ X, we compute in a coordinate {zi} such that gij(x) = δij . Let Ai = idzi ∧ dzi. Then

ω(x) =
∑
j

Aj ,

ωn(x) = n!A1 ∧ · · · ∧An,

ωn−2(x) = (n− 2)!
∑
i<j

A1 ∧ · · · ∧ Âi ∧ · · · ∧ Âj ∧ · · · ∧An.

Then at x,

(n(n− 1)) tr(Ω ∧ Ω) ∧ ωn−2(x) = ωn(x)
∑
i,k

∑
p ̸=q

(
RkippR

i
kqq −RkipqRikqp

)
= ωn(x)

∑
i,k

∑
p,q

(
RkippR

i
kqq −RkipqRikqp

)
,

where the minus sign comes from

dzp ∧ dzq ∧ dzq ∧ dzp = −dzp ∧ zp ∧ dzq ∧ dzq.

Now since gij(x) = δij , we have at x,∑
p

Rkipp =
∑
p

Rikpp = Rikpqg
pq = Rik = Rki .

Thus we continue to compute

(n(n− 1)) tr(Ω ∧ Ω) ∧ ωn−2(x) = ωn(x)
(
RkiR

i
k −RkipqRikqp

)
= ωn(x)

(
|Ric(ω)|2g − |R|

2
g

)
= ωn(x)

(
λ2n− |R|2g

)
. Ric(ω) = λω

Combined with the computation of
∣∣R0
∣∣2
g

above, we get∣∣R0
∣∣2
g
ωn

n(n− 1)
= − tr(Ω ∧ Ω) ∧ ωn−2(x) +

λ2ωn

n− 1
− 2λ2ωn

(n+ 1)(n− 1)
= − tr(Ω ∧ Ω) ∧ ωn−2(x) +

λ2

n+ 1
ωn.

Finally, integrate over X:

0 ≤
∫
X

∣∣R0
∣∣2
g
ωn

4π2n(n− 1)

=

∫
X

(
2c2(X)− c21(X)

)
∧ ωn−2 +

1

n+ 1

∫
X

(
λω

2π

)2

∧ ωn−2

=

∫
X

(
2c2(X)− c21(X)

)
∧ ωn−2 +

1

n+ 1

∫
X

c21(X) ∧ ωn−2 Ric(ω) = λω

=

∫
X

(
2c2(X)− n

n+ 1
c21(X)

)
∧ ωn−2.

This completes the proof.
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3.2 Applications in Classification

The Miyaoka-Yau inequality (Theorem 3.4) further implies the following:

Theorem 3.6 (Conjecture of Severi, Proof by Hirzebruch-Kodaira ’57, Yau ’76). Let X2 be a compact
complex surface. If X is homotopy equivalent to P2, then X is biholomorphic to P2.

The most important ingredient of the proof is the following theorem of Hirzebruch and Kodaira. The proof
also uses Hirzebruch-Riemann-Roch formula, Serre duality, and Kodaira vanishing, to apply the Miyaoka-Yau
inequality.

Theorem 3.7 (Hirzebruch-Kodaira). Let Xn be a compact complex manifold, and L → X a holomorphic
line bundle. Suppose the following conditions hold:

1. L is positive (so X is projective by Kodaira embedding),

2.
∫
X
c1(L)n = 1, and

3. dimCH
0(X,L) = n+ 1.

Then X is biholomorphic to Pn. Moreover, any basis {s0, ..., sn} of H0(X,L) defines such a biholomorphic
map X ∼= Pn via x 7→ [s0(x) : · · · : sn(x)].

Proof. Let L be a line bundle satisfying the conditions above. Fix a basis {s1, ..., sn+1} of H0(X,L).
Define Dj := {sj = 0}, which is a closed analytic hypersurface for each j. Indeed Dj ̸= ∅, for otherwise sj

is nowhere vanishing global section, so that L ∼= OX , and c1(L) = 0, contradiction to the conditions above.
Define

Vn−j = D1 ∩ · · · ∩Dj ,

for each j = 0, 1, ..., n. In particular Vn = X. Vj are hence closed analytic subvarieties. Observe the
following.

Claim 3.8. For each j = 0, 1, ..., n,

1. Vn−j is irreducible, dimVn−j = n − j, and [Vn−j ] ∈ H2n−2j(X,Z) is Poincaré dual to c1(L)j ∈
H2j(X,Z).

2. There is exact sequence

0→ SpanC{s1, ..., sj} → H0(X,L)→ H0(Vn−j , L|Vn−j ),

where the last map H0(X,L)→ H0(Vn−j , L|Vn−j
) is restriction.

We first assume the claim above and finish the proof. Letting j = n, we see that V0 = D1 ∩ · · · ∩Dn is
a single point, since

∫
X
c1(L)n = 1, and hence H0(V0, L|V0

) ∼= C. Thus sn+1 does NOT vanish at V0 by the
exact sequence. The zero locus of H0(X,L) is empty, so we can define a holomorphic map

f : X → Pn, x 7→ [s1(x) : · · · : sn+1(x)].

Finally, we show that f is bijective, and hence f is biholomorphism. The idea is to view f as the map
sending x to the hyperplane

{s ∈ H0(X,L) | s(x) = 0} ⊂ H0(X,L) ∼= Cn+1.

To see this, we define another holomorphic map

f̂ : X → P(H0(X,L)∗), x 7→ {s ∈ H0(X,L) | s(x) = 0},

where we identify each hyperplane in H0(X,L) with a line in H0(X,L)∗ (canonically this is the line of linear
functionals H0(X,L)→ C vanishing on the hyperplane). Indeed {s ∈ H0(X,L) | s(x) = 0} is a hyperplane
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because the zero locus of H0(X,L) is empty. Now f̂ is defined free of choice of basis for H0(X,L). Picking
any basis {s1, ..., sn+1} of H0(X,L), we have commutative diagram

X P(H0(X,L)∗)

Pn

f̂

f
∼=

Thus f is bijective ⇐⇒ f̂ is bijective. To see f̂ is bijective, let H ⩽ H0(X,L) be any hyperplane. Now we

can choose a basis {s1, ..., sn+1} of H0(X,L) such that H = SpanC{s1, ..., sn}. Since f̂(x) = H if and only
if x ∈ V0 under this basis, Claim 3.8 yields a single point (hence both existence and uniqueness) V0 = {x}
such that f̂(x) = H. This completes the proof.

Proof of Claim 3.8. We prove by induction on j = 0, 1, ..., n.
The base case j = 0 is trivial: Vn = X is trivially irreducible, and [X] is Poincaré dual to 1 = c1(L)0 ∈

H0(X,Z).
Assume the claim is true for j − 1, we prove for j. By induction hypothesis, Vn−j+1 is irreducible,

dimVn−j+1 = n− j + 1, and [Vn−j+1] is Poincaré dual to c1(L)j−1 ∈ H2j−2(X,Z). There is exact sequence

0→ SpanC{s1, ..., sj−1} → H0(X,L)→ H0(Vn−j+1, L|Vn−j+1
).

It follows that sj does not vanish identically on Vn−j+1. Thus

Vn−j = {x ∈ Vn−j+1 | sj |Vn−j+1(x) = 0}

is an analytic hypersurface of Vn−j+1.
Since Vn−j = Vn−j+1 ∩Dj , [Vn−j ] is Poincaré dual (PD) to

PD([Vn−j+1]) ∧ PD([Dj ]) = c1(L)j−1 ∧ c1(L) = c1(L)j ∈ H2j(X,Z),

where c1(L) = c1(O(Z(sj))) = c1(O([Dj ])) = [Dj ] under Poincaré duality (see Huybrechts §4).
Vn−j is irreducible. Suppose otherwise, Vn−j = U1∪U2, where U1, U2 are non-empty analytic subvarieties.

Then

1 =

∫
X

c1(L)n

=

∫
X

c1(L)j ∧ c1(L)n−j

=

∫
Vn−j

c1(L)n−j

=

∫
U1

c1(L)n−j +

∫
U2

c1(L)n−j . (3.1)

Recall that L is positive, so c1(L) can be represented by a Kähler metric ω. Then∫
Ui

c1(L)n−j =

∫
Ui

ωn−j = Vol(Ui, ω) > 0, i = 1, 2. (3.2)

Meanwhile, [Ui] ∈ H2n−2j(X,Z), so∫
Ui

c1(L)n−j =

∫
X

PD([Ui]) ∧ c1(L)n−j ∈ Z, i = 1, 2. (3.3)
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Thus (3.1), (3.2), and (3.3) yield a contradiction.
To show exactness of the sequence

0→ SpanC{s1, ..., sj} → H0(X,L)→ H0(Vn−j , L|Vn−j ), (3.4)

note first that we have exact sequence

0 H0(Vn−j+1,O) H0(Vn−j+1, L) H0(Vn−j , L)

C H0(X,L)

f

∼=

g

where f is multiplication by sj |Vn−j+1
, and g is restriction. f is injective since sj does not vanish identically

on Vn−j+1 as shown above. The exactness follows from the restriction short exact sequence

0→ OVn−j+1

⊗sj−→ OVn−j+1
⊗ L→ OVn−j

⊗ L→ 0,

which adapts from the twist of the structure sheaf

0→ IVn−j |Vn−j+1
→ OVn−j+1 → OVn−j → 0.

Suppose s ∈ H0(X,L) restricts to the zero section in H0(Vn−j , L). By commutativity of restriction,
g(s|Vn−j+1) = 0. Thus by exactness above, s|Vn−j+1 = λ · sj |Vn−j+1 for some λ ∈ C ∼= H0(Vn−j+1,O). Then
s − λ · sj ∈ H0(X,L) restricts to the zero section in H0(Vn−j+1, L). By induction hypothesis, s − λ · sj ∈
SpanC{s1, ..., sj−1}, so that s ∈ SpanC{s1, ..., sj}. This proves the exactness of sequence (3.4).

This completes the induction and the proof.

We have the following extension of Theorem 3.6 to general dimension.

Theorem 3.9. Let Xn be a compact Kähler manifold. If X is homeomorphic to Pn, then X is biholomorphic
to Pn.

We can ask further the following question.

Question 3.10. Let Xn be a compact complex manifold. If X is diffeomorphic to Pn, then X is biholomor-
phic to Pn?

The answer is yes for n = 1, 2, yet unknown for n ≥ 3. If it is true for n = 3, then it follows that S6 is
not complex manifold. This is also unknown.
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3.3 Degenerations of Ricci-Flat Kähler Metrics

Let Xn be a compact Calabi-Yau manifold, i.e. X is Kähler and c1(X) = 0 ∈ H2(X,R). By Calabi-Yau
Theorem, the Ricci-flat Kähler metrics on X are parametrized bijectively by the set

CX := {[ω] ∈ H1,1(X,R) | ω Kähler metric on X}.

Recall that by Hodge Theory (and ∂∂ lemma as a consequence),

H1,1(X,R) = H1,1(X) ∩H2(X,R) ⊂ H2(X,C)

= {[α] ∈ H2(X,R) | [α] contains a closed real (1, 1)-form}

=
{d-closed real (1, 1)-forms}

i∂∂C∞(X,R)
.

(The last line is also the definition of Bott-Chern cohomology for non-Kähler manifolds). We first derive
some basic properties of CX .

Proposition 3.11. CX ⊂ H1,1(X,R) is an open convex cone, called the Kähler cone of X.

CX is clearly a convex cone. To see openness, consider an R-basis of H1,1(X,R) and use ∂∂-lemma.

Example 3.12. Consider n = 1. Riemann surfaces are always Kähler by existence of Hermitian metrics.
Then

C ∼= H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X),

so that H1,1(X) ∼= C, and H1,1(X,R) is a real line in C. Then CX is a half-line. Also, [α] ∈ H1,1(X,R)
belongs to CX if and only if

∫
X
α > 0.

Example 3.13. Let Xn := Cn/Λ be a torus. X is a Lie group, and X acts on itself by translations. By
averaging forms, we see that every class [α] ∈ H1,1(X,R) has a unique representative α which is a constant
real (1, 1)-form. Writing α = iαijdzi ∧ dzj , we can associate the form with a Hermitian matrix (αij). Thus
[α] ∈ CX if and only if this unique invariant representative is positive, i.e. the associated matrix is positive
definite. Therefore,

CX = Herm+(n) ⊂ Herm(n) = H1,1(X,R),

which is indeed an open convex cone.

A natural question to ask is: which classes in H1,1(X,R) lie on ∂CX := CX \ CX?

Definition 3.14. We call ∂CX the numerically effective (NEF) cone, and a class in H1,1(X,R) is called
NEF if it belongs to ∂CX .

Example 3.15. Continuing on the torus example above, the NEF cone is the subset of positive-semidefinite
Hermitian matrices under the identification Herm(n) = H1,1(X,R).

Recall first the definition of (semi-)positive real (1, 1)-forms on complex manifold X (see Huybrechts
Def.4.3.14). If [α] ∈ H1,1(X,R) contains a closed real (1, 1)-type representative α ≥ 0, then [α] ∈ CX ,
because α+ εω > 0 for any ε > 0 and any Kähler metric ω, so that [α] + ε[ω] ∈ CX . The converse is not true
(too strong), however. Fujita made the conjecture, and Demailly-Peternell-Schneider gave counterexamples.
The correct statement is:

Proposition 3.16 (Characterization of NEF cone). Let (Xn, ω) be a compact Kähler manifold. Let α be a
closed real (1, 1)-form on X. Then

[α] ∈ CX ⇐⇒ for any ε > 0, there exists φε ∈ C∞(X,R) such that α+ i∂∂φε > −εω on X.
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Proof. ⇐: The condition means that [α] + ε[ω] ∈ CX for any ε > 0. Letting ε→ 0, we see [α] ∈ CX .
⇒: Since [α] ∈ CX , we can find a sequence of Kähler metrics {ωi} such that [ωi] → [α] in H1,1(X,R).

Define [βi] := −[α] + [ωi], so [βi]→ 0 ∈ H1,1(X,R). Thus we can find representative βi ∈ [βi] that is closed
real (1, 1)-form and α+ βi = ωi > 0.

Let {[α1], ..., [αN ]} be an R-basis for H1,1(X,R). We can thus write

[βi] =

N∑
j=1

λij [αj ], i = 1, 2, ....

[βi] → 0 means that
∑
j |λij | → 0 as i → ∞. Thus we can choose for each ε > 0 some i0 sufficiently large

such that
N∑
j=1

λi0jαj ≤ εω,

by compactness of X. Combined, we get

0 < ωi0 = α+ βi0 = α+

N∑
j=1

λi0jαj + i∂∂φi0 ≤ α+ i∂∂φi0 + εω ⇒ α+ i∂∂φi0 > −εω.

Corollary 3.17. CX + CX = CX in H1,1(X,R).

Proof. Let [α] ∈ CX , [β] ∈ CX . By definition, we can pick a representative β = ω for some Kähler metric ω.
Let α be any closed real (1, 1)-form representing [α]. By Proposition 3.16, there is some φ ∈ C∞(X,R) such
that α + i∂∂φ > −ω. Then [α] + [β] has representative α + i∂∂φ + ω > 0, which is hence a Kähler metric
on X. Therefore, [α] + [β] ∈ CX .

Proposition 3.18. (−CX) ∩ CX = ∅. (−CX) ∩ CX = {0}, i.e. the NEF cone is salient.

Proof. If (−CX) ∩ CX ̸= ∅, then 0 ∈ CX by convexity. Thus there is a Kähler metric ω with [ω] = 0 ∈
H1,1(X,R). Then

Vol(X,ω) =

∫
X

ωn =

∫
X

[ω]n = 0,

a contradiction. Thus (−CX) ∩ CX = ∅.
Clearly 0 ∈ CX . To see (−CX) ∩ CX ⊂ {0}, suppose 0 ̸= [α] ∈ (−CX) ∩ CX . Fix a Kähler metric ω. Then

by Corollary 3.17, [ω] + t[α] ∈ CX for all t ∈ R. Pick a representative α ∈ [α] which is a closed real (1,
1)-form. We can pick a Kähler form ωt representing the class [ω] + t[α], and by compactness ωt > εtω for
some εt > 0. This is essentially Proposition 3.16. Then

0 <

∫
X

(ω + tα) ∧ ωn−1 =

∫
X

ωn + t

∫
X

α ∧ ωn−1, ∀t ∈ R.

Hence ∫
X

α ∧ ωn−1 = 0.

Similarly,

0 <

∫
X

(ω + t1α) ∧ (ω + t2α) ∧ ωn−2 =

∫
X

ωn + t1t2

∫
X

α2 ∧ ωn−2, ∀t1, t2 ∈ R,

so ∫
X

α2 ∧ ωn−2 = 0.
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By Lefschetz Decomposition (Cor.3.1.2 of Huybrechts), we can write α = β+ cω, where β is primitive closed
real (1, 1)-form. Then β ∧ ωn−1 = 0, so

0 =

∫
X

α ∧ ωn−1 = c

∫
X

ωn ⇒ c = 0.

Thus ∫
X

β2 ∧ ωn−2 = 0.

Since [α] ̸= 0, we have by Hodge-Riemann bilinear relation (Prop.3.3.15 of Huybrechts)∫
X

β2 ∧ ωn−2 < 0,

a contradiction. This completes the proof that (−CX) ∩ CX = {0}.

Now consider V k ⊂ Xn a compact complex submanifold, or more generally a closed irreducible analytic
subvariety of dimension 1 ≤ k ≤ n. If [α] ∈ CX , and we pick α to be a Kähler metric, then∫

V

αk =

∫
V

[α]k = ⟨[V ], [α]k⟩ = Vol(V, α) > 0.

Thus if [α] ∈ CX , then there exists a sequence [αi] ∈ CX with [αi]→ [α], so that∫
V

αk =

∫
V

[α]k = ⟨[V ], [α]k⟩ = lim
i
⟨[V ], [αi]

k⟩ ≥ 0

by Poincaré duality.
In fact,

Theorem 3.19 (Demailly-Paun ’01). Let Xn be a compact Kähler manifold. If [α] ∈ CX , then

[α] ∈ CX ⇐⇒
∫
V

[α]dimV > 0 for all positive-dimensional closed irreducible analytic subvariety V .

Therefore, if [α] ∈ ∂CX , then there exists some irreducible analytic subvariety V of positive dimension,
such that

∫
V

[α]dimV = 0. Theorem 3.19 generalizes Nakai-Moishezon Theorem in algebraic geometry, which
characterizes ample line bundles on a proper scheme.

Another concept we need for studying degenerations of Ricci-flat Kähler metrics is null locus, motivated
from Theorem of Demailly-Paun above.

Definition 3.20. The null locus of a class [α] ∈ CX is

Null([α]) :=
⋃
V⊂X∫

V
[α]dimV =0

V ⊂ X

where V ranges over all positive-dimensional closed irreducible analytic subvarieties.

Therefore, Null([α]) = ∅ ⇐⇒ [α] ∈ CX by Theorem of Demailly-Paun.

Example 3.21. Let Xn = Cn/Λ be a torus. We claim that for every [α] ∈ ∂CX , one has Null([α]) = X. Recall
from examples above on complex tori, that ∂CX is the subset of positive-semidefinite Hermitian matrices
with at least one zero eigenvalue, under the identification of each class in H1,1(X,R) with its unique constant
representative. Thus the determinant vanish, and we integrate using this constant representative that∫

X

[α]n =

∫
X

0 = 0.

Hence Null([α]) = X.
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Theorem 3.22 (Collins-Tosatti ’13). Let Xn be a compact Kähler manifold, [α] ∈ ∂CX . Then Null([α]) is
a closed analytic subvariety of X (not necessarily irreducible), and

Null([α]) = X ⇐⇒
∫
X

[α]n = 0.

Remark 3.23. Theorem 3.22 and work of Chiose combine to give a new proof of Theorem 3.19.

We are now ready to start. Let Xn be a compact Kähler Calabi-Yau manifold. Let ω be a Ricci-flat
Kähler metric on X. Let [αt] be a C0 path in H1,1(X,R), t ∈ [0, 1], such that [αt] ∈ CX for t ∈ (0, 1] and
[α0] ∈ ∂CX . By Calabi-Yau Theorem, for each t ∈ (0, 1], there exists a unique Ricci-flat Kähler metric ωt in
the class [αt]. We hope to understand the ”degeneration” of (X,ωt) as t→ 0.

Example 3.24. Consider Xn = Cn/Λ a torus. Under the canonical representation of H1,1(X,R) above, ωt is
a family of constant closed real (1, 1)-forms such that ωt → ω0 as t→ 0. ω0 is positive-semidefinite but not
positive-definite. We call ω0 the degenerate tensor.

In the general setting, we fix αt a C0 family in t of smooth closed real (1, 1)-forms on X, such that
αt ∈ [αt]. This can be achieved by fixing a basis for H1,1(X,R).

On t ∈ (0, 1], since ωt and ω are Ricci-flat, we have

∆ω

(
log

(
ωnt
ωn

))
= 0 on X,

so ωnt = cωn on X for some constant c by maximum principle. We then integrate boths sides over X to find

c =
∫
X
αn

t∫
X
ωn . In summary, we have a PDE problem


ωt = αt + i∂∂φt∫
X
φtω

n = 0

(αt + i∂∂φt)
n = ωnt =

∫
X
αn

t∫
X
ωnω

n

(∗t)

and

0 <

∫
X

αnt →
∫
X

αn0 as t→ 0.

For each t ∈ (0, 1], since ωt is fixed, we have a unique solution φt for ∗t. And

Vol(X,ωt) =

∫
X

ωnt =

∫
X

αnt →
∫
X

αn0 ≥ 0.

Hence there are two cases:

I)
∫
X
αn0 > 0 ⇐⇒ Vol(X,ωt) ≥ c−1 > 0 for some c > 0. We call this case volume non-collapsed.

II)
∫
X
αn0 = 0 ⇐⇒ Vol(X,ωt)→ 0 as t→ 0. We call this case volume collapsed.

The method in Yau’s proof no longer applies here, as the reference Kähler metric ω is now replaced by
αt, and we don’t know about the geometry of (X,αt) as t → 0. In fact, Yau’s estimates for φt blow up as
t→ 0.

Conjecture 3.25. There exists some constant C > 0 such that supX |φt| ≤ C for all t ∈ (0, 1].

The statement is true when [α0] ∈ ∂CX contains a smooth representative α0 ≥ 0. The torus case discussed
above is one such example. It is necessary that X is Calabi-Yau, for there are counterexamples when X is
not.
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Let us assume there is indeed α0 ≥ 0 such that [α0] ∈ ∂CX . Assume
∫
X
αn0 > 0, i.e. volume non-collapsed.

To further simplify, assume αt = α0 + tω for t ∈ [0, 1], so that [αt] ∈ CX for t ∈ (0, 1]. αt is Kähler metric,
but not necessarily Ricci-flat, so as above

ωt = αt + i∂∂φt∫
X
φtω

n = 0

(αt + i∂∂φt)
n = ωnt =

∫
X
αn

t∫
X
ωnω

n

(3.5)

Using Conjecutre 3.25 which holds in this case, one gets

Theorem 3.26 (Tosatti ’07, Collins-Tosatti ’13). Under assumptions above, ωt and φt have uniform Ck(K)
bounds independent of t, for all k ≥ 0 and for all K ⋐ X \Null([α0]).

Proof Sketch. Since
∫
X
αn0 > 0, we have Null([α0]) ̸= X by Theorem 3.22. One key claim in the proof, whose

proof we omit, is the following.

Claim 3.27. There exists a smooth function

ψ : X \Null([α0])→ R

such that ψ(x)→ −∞ as x goes to Null([α0]), and α0 + i∂∂ψ ≥ εω on X \Null([α0]) for some ε > 0.

Next apply Tsuji’s trick. Consider the quantity

Q := log trω ωt −A(φt − ψ),

for t ∈ (0, 1], A > 0 a constant to be determined. By claim above, Q is a smooth function on X \Null([α0]),
and Q→ −∞ near Null([α0]). Thus Q attains its maximum, say at x ∈ X \Null([α0]). Compute at x:

∆ωt
Q ≥ −C trωt

ω − C −A∆ωt
φt +A∆ωt

ψ, (3.6)

using the calculations in the proof of Aubin-Yau Theorem (see (1.12)). Now

∆ωt
φt = trωt

(i∂∂φt) = trωt
(ωt − αt) = n− trωt

αt,

so

−A∆ωtφt +A∆ωtψ = −An+A trωt αt +A trωt(i∂∂ψ)

= −An+A trωt

(
α0 + tω + i∂∂ψ

)
≥ −An+Aε trωt

ω.

Combined, we get
∆ωt

Q ≥ −C trωt
ω − C −An+Aε trωt

ω. (3.7)

Choose A≫ 1 such that Aε = C + 1, and replace C if needed, to get

0 ≥ ∆ωt
Q(x) ≥ trωt

ω(x)− C ⇒ trωt
ω(x) ≤ C. (3.8)

Using the simultaneous diagonalization trick and inequality (3.8),

trω ωt(x) ≤ 1

(n− 1)!
(trωt

ω(x))
n−1 ω

n
t

ωn
(x)

≤ Cω
n
t

ωn
(x)

≤ C
∫
X
αnt∫

X
ωn

≤ C,
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so log trω ωt(x) ≤ C. ψ → −∞ near Null([α0]) and is smooth on X \Null([α0]), so ψ ≤ C on X \Null([α0]).
By Conjecture 3.25, supX |φt| ≤ C for all t. Combined, we get

Q(x) ≤ C −Aφt(x) +Aψ(x) ≤ C,

so
Q ≤ C on X \Null([α0]).

Then
log trω ωt ≤ C +A(φt − ψ) ≤ C −Aψ on X \Null([α0]),

so
trω ωt ≤ Ce−Aψ on X \Null([α0]), for all t ∈ (0, 1].

On each K ⋐ X \Null([α0]), we get bound on |ψ|, so that

ωt ≤ CKω on each K ⋐ X \Null([α0]), for all t ∈ (0, 1].

Applying the same trick again, on each K ⋐ X \Null([α0]),

trωt ω ≤
1

(n− 1)!
(trω ωt(x))

n−1 ω
n

ωnt
(x) ≤ CK

∫
X
ωn∫

X
αnt
≤ CK ,

for we assume that
∫
X
αnt →

∫
X
αn0 > 0. Combined, we get

C−1
K ω ≤ ωt ≤ CKω on each K ⋐ X \Null([α0]), for all t ∈ (0, 1].

Finally, we can apply local higher order estimates (Theorem 1.27) to ωt with some suitable fixed open
cover of K to bound ∥ωt∥Ck(K,ω) with constants independent of t (it depends on the choice of open

cover, k, n, and ω). Indeed ω is comparable with the Euclidean metric in each local coordinate.
Since αt depends continuously on t ∈ [0, 1], we also have uniform Ck(K,ω) bound on αt independent of

t. Thus i∂∂φt = ωt − αt is bounded uniformly, as well as their trace

∆ωφt = trω(ωt − αt).

Finally apply Schauder estimates to give uniform bound on ∥φt∥Ck(K,ω). This completes the proof.

With this uniform bound on ωt, compactness results show that ωt converges in the C∞
loc (X \Null([α0]))

topology to some Ricci-flat Kähler metric ω0 on X \Null([α0]), as t→ 0.

We introduce K3 surface as an example of the case of degenerations of Ricci-flat Kähler metrics discussed
above.

Definition 3.28. A K3 surface X2 is a 2-dimensional compact Kähler manifold that is Calabi-Yau (i.e.
c1(X) = 0 ∈ H2(X,R)) and simply connected (i.e. π1(X) = {1}).

Lemma 3.29. For every K3 surface X, the canonical bundle KX is isomorphic to the trivial line bundle
OX .

Proof. We know that
H1(X,Z) = π1(X)abelian = 0.

The Universal Coefficient Theorem in topology implies that i) the torsion of H2(X,Z) is isomorphic to the
torsion of H1(X,Z), so H2(X,Z) is torsion-free; ii) H1(X,Z) is isomorphic to the free part of H1(X,Z), so
H1(X,Z) = 0.
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Since X is Kähler, Hodge thoery implies

0 = H1(X,C) = H1,0(X)⊕H0,1(X)⇒ H0,1(X) = 0.

By the exponential exact sequence
0→ Z→ OX → O∗

X → 0,

we have exact sequence
H0,1(X)→ Pic(X)→ H2(X,Z)→ H0,2(X).

As H0,1(X) = 0, the map c1 : Pic(X)→ H2(X,Z) is injective. Note that

c1(KX) = −c1(X) = 0 = c1(OX) ∈ H2(X,R),

and H2(X,Z) is torsion-free, so c1(KX) = c1(OX) = 0 ∈ H2(X,Z), KX ∼= OX .

The statement is equivalent to the existence of a global holomorphic section s ∈ H0(X,KX) that is
nowhere vanishing, i.e. a nowhere vanishing holomorphic 2-form (∂-closed (2, 0)-form) on X. By maximum
principle, such s is unique up to scaling by C∗.

Example 3.30. Smooth hypersurfaces X = {P = 0} ⊂ P3 where P is homogeneous polynomial in C[z0, ..., z3]
of degree 4, are K3 surfaces. Proof. We know that KX ∼= O(4− 3− 1)|X ∼= OX , so c1(X) = −c1(KX) = 0 ∈
H2(X,R). By Lefschetz Hyperplane Theorem, π1(X) ∼= π1(P3) = {1}.

We can use Hirzebruch-Riemann-Roch on K3 surfaces for more topological properties, like the Betti
numbers. Let X be a K3 surface, L := OX . Then

χ(X,OX) = dimCH
0(X,OX)− dimCH

1(X,OX) + dimCH
2(X,OX) dimCX = 2

=
1

2

(∫
X

c1(L)2 +

∫
X

c1(X) ∧ c1(L)

)
+

1

12

(∫
X

c1(X)2 + χ(X)

)
=
χ(X)

12
c1(X) = 0

Also, H0(X,OX) = C. By Hodge theory, (we know already that H1(X,Z) = H1(X,Z) = 0 by Universal
Coefficient Theorem)

0 = H1(X,C) = H1,0(X)⊕H0,1(X)⇒ H1(X,OX) = 0.

By Serre duality,

H2(X,OX) ∼= H0,2(X) ∼= H2,0(X)∗ ∼= H0(X,KX)∗ ∼= H0(X,OX)∗ ⇒ dimCH
2(X,OX) = 1.

Therefore, χ(X) = 24. On the other hand,

24 = χ(X)

= dimH0(X,R)− dimH1(X,R) + dimH2(X,R)− dimH3(X,R) + dimH4(X,R)

= 2 + dimH2(X,R)

by Poincaré duality. Thus the second Betti number b2 = dimH2(X,R) = 22. In summary, the Betti numbers
of X are

b0 = b4 = 1, b1 = b3 = 0, b2 = 22.

Moreover, by Hodge theory,

C22 ∼= H2(X,C) ∼= H2,0(X)⊕H1,1(X)⊕H0,2(X),

and we know from above that dimCH
0,2(X) = 1, so

dimCH
1,1(X) = 20.

Thus H1,1(X,R) = H1,1(X)∩H2(X,R) ⊂ H2(X,C) is isomorphic to R20 (consider H1,1(X,R) as the space
of real harmonic (1, 1)-forms), and CX is a cone in R20.
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Example 3.31. Let X be a Kummer K3 surface. X is constructed as follows. Take a torus Y = C2/Λ. The
map ι : Y → Y via (z1, z2) 7→ (−z1,−z2) has 16 singular points. Resolve these singularities by a blow-up to
get π : X → Y/ι. Take [α0] = π∗[ωC2 ], then α0 ≥ 0 and

∫
X
α2
0 > 0. Moreover, Null([α0]) is the preimage

under π of the 16 singular points on Y .
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