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1 Sobolev Spaces

Definition 1.1 Let Ω be an open subset of Rn, and fix a natural number k
and a real 1 ≤ p ≤ ∞. The Sobolev space Hp

k(Ω) is the space of all functions
u ∈ Lp(Ω) such that all the weak derivatives of u of order ≤ k are in Lp(Ω).

If u ∈ Hp
k(Ω) we set

‖u‖k,p :=
∑

0≤|α|≤k

(∫

Ω
|∇αu|p

)1/p

,

then Hp
k(Ω) becomes a Banach space. If p = 2 then it is also a Hilbert space,

with the scalar product

(u, v)2k,2 :=
∑

0≤|α|≤k

∫

Ω
∇αu∇αv.

We will always write ‖u‖p := ‖u‖0,p. It is also true that the Sobolev space
Hp

k(Ω) is the completion of {u ∈ C∞(Ω) | ‖u‖k,p < ∞} with respect to the
norm ‖ · ‖k,p (this was first proved by Meyers and Serrin [14]).

Proposition 1.2 The space C∞
c (Rn) of smooth functions with compact sup-

port is dense in Hp
k(Rn).

Proof
Let f : R → R be any smooth function that is identically 1 for t ≤ 0
and identically 0 for t ≥ 1. Since Hp

k(Rn) is the completion of C∞(Rn),
it is enough to show that every function ϕ ∈ C∞(Rn) ∩ Hp

k(Rn) can be
approximated in Hp

k(Rn) by functions in C∞
c (Rn). Consider the sequence

ϕj(x) := ϕ(x)f(|x| − j).

We have that ϕj ∈ C∞
c (Rn): in fact |x| is not differentiable at x = 0,

but f(t) is identically 1 for t ≤ 0 so that ϕj is smooth for j > 0. As
j → ∞, ϕj(x) → ϕ(x) for every x ∈ Rn, and |ϕj(x)| ≤ |ϕ(x)| which
belongs to Lp(Rn), so by Lebesgue dominated convergence theorem we have
‖ϕj − ϕ‖p → 0.

For every fixed k and every multiindex α of length k we have∇αϕj(x) →
∇αϕ(x) as j →∞, and by induction

|∇αϕj(x)| ≤ |∇αϕ(x)|+ C
∑

0≤|l|≤k−1

|∇lϕ(x)| · |∇k−|l|fj(x)|,
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for some constant C, where fj(x) = f(|x| − j). We note that f (s)(t) and
|∇s|x|| are bounded for s ≥ 1, so we get

|∇αϕj(x)| ≤ |∇αϕ(x)|+ C ′ ∑

0≤|l|≤k−1

|∇lϕ(x)|.

But the right hand side above belongs to Lp, so again by Lebesgue dominated
convergence, ‖∇α(ϕj − ϕ)‖p → 0. ¤

This is false for general domains Ω ⊂ Rn, and we denote by Hk,p
0 (Ω)

the closure of C∞
c (Ω) with respect to ‖ · ‖k,p.

Now let (M, g) be a smooth Riemannian manifold of dimension n,
connected and without boundary, and let u : M → R be a smooth func-
tion. Then for k a natural number, we let ∇ku be the k-th total covariant
derivative of u and |∇ku| be its norm with respect to g. In a local chart this
is

|∇ku|2 = gi1j1 . . . gikjk∇i1 . . .∇iku∇j1 . . .∇jk
u.

If p ≥ 1 is a real number, we set

‖u‖k,p :=
k∑

j=0

(∫

M
|∇ju|pdV

)1/p

.

Definition 1.3 The Sobolev space Hp
k(M) is the completion of

{u ∈ C∞(M) | ‖u‖k,p < ∞}

with respect to the norm ‖ · ‖k,p.

We have that Hp
k(M) is Banach space and if p = 2 then it is also a Hilbert

space, with the scalar product

(u, v)2k,2 :=
k∑

j=0

∫

M
〈∇ju,∇jv〉dV,

where 〈·, ·〉 is the pairing induced by g. If M is compact and h is another
Riemannian metric on M , then there is a constant C > 0 such that

1
C

g ≤ h ≤ Cg,

because this is true in every chart and we can cover M with finitely many
charts. Also this is true for the covariant derivatives of g and h up to any
finite order k. Then the Sobolev norms with respect to g and h are also
equivalent, so they define the same Sobolev space. Hence we have proved
the
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Proposition 1.4 If M is compact then the Sobolev spaces Hp
k(M) do not

depend on the Riemannian metric.

By definition of Sobolev spaces we have that C∞(M) is dense in Hp
k(M), so

we can ask when does this happen for C∞
c (M). Of course if M is compact

these two spaces coincide, but if M is just complete, in general C∞
c (M) is

NOT dense in Hp
k(M). Nevertheless the following is true:

Proposition 1.5 If (M, g) is a complete Riemannian manifold, then C∞
c (M)

is dense in Hp
1 (M).

Proof
We notice that we cannot proceed like in Proposition 1.2 because in general
the distance function d(x, P ) for a fixed P ∈ M is only Lipschitz in x. So
let’s define a function f : R → R by f(t) = 1 for t ≤ 0, f(t) = 1 − t for
0 ≤ t ≤ 1 and f(t) = 0 for t ≥ 1, so that f is Lipschitz and |f ′| ≤ 1. It
is enough to show that we can approximate any ϕ ∈ C∞(M) ∩Hp

1 (M) by
smooth functions with compact support. Fix P ∈ M and define

ϕj(x) := ϕ(x)f(d(x, P )− j).

Then each of the ϕj is Lipschitz, so by Rademacher’s theorem is differ-
entiable a.e., has compact support and so is bounded. But ∇ϕj is also
bounded, because

|∇ϕj(x)| ≤ |∇ϕ(x)|+ |ϕ(x)| sup
t∈[0,1]

|f ′(t)| ≤ |∇ϕ(x)|+ |ϕ(x)|,

where we have used that |∇d| = 1 a.e. Hence all the ϕj belong to Hp
1 (M).

Exactly like in the proof of Proposition 1.2 we can prove that ϕj → ϕ in
Hp

1 (M). We now have to show that we can approximate each ϕj , but this
is easy: by definition there are functions ϕk

j ∈ C∞(M) that converge to ϕj

in Hp
1 (M) as k → ∞. Now pick αj ∈ C∞

c (M) that is identically 1 on the
support of ϕj ; then we have that αjϕ

k
j ∈ C∞

c (M) converge to ϕj in Hp
1 (M),

and we have finished. ¤

2 The Sobolev Inequalities

2.1 The Euclidean case

We have the following fundamental

Theorem 2.1 (Sobolev Embedding) Assume n ≥ 2, let k, l be two nat-
ural numbers, k > l, and p, q two real numbers 1 ≤ q < p satisfying

1
p

=
1
q
− k − l

n
.
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Then
Hq

k(Rn) ⊂ Hp
l (Rn)

and the identity operator is continuous. If n = 1 then for every natural
numbers k > l and p, q real numbers 1 ≤ q ≤ p ≤ ∞ we have a continuous
embedding

Hq
k(R) ⊂ Hp

l (R).

Proof
The proof consists of several steps. First assume n ≥ 2.

Step 1 (Gagliardo-Nirenberg Inequality [10],[16]) We prove
that every ϕ ∈ C∞

c (Rn) we have

‖ϕ‖n/(n−1) ≤
1
2

n∏

i=1

∥∥∥∥
∂ϕ

∂xi

∥∥∥∥
1/n

1

. (2.1)

Pick a point P = (y1, . . . , yn) in Rn, call Dxi1
,...,xij

the j-plane through P
parallel to the one generated by the coordinated axes xi1 , . . . , xij , so for
example Dx1,...,xn = Rn. Since ϕ has compact support, we can apply the
fundamental theorem of calculus to get

ϕ(P ) =
∫ y1

−∞

∂ϕ

∂x1
(x1, y2, . . . , yn)dx1 = −

∫ +∞

y1

∂ϕ

∂x1
(x1, y2, . . . , yn)dx1

|ϕ(P )| ≤ 1
2

∫

Dx1

|∂x1ϕ|(x1, y2, . . . , yn)dx1.

Doing the same for all the other coordinates, multiplying them all together
and taking the (n− 1)-th root we get

|ϕ(P )| n
n−1 ≤ 1

2n/(n−1)

(∫

Dx1

|∂x1ϕ|dx1 · · ·
∫

Dxn

|∂xnϕ|dxn

) 1
n−1

Now we integrate this inequality for y1 ∈ R: the first integral does not
depend on y1 so it can be taken out. Then we apply Hölder’s inequality
n− 2 times to the remaining terms this way:

∫

R
f

1
n−1

1 . . . f
1

n−1

n−1 ≤
(∫

R
f1

) 1
n−1

. . .

(∫

R
fn−1

) 1
n−1

.

We get
∫

Dx1

|ϕ(y1, y2, . . . , yn)| n
n−1 dy1 ≤

1
2n/(n−1)

(∫

Dx1

|∂x1ϕ|(x1, y2, . . . , yn)dx1

∫

Dx1,x2

|∂x2ϕ|(y1, x2, y3, . . . , yn)dy1dx2

· · ·
∫

Dx1,xn

|∂xnϕ|(y1, y2, . . . , xn)dy1dxn

) 1
n−1

.
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Integration of y2, . . . , yn over R and the use of Hölder’s inequality again,
leads to

∫

Rn

|ϕ| n
n−1 ≤ 1

2n/(n−1)

(∫

Rn

|∂x1ϕ| . . .
∫

Rn

|∂xnϕ|
) 1

n−1

,

which is exactly (2.1).

Step 2 (Sobolev Inequality) We prove that there exists a constant
K(n, q) such that for every ϕ ∈ Hq

1(Rn) we have

‖ϕ‖p ≤ K(n, q)‖∇ϕ‖q, (2.2)

where 1
p = 1

q − 1
n , and 1 ≤ q < n.

By Proposition 1.2 it is enough to prove (2.2) for ϕ ∈ C∞
c (Rn). First of all

for every i we have |∂ϕ/∂xi| ≤ |∇ϕ| so by (2.1)

‖ϕ‖n/(n−1) ≤
1
2
‖∇ϕ‖1.

This gives us the Sobolev inequality for q = 1. Now let 1 < q < n,
p = nq/(n − q), and set u := |ϕ|p(n−1)/n. Then, using (2.1) and Hölder’s
inequality we get

(∫

Rn

|ϕ|p
)(n−1)/n

=
(∫

Rn

|u|n/(n−1)

)(n−1)/n

≤ 1
2

∫

Rn

|∇u|

= p
n− 1
2n

∫

Rn

|ϕ|p′ |∇ϕ| ≤ p
n− 1
2n

(∫

Rn

|ϕ|p′q′
)1/q′ (∫

Rn

|∇ϕ|q
)1/q

,

where 1
q + 1

q′ = 1, p′ = (p(n− 1)/n)− 1. So

1
q′

= 1− 1
q

= 1− 1
p
− 1

n
=

pn− n− p

pn

p′ =
pn− n− p

n
,

hence p′q′ = p and we get

‖ϕ‖p(n−1)/n
p ≤ p

n− 1
2n

‖ϕ‖p/q′
p ‖∇ϕ‖q

so dividing by ‖ϕ‖p/q′
p and computing

p

q′
=

pn− n− p

n
= (p(n− 1)/n)− 1

we get finally

‖ϕ‖p ≤ p
n− 1
2n

‖∇ϕ‖q,
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which is (2.2).

Now (2.2) tells us that we have a continuous embedding

Hq
1(Rn) ⊂ Lp(Rn) = Hp

0 (Rn)

where 1 ≤ q < n, 1
p = 1

q − 1
n . So we have proved the Sobolev embedding in

the case k = 1.

Step 3 We prove that if the Sobolev embedding holds for any 1 ≤
q < n and k = 1 then it holds for any k, so that if 1 ≤ q < pl and
1/pl = 1/q − (k − l)/n then Hq

k(Rn) is continuously embedded in Hpl
l (Rn).

By definition of Sobolev spaces it is enough to prove that there is a
constant C > 0 such that for every ϕ ∈ C∞(Rn) ∩Hq

k(Rn) we have

‖ϕ‖l,pl
≤ C‖ϕ‖k,q.

Notice that here we don’t need ϕ to have compact support, so this step
will work also for complete Riemannian manifolds. The first step is Kato’s
inequality: for every smooth function ψ and every multiindex r we have

|∇|∇rψ|| ≤ |∇r+1ψ|,

where |∇rψ| 6= 0. This is true in more generality: if E → M is a vector bun-
dle over a Riemannian manifold M , with metric and compatible connection
∇, and if ξ is a section of E then

|d|ξ|| ≤ |∇ξ|

where ξ 6= 0. The proof is very simple:

2
∣∣d|ξ|∣∣|ξ| = |d(|ξ|2)| = 2|〈∇ξ, ξ〉| ≤ 2|∇ξ||ξ|.

Now that we have Kato’s inequality, since Hq
1(Rn) ⊂ Lp(Rn) there is a

constant A such that for all ψ ∈ Hq
1(Rn) we have

‖ψ‖p ≤ A(‖∇ψ‖q + ‖ψ‖q).

Apply this to ψ = |∇rϕ| with r = k − 1, k − 2, . . . , 0 which all belong to
Hq

1(Rn), and get

‖∇rϕ‖p ≤ A(‖∇|∇rϕ|‖q + ‖∇rϕ‖q) ≤ A(‖∇r+1ϕ‖q + ‖∇rϕ‖q),

where we have also used Kato’s inequality. Now add all these k inequalities
and get

‖ϕ‖k−1,p ≤ 2A‖ϕ‖k,q.
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By definition we have p = pk−1. We have just shown that we have a con-
tinuous inclusion Hq

k(Rn) ⊂ H
pk−1

k−1 (Rn). Now iterate the reasoning above to
get a chain of continuous inclusions

Hq
k(Rn) ⊂ H

pk−1

k−1 (Rn) ⊂ H
pk−2

k−2 (Rn) ⊂ · · · ⊂ H
pk−(k−l)

k−(k−l) (Rn) = Hpl
l (Rn).

Step 4 Now assume n = 1. Exactly as in step 1, for every ϕ ∈ C∞
c (R)

and for every x ∈ R we have

|ϕ(x)| ≤ 1
2

∫

R

∣∣∣∣
∂ϕ

∂y

∣∣∣∣ dy.

This immediately implies that

H1
1 (R) ⊂ L∞(R).

Now assume that ϕ ∈ C∞
c (R) and p ≥ 1. By the Markov inequality

Vol({x | ϕ(x) ≥ 1}) ≤ ‖ϕ‖1 < ∞,

so ∫

R
|ϕ|p =

∫

{ϕ≥1}
|ϕ|p +

∫

{ϕ<1}
|ϕ|p ≤ (sup

R
|ϕ|)p‖ϕ‖1 +

∫

R
|ϕ|,

‖ϕ‖p ≤ 1
2
‖∇ϕ‖1‖ϕ‖

1
p

1 + ‖ϕ‖
1
p

1 ,

hence
H1

1 (R) ⊂ Lp(R).

Now let q > 1, ϕ ∈ C∞
c (R) and set u = |ϕ|q. Then

|ϕ|q = u ≤ 1
2

∫

R
|∇u| = q

2

∫

R
|ϕ|q−1|∇ϕ| ≤ q

2

(∫

R
|ϕ|(q−1)q′

) 1
q′

(∫

R
|∇ϕ|q

) 1
q

,

where 1
q + 1

q′ = 1. Then (q − 1)q′ = q, so

|ϕ|q ≤ q

2
‖ϕ‖q−1

q ‖∇ϕ‖q,

hence
Hq

1(R) ⊂ L∞(R),

and if p ≥ q we proceed as above using Markov inequality to get

Hq
1(R) ⊂ Lp(R).

The last step when k > l > 0 follows exactly as in step 3. ¤
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2.2 The compact manifold case

Theorem 2.2 (Sobolev Embedding) Let M be a compact Riemannian
manifold of dimension n. Let k, l be two natural numbers, k > l, and p, q
two real numbers 1 ≤ q < p satisfying

1
p

=
1
q
− k − l

n
.

Then
Hq

k(M) ⊂ Hp
l (M)

and the identity operator is continuous.

Proof
Since the proof of the Step 3 of the Sobolev embedding on Rn carries on
word by word to this context, it is enough to prove that we have a continuous
embedding

Hq
1(M) ⊂ Lp(M) = Hp

0 (M)

where 1 ≤ q < n, 1
p = 1

q − 1
n , and so it is enough to prove an inequality of

the form
‖ϕ‖p ≤ C(‖∇ϕ‖q + ‖ϕ‖q) (2.3)

for every ϕ ∈ C∞(M). Let (Ωi, ηi)1≤i≤N be a finite cover of M with coor-
dinate charts such that for all 1 ≤ m ≤ N

1
2
δij ≤ gm

ij ≤ 2δij ,

where gm
ij are the components of g in the chart Ωm. Let {αi} be a partition

of unity subordinate to this covering. If we prove that there is a constant C
such that

‖αiϕ‖p ≤ C(‖∇(αiϕ)‖q + ‖αiϕ‖q) (2.4)

then since |∇(αiϕ)| ≤ |∇ϕ|+ |ϕ| · |∇αi|, we’d get

‖ϕ‖p =

∥∥∥∥∥
N∑

i=1

αiϕ

∥∥∥∥∥
p

≤
N∑

i=1

‖αiϕ‖p ≤ CN

(
‖∇ϕ‖q + (1 + max

i
sup
M
|∇αi|)‖ϕ‖q

)
,

which is of the form (2.3). So we have to prove (2.4). On the compact set
Ki = supp αi ⊂ Ωi the metric tensor and all its derivatives of all orders are
bounded, in the coordinates ηi. So we get

ϕ ∈ Hq
1(M) ⇐⇒ (αiϕ ∈ Hq

1(M),∀i) ⇐⇒ (αiϕ ◦ η−1
i ∈ Hq

1(Rn), ∀i),
where we defined αiϕ ◦ η−1

i to be zero outside ηi(Ki). Then we have

(∫

M
|αiϕ|pdV

)1/p

≤ 2n/2

(∫

Rn

|αiϕ ◦ η−1
i (x)|pdx

)1/p
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(∫

M
|∇(αiϕ)|qdV

)1/q

≥ 2−(n+1)/2

(∫

Rn

|∇(αiϕ ◦ η−1
i )(x)|qdx

)1/q

Now Theorem 2.1 tells us that there is a constant C > 0 such that
(∫

Rn

|αiϕ ◦ η−1
i (x)|pdx

)1/p

≤ C

(∫

Rn

|∇(αiϕ ◦ η−1
i )(x)|qdx

)1/q

and putting together these 3 inequalities we get (2.4). This finishes the
proof. ¤

2.3 The best constants

Theorem 2.3 (Aubin, Talenti [2],[20]) The best constant in the Sobolev
inequality (2.2) on Rn is

K(n, q) =
1
n

(
n(q − 1)
n− q

)1− 1
q
(

Γ(n + 1)
Γ(n/q)Γ(n + 1− n/q)ωn−1

) 1
n

for q > 1, and

K(n, 1) =
1
n

(
n

ωn−1

) 1
n

Recall that Γ(1) = 1, Γ(1/2) =
√

π, Γ(x + 1) = xΓ(x), Γ(n) = (n− 1)! and

ωn−1 =
2πn/2

Γ(n/2)
.

In particular we get

ω2n =
(4π)n(n− 1)!

(2n− 1)!

ω2n+1 =
2πn+1

n!
.

3 The Logarithmic Sobolev Inequalities

Theorem 3.1 ([6]) If f ∈ H2
1 (Rn) with ‖f‖2 = 1, |f | > 0 a.e., then

∫

Rn

|f |2 log |f | ≤ n

4
log

(
2

πen

∫

Rn

|∇f |2
)

. (3.1)

Proof
We set p = 2n

n−2 and apply the Sobolev inequality to get

(∫

Rn

|f |p
)2/p

≤ K(n, 2)2
∫

Rn

|∇f |2.

9



Using Jensen’s inequality we get

log
∫

Rn

|f |p ≥ (p− 2)
∫

Rn

|f |2 log |f |

and putting together these two inequalities we get

(p− 2)
∫

Rn

|f |2 log |f | ≤ p

2
log

(
K(n, 2)2

∫

Rn

|∇f |2
)

.

Since p
2(p−2) = n

4 we get

∫

Rn

|f |2 log |f | ≤ n

4
log

(
K(n, 2)2

∫

Rn

|∇f |2
)

. (3.2)

This is almost what we want to prove, but we want a better constant. To
achieve this we have to let n go to infinity. First we compute the asymptotic
behaviour of K(n, 2)2 for n big. By Theorem 2.3 we have that

K(n, 2)2 =
1
n2

(
n

n− 2

)(
Γ(n + 1)

Γ(n/2)Γ(n/2 + 1)ωn−1

) 2
n

=
1

n(n− 2)

(
2Γ(n)

Γ(n/2)2ωn−1

) 2
n

=
1

πn(n− 2)

(
Γ(n)

Γ(n/2)

) 2
n

and by Stirling’s formula we have
(

Γ(n)
Γ(n/2)

) 2
n

∼ 2ne−1

so
K(n, 2)2 ∼ 2

πen
.

Now we use this asymptotic behaviour in the following way: set m = nl
with l ≥ 0, and for x ∈ Rm set F (x) =

∏l
k=1 f(xk) where each xk is in Rn.

Since ‖f‖2 = 1 we have ‖F‖2 = 1 so we can apply inequality (3.2) to F and
get

l

∫

Rn

|f |2 log |f | ≤ nl

4
log

(
lK(nl, 2)2

∫

Rn

|∇f |2
)

.

Now we let l →∞, and we have lK(nl, 2)2 → 2
πen , so we have proved (3.1).

¤

Define the Gaussian measure on Rn by dµ = (2π)−
n
2 e−

|x|2
2 dx. Then

we have the following

Theorem 3.2 (Gross [11]) If g ∈ H2
1 (Rn, dµ),

∫
Rn |g|2dµ = 1, |g| > 0

a.e. then ∫

Rn

|g|2 log |g|dµ ≤
∫

Rn

|∇g|2dµ (3.3)
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Proof
We will show that (3.3) is actually equivalent to (3.1). First of all set

f(x) = (2π)−
n
4 e−

|x|2
4 g(x), so that ‖f‖2 =

∫
Rn |g|2dµ = 1. Now compute

∇g = (2π)
n
4 e

|x|2
4

(
∇f +

f · x
2

)
,

|∇g|2 = (2π)
n
2 e

|x|2
2

(
|∇f |2 +

|f |2|x|2
4

+ f
n∑

i=1

∂f

∂xi
xi

)
,

and using integration by parts

n∑

i=1

∫

Rn

f
∂f

∂xi
xi = −

n∑

i=1

∫

Rn

f
∂f

∂xi
xi −

n∑

i=1

∫

Rn

|f |2

so
∑n

i=1

∫
Rn f ∂f

∂xi x
i = −n

2 . Substituting into (3.3) we get

∫

Rn

|f |2
(

log |f |+ n

4
log(2π) + log

(
e
|x|2
4

))
≤ −n

2
+

∫

Rn

(
|∇f |2 +

|f |2|x|2
4

)

which simplifies to
∫

Rn

|f |2 log |f |+ n

4
log(2πe2) ≤

∫

Rn

|∇f |2.

Now fix δ > 0 and change f(x) with δ
n
2 f(δx) in this last inequality, to get

∫

Rn

|f |2 log |f |+ n

4
log(2πe2) ≤ δ2

∫

Rn

|∇f |2 − n

2
log δ. (3.4)

We have just shown that (3.3) is equivalent to (3.4) for all δ > 0. But the
right hand side of (3.4) achieves its minimum for

δmin =
√

n

4
∫
Rn |∇f |2 ,

so having (3.4) for all δ > 0 is equivalent to having (3.4) for δmin, which is
∫

Rn

|f |2 log |f |+ n

4
log(2πe2) ≤ n

4
− n

4
log

(
n

4
∫
Rn |∇f |2

)

and this is precisely (3.1). ¤
Notice that the constant of the Gross logarithmic Sobolev inequality

does not depend on n.
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4 The Moser-Trudinger Inequality

Let D be a bounded domain in Rn. Then, using Hölder’s inequality, for
every q ∈ [1, n) we have a continuous embedding

Hn
1 (D) ⊂ Hq

1(D),

and now by Sobolev embedding, we have

Hq
1(D) ⊂ Lp(D)

where 1
p = 1

q − 1
n . Since q is arbitrarily close to n we get continuous embed-

dings
Hn

1 (D) ⊂ Lp(D)

for all p ∈ [1,∞). The point is that we don’t get an embedding into L∞(D)
as the following example shows. Let D = {x ∈ R2 | 0 < |x| < 1/e} and
define f : D → R by f(x) = log |log |x|| . Then |f |2 is integrable and

‖∇f‖2
2 = 2π

∫ 1/e

0

dr

r| log r|2 = 2π,

so that f ∈ H2
1 (D), but f is not bounded on D. On the other hand

‖ef‖1 = 2π

∫ 1/e

0
r| log r|dr < ∞.

This is a general phenomenon as we will soon see.

Theorem 4.1 (Trudinger [22]) Let D be a bounded domain in Rn. Then
there exist constants C, α > 0, with C depending only on n, such that every
ϕ ∈ H1,n

0 (D) with ‖∇ϕ‖n ≤ 1 satisfies
∫

D
eα|ϕ|n/(n−1) ≤ CVol(D). (4.1)

Proof
First assume that ϕ ∈ C∞

c (D). Fix x ∈ D and use polar coordinates (r, θ)
centered at x. Let y ∈ Rn, r = |x− y|, and write

ϕ(x) = −
∫ ∞

0

∂ϕ(r, θ)
∂r

dr = −
∫ ∞

0
|x− y|1−n ∂ϕ

∂r
rn−1dr,

|ϕ(x)| ≤
∫ ∞

0
|x− y|1−n|∇ϕ|rn−1dr

and integrate over Sn−1 to get

|ϕ(x)| ≤ 1
ωn−1

∫

D
|x− y|1−n|∇ϕ(y)|dy.

12



By density this holds for every ϕ ∈ H1,n
0 (D) and a.e. x ∈ D. Now fix

p ≥ n and set 1/k = 1/p − 1/n + 1, so that k ≥ 1, f(x, y) := |x − y|1−n,
g(y) := |∇ϕ(y)| and write

fg = (fkgn)
1
p (fk)

1
k
− 1

p (gn)
1
n
− 1

p .

Since 1/p + (1/k− 1/p) + (1/n− 1/p) = 1 we can apply Hölder’s inequality
to get
∫

D
f(x, y)g(y)dy ≤

(∫

D
fk(x, y)gn(y)dy

) 1
p

(∫

D
fk(x, y)dy

) 1
k
− 1

p
(∫

D
gn(y)dy

) 1
n
− 1

p

.

From this we get

‖ϕ‖p =
(∫

D
|ϕ(x)|pdx

) 1
p

≤ 1
ωn−1

(∫

D

(∫

D
f(x, y)g(y)dy

)p

dx

) 1
p

≤ 1
ωn−1

(∫

D

(∫

D
fk(x, y)gn(y)dy

) (∫

D
fk(x, y)dy

) p
k
−1

dx

) 1
p (∫

D
gn(y)dy

) 1
n
− 1

p

≤ 1
ωn−1

sup
x∈D

(∫

D
fk(x, y)dy

) 1
k
− 1

p
(∫

D

∫

D
fk(x, y)gn(y)dydx

) 1
p

(∫

D
gn(y)dy

) 1
n
− 1

p

≤ 1
ωn−1

sup
x∈D

(∫

D
fk(x, y)dy

) 1
k

(∫

D
gn(y)dy

) 1
p

(∫

D
gn(y)dy

) 1
n
− 1

p

=
1

ωn−1
sup
x∈D

(∫

D
fk(x, y)dy

) 1
k

‖∇ϕ‖n =
1

ωn−1
sup
x∈D

(∫

D
|x− y|k(1−n)dy

) 1
k

‖∇ϕ‖n.

Let B be the ball with center x and the same volume as D, say that its
radius is R. Then by spherical symmetrization we have that

(∫

D
|x− y|k(1−n)dy

) 1
k

≤
(∫

B
|x− y|k(1−n)dy

) 1
k

and the last term is independent of x, so that we have

sup
x∈D

(∫

D
|x− y|k(1−n)dy

) 1
k

≤ ω
1/k
n−1

(∫ R

0
r(k−1)(1−n)dr

) 1
k

= ω
1/k
n−1

(
Rk+n−kn

k + n− kn

) 1
k

= ω
1/k
n−1R

k+n−kn
k

1
(k + n− kn)1/k

.

Now
1

(k + n− kn)1/k
=

(
p + 1− p/n

n

)n−1
n

+ 1
p

≤ Cp
n−1

n

where C > 0 only depends on n, so putting all together

‖ϕ‖p ≤ C‖∇ϕ‖np
n−1

n R
k+n−kn

k .

13



Notice that

‖ϕ‖p
p ≤ Cp‖∇ϕ‖p

np
p(n−1)

n Rn ≤ Cp‖∇ϕ‖p
np

p(n−1)
n Vol(D)

for p ≥ n. By changing the constant we may assume that we have such an
inequality also for p = kn

n−1 , 1 ≤ k ≤ n− 1. Then

∫

D
eα|ϕ|n/(n−1)

=
∞∑

p=0

αp

p!

∫

D
|ϕ| pn

n−1 ≤ Vol(D)
∞∑

p=0

αp

p!
(C‖∇ϕ‖n)

pn
n−1

(
pn

n− 1

)p

= Vol(D)
∞∑

p=0

(
α(eC‖∇ϕ‖n)

n
n−1 n

n−1

)p (
pe−

n
n−1

)p

p!
.

Since e
n

n−1 > e we have, using Stirling’s formula, that the sum

∞∑

p=0

(
pe−

n
n−1

)p

p!

converges, so if we choose α small enough so that

α(eC‖∇ϕ‖n)
n

n−1
n

n− 1
< 1

we have finished. This is possible since by hypothesis we have

‖∇ϕ‖n ≤ 1.

¤

Corollary 4.2 Let D be a bounded domain in Rn. Then there exist constant
µ,C > 0 with C depending only on n, such that every ϕ ∈ H1,n

0 (D) satisfies
∫

D
eϕ ≤ CVol(D) exp(µ‖∇ϕ‖n

n). (4.2)

Proof
Start with Young’s inequality: if u, v are two real numbers and 1

p + 1
q = 1,

then
uv ≤ |u|p

p
+
|v|q
q

.

Also for every ε > 0 we have

uv = (uε)(v/ε) ≤ εp |u|p
p

+ ε−q |v|q
q

.
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Apply this with u = ϕ/‖∇ϕ‖n, v = ‖∇ϕ‖n, p = n
n−1 , q = n, εp/p = α and

get

ϕ ≤ α|ϕ| n
n−1

‖∇ϕ‖
n

n−1
n

+
ε−n

n
‖∇ϕ‖n

n.

Take this inequality, exponentiate it and integrate it over D. Since ‖∇u‖n =
1 we can apply (4.1) to the first term and get

∫

D
eϕ ≤ CVol(D) exp(µ‖∇ϕ‖n

n).

¤
The best constants in these inequalities were calculated by J.Moser

Theorem 4.3 (Moser [15]) The best constant for the inequality (4.1) is

αn = nω
1

n−1

n−1 .

This means that (4.1) holds for α = αn and if α > αn the left hand side is
finite but can be made arbitrarily large. The best constant for the inequality
(4.2) is

µn = (n− 1)n−1n1−2nω−1
n−1.

Let’s examine the case of compact Riemannian manifolds.

Theorem 4.4 (Aubin [4]) Let M be a compact Riemannian manifold of
dimension n. Then there exist constants

C, α, µ, ν > 0

such that for all ϕ ∈ Hn
1 (M) we have

∫

M
eϕdV ≤ C exp(µ‖∇ϕ‖n

n + ν‖ϕ‖n
n), (4.3)

and for all ϕ ∈ Hn
1 (M) with ‖∇ϕ‖n ≤ 1 we have

∫

M
eα|ϕ|n/(n−1)

dV ≤ C. (4.4)

Theorem 4.5 (Cherrier [7]) For a compact Riemannian manifold of di-
mension n the best constants in the inequalities (4.4) and (4.3) are the same
αn and µn as before.

Theorem 4.6 (Moser [15]) Consider S2 with the canonical metric. Ev-
ery ϕ ∈ H2

1 (S2) with
∫
S2 ϕdV = 0 satisfies
∫

S2

eϕdV ≤ C exp(µ2‖∇ϕ‖2
2),

where µ2 = 1
16π .
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As a corollary we can easily see that every ϕ ∈ H2
1 (S2) satisfies

log
∫

S2

eϕdV ≤ 1
16π

∫

S2

|∇ϕ|2dV +
1
4π

∫

S2

ϕdV + C. (4.5)

We have the following generalization to higher derivatives: If u is a
real function defined in Rn define

Dmu =




4m/2u if m even

∇4(m−1)/2u if m odd
(4.6)

Theorem 4.7 (Adams [1]) If m is a positive integer, m < n then there is
a constant C(m,n) such that for all u ∈ Cm(Rn) supported in D a bounded
domain, with ‖Dmu‖p ≤ 1, p = n/m, we have

∫

D
eβ|u|q ≤ CVol(D), (4.7)

where 1
p + 1

q = 1, for all β ≤ β0(n,m)

β0(n,m) =





n

ωn−1

(
πn/22mΓ(m+1

2 )
Γ(n−m+1

2 )

)q

if m odd

n

ωn−1

(
πn/22mΓ(m

2 )
Γ(n−m

2 )

)q

if m even

(4.8)

Moreover if β > β0(n,m) then there is no such inequality.

Finally we have the

Theorem 4.8 (Fontana [9]) Let M be a compact Riemannian manifold
of dimension n, and let m be a positive integer, m < n. Then there is a
constant C(m,M) such that for all u ∈ Cm(M) with ‖Dmu‖p ≤ 1, p = n/m,
and

∫
M udV = 0 we have ∫

D
eβ|u|q ≤ C, (4.9)

where 1
p + 1

q = 1, for all β ≤ β0(n,m) give in the previous theorem. Moreover
if β > β0(n,m) then there is no such inequality.

5 Applications

5.1 The Ricci Flow

The first application we will give of the previous material is due to G.Perelman.
He used the logarithmic Sobolev inequality to prove a technical result about
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the Ricci flow.

Let (M, g) be a compact Riemannian manifold of dimension n, define

W(g, f, τ) =
∫

M
[τ(|∇f |2 + R) + f − n](4πτ)−

n
2 e−fdV,

where f ∈ C∞(M), τ ∈ R, τ > 0, that satisfy
∫

M
(4πτ)−

n
2 e−fdV = 1. (5.1)

We immediately see that for every α > 0 we have

W(g, f, τ) = W(αg, f, ατ).

Suppose now that g, f, τ depend also smoothly on time t ∈ [0, T ) and satisfy




∂

∂t
gij = −2Rij

∂

∂t
f = −4f + |∇f |2 −R +

n

2τ
∂

∂t
τ = −1

(5.2)

We say that g moves along the Ricci flow. Then we can compute (see [13])

∂

∂t
W =

∫

M
2τ

∣∣∣∣Rij +∇i∇jf − 1
2τ

gij

∣∣∣∣
2

(4πτ)−
n
2 e−fdV ≥ 0. (5.3)

We now let
µ(g, τ) = infW(g, f, τ)

where the inf is taken over all f satisfying (5.1), and

ν(g) = inf µ(g, τ)

where the inf is taken over all τ > 0. We want to show that there always
exists a smooth minimizer f̄ of µ(g, τ). Set

Φ = e−
f
2 (4πτ)−

n
4

so that we can write

W(g, f, τ) =
∫

M

[
4τ |∇Φ|2 − Φ2 log Φ2 + Φ2

(
τR− n− n

4
log 4πτ

)]
dV

∫

M
Φ2 = 1.
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Then a theorem of O.S.Rothaus [18] assures us that there is a smooth min-
imizer f̄ for W(g, f, τ), and that the corresponding Φ satisfies

−4τ4Φ− Φ log Φ2 = Φ
(
µ(g, τ)− τR + n +

n

4
log 4πτ

)
. (5.4)

This implies that ν(g) is nondecreasing along the Ricci flow: consider a time
interval [t0, t1] and the minimizer f̄(t1), so that

µ(g(t1), τ(t1)) = W(g(t1), f̄(t1), τ(t1)).

Solve the backward heat equation for f on [t0, t1] to obtain a solution f(t)
satisfying f(t1) = f̄(t1). Then since W is nondecreasing we get

W(g(t0), f(t0), τ(t0)) ≤ W(g(t1), f(t1), τ(t1)).

But if f̄(t0) is the minimizer of µ at time t0 we have

µ(g(t0), τ(t0)) = W(g(t0), f̄(t0), τ(t0)) ≤ W(g(t0), f(t0), τ(t0)),

so that µ(g(t0), τ(t0)) ≤ µ(g(t1), τ(t1)). It follows that also ν(g) is nonde-
creasing along the flow.

Let’s compute W in one explicit example. On Rn with the canonical
metric, constant in time, fix t0 > 0, set τ = t0 − t and

f(t, x) =
|x|2
4τ

,

so that (4πτ)−
n
2 e−f is the fundamental solution of the backward heat equa-

tion, that starts at t = t0 as a δ-function at 0. Then it is readily verified
that (gcan, f, τ) satisfy (5.2). We can compute that

τ(|∇f |2 + R) + f − n = τ
|x|2
4τ2

+
|x|2
4τ

− n =
|x|2
2τ

− n.

Now we have the well-known Gaussian integral
∫

Rn

e−
|x|2
4τ dx = (4πτ)

n
2 ,

and differentiating this with respect to τ we get
∫

Rn

|x|2
4τ2

e−
|x|2
4τ dx = (4πτ)

n
2

n

2τ
.

Hence

W(gcan, f, τ) =
∫

Rn

(4πτ)−
n
2

( |x|2
2τ

− n

)
e−

|x|2
4τ dx = n− n = 0,

for all t ∈ [0, t0).
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Theorem 5.1 Start with an arbitrary metric gij. Then the function µ(g, τ)
is negative for small τ > 0 and tends to zero as τ tends to zero.

Proof
Assume τ̄ > 0 is small so that the Ricci flow starting from gij exists on [0, τ̄ ].
Set u = (4πτ)−

n
2 e−f and compute its evolution

∂

∂t
u = −4u + Ru.

This is the conjugate heat equation in the following sense: if ¤ = ∂
∂t −4 is

the heat operator, with respect to the metric moving along the Ricci flow,
and ¤∗ = − ∂

∂t −4 + R then for any two functions u, v ∈ C∞(M × [0, T ))
we have

∂

∂t

∫

M
uvdV =

∫

M
(v¤u− u¤∗v)dV.

This can be easily proved remembering that ∂
∂tdV = −RdV and

∫
M (u4v−

v4u)dV = 0. Now solve the conjugate heat equation for u starting at
t = τ̄ with a δ-function concentrated around some point, with total integral
1. Since the conjugate heat equation for u is now linear and R exists on
[0, τ̄ ], the solution we get is defined on all [0, τ̄ ]. Set τ(t) = τ̄ − t and get
an f(t) from the u(t) (this way we’ve got a global solution for f , which
satisfies a nonlinear evolution equation). Then as t → τ̄ the situation ap-
proaches the Euclidean one, for which we computed above that W = 0. So
W(g(t), f(t), τ(t)) tends to zero as t → τ̄ , and we have by monotonicity

µ(g, τ) ≤ W(g(0), f(0), τ(0)) ≤ lim
t→τ̄

W(g(t), f(t), τ(t)) = 0.

To show that limτ→0 µ(g, τ) = 0 we won’t use the Ricci flow anymore, but
we’ll employ the Gross logarithmic Sobolev inequality. Assume that there
is a sequence τk → 0 such that µ(g, τk) ≤ c < 0 for all k and cover M with
finitely many charts U1, . . . , UN such that each Uj is a geodesic ball B(pj , δ),
for some δ > 0. Let gτ

ij = (2τ)−1gij and gk = gτk . Then each (Uj , gk, pj)
converges as k →∞ to (Rn, gcan, 0) in the C∞ topology. Then we can easily
compute that

W(g, f, τ) =
∫

M

[
2|∇Φ|2τ − Φ2 log Φ2 + Φ2

(
Rτ

2
− n− n

2
log 2π

)]
dVτ

Φ = e−
f
2 (2π)−

n
4

∫

M
Φ2dVτ = 1,
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where dVτ = (2τ)−
n
2 dV , |∇Φ|2τ = 2τ |∇Φ|2, Rτ = 2τR. Let ϕk be the

minimizer realizing µ(g, τk), which satisfies




− 24kϕk − 2ϕk log ϕk =
(

µ(g, τk)− Rk

2
+ n +

n

2
log 2π

)
ϕk∫

M
ϕ2

kdVk = 1
(5.5)

Write

Fk(Φ) = 2|∇Φ|2τk
− Φ2 log Φ2 + Φ2

(
Rτk

2
− n− n

2
log 2π

)

so that ∫
Fk(λΦ)dVk∫
(λΦ)2dVk

=
∫

Fk(Φ)dVk∫
Φ2dVk

− log λ2.

Since by hypothesis µ(g, τk) ≤ c < 0, we know that
∫

M
Fk(ϕk)dVk ≤ c < 0,

so that up to a subsequence
∫

U1

Fk(ϕk)dVk ≤ c

N
< 0.

Clearly we also have
∫
U1

ϕ2
kdVk ≤ 1. Let’s fix the attention on U1. Since

gk converges to gcan uniformly on compact sets of Rn, elliptic PDE theory
tells us that there is a subsequence of ϕk, still denoted ϕk that converges
uniformly on compact sets of Rn to a limit ϕ∞. The functions Fk on the
other hand converge to the function

F (Φ) = 2|∇Φ|2 − Φ2 log Φ2 − Φ2
(
n +

n

2
log 2π

)
,

and ϕ∞ can’t be identically zero because
∫

Rn

F (ϕ∞)dx = lim
k→∞

∫

U1

Fk(ϕk)dVk ≤ c

N
< 0.

Set
ε2 =

∫

Rn

ϕ2
∞dx, (5.6)

so that ∫

Rn

F
(ϕ∞

ε

)
dx ≤ c

N
+ 2 log ε <

c

N
. (5.7)

Let (ϕ∞
ε

)2
= (2π)−

n
2 e−f∞ .
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Then by (5.6) we get ∫

Rn

e−f∞(2π)−
n
2 dx = 1

and by (5.7)
∫

Rn

(
1
2
|∇f∞|2 + f∞ − n

)
(2π)−

n
2 e−f∞dx ≤ c

N
< 0. (5.8)

This last inequality is precisely the opposite of the Gross logarithmic Sobolev
inequality (3.3). We verify this by setting

f∞ =
|x|2
2
− 2 log φ.

Then
∇f∞ = x− 2

∇φ

φ
,

|∇f∞|2
2

=
|x|2
2

+ 2
|∇φ|2

φ2
− 2

〈∇φ, x〉
φ

,

∫

Rn

φ2(2π)−
n
2 e−

|x|2
2 dx = 1.

The left hand side of inequality (5.8) becomes
∫

Rn

( |x|2
2

+ 2
|∇φ|2

φ2
− 2

〈∇φ, x〉
φ

+
|x|2
2
− 2 log φ− n

)
φ2(2π)−

n
2 e−

|x|2
2 dx.

We can integrate by parts the third term to get

(2π)−
n
2

n∑

i=1

∫

Rn

φ
∂φ

∂xi
xie−

|x|2
2 = −(2π)−

n
2

n∑

i=1

∫

Rn

φ
∂φ

∂xi
xie−

|x|2
2

− (2π)−
n
2

n∑

i=1

∫

Rn

φ2e−
|x|2
2 + (2π)−

n
2

∫

Rn

φ2|x|2e− |x|
2

2 =

− (2π)−
n
2

n∑

i=1

∫

Rn

φ
∂φ

∂xi
xie−

|x|2
2 − n + (2π)−

n
2

∫

Rn

φ2|x|2e− |x|
2

2 ,

so

(2π)−
n
2

n∑

i=1

∫

Rn

φ
∂φ

∂xi
xie−

|x|2
2 = −n

2
+ (2π)−

n
2

∫

Rn

φ2 |x|2
2

e−
|x|2
2 .

Substituting this into the left hand side of (5.8) we get
∫

Rn

(
2|∇φ|2 − 2φ2 log φ

)
(2π)−

n
2 e−

|x|2
2 dx ≤ c

N
< 0,
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which contradicts (3.3). So we must have that limτ→0 µ(g, τ) = 0. ¤
We have the following application of the previous theorem. If g(t),

t ∈ [0, T ), is a metric evolving along the Ricci flow, we say that is a shrinking
breather if there exist an 0 < α < 1, two times t1 < t2 and a diffeomorphism
h : M → M such that

αg(t1) = h∗g(t2).

If this holds for every t1, t2 we say that g(t) is a shrinking Ricci soliton. This
is equivalent to the existence of a one-form b and a number λ < 0 such that

2Rij(0) + 2λgij(0) +∇ibj +∇jbi = 0.

If b = ∇f for some smooth function f we say that g(t) is a gradient shrinking
Ricci soliton. This means

Rij(0) + λgij(0) +∇i∇jf = 0.

We want to prove the

Theorem 5.2 (Perelman [17]) Every shrinking breather is a gradient shrink-
ing Ricci soliton.

Sketch of proof
Assume that g(t) is a Ricci breather defined on [0, T ], so that there are
0 < α < 1, t1 < t2 and h as above. Since

W(g(t2), f, τ) = W(αg(t1), f, τ) = W
(
g(t1), f,

τ

α

)

we get ν(g(t2)) = ν(g(t1)). Define λ(gij) to be the lowest nonzero eigenvalue
of the operator −44+ R, and

λ̄(gij) = Vol(gij)
2
n λ(gij).

Since we are on a shrinking breather we have that λ̄(g(t1)) = λ̄(g(t2)).
In [17] it is shown that if g(t) moves along the Ricci flow, then λ̄(g(t))
is nondecreasing whenever it is nonpositive, and that monotonicity is strict
unless g(t) is a Ricci soliton. Hence we are left with the case when λ̄(g(t)) > 0
for all t ∈ [t1, t2]. It is not hard to see using (5.4) that λ̄(gij) > 0 implies
that

lim
τ→∞µ(g, τ) = +∞,

because when τ is big, µ(g, τ) is approximately τλ(gij). In particular this is
true for gij = g(t2). Now apply theorem 5.1 to get that µ(g(t2), τ) < 0 for
τ sufficiently small, and

lim
τ→0

µ(g(t2), τ) = 0.
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These things together imply that there is a τ̃ > 0 that realizes the infimum

ν(g(t2)) = µ(g(t2), τ̃) < 0.

Now by the theorem of Rothaus, there is a function f̃ that realizes the
infimum

ν(g(t2)) = µ(g(t2), τ̃) = W(g(t2), f̃ , τ̃) < 0.

Now we flow f̃ by the backward heat flow to get a family f(t), t ∈ [t1, t2]
and set τ(t) = τ̃ + t2− t, so that (5.2) are satisfied. By monotonicity we get

ν(g(t2)) = W(g(t2), f̃ , τ̃) ≥ W(g(t1), f(t1), τ̃ + t2 − t1) ≥ ν(g(t1)).

Since ν(g(t2)) = ν(g(t1)) these inequalities must be equalities, so that W is
constant on [t1, t2]. But then formula (5.3) tells us that g(t) is a gradient
shrinking Ricci soliton on this interval. ¤

5.2 Kähler Geometry

Now we turn to the Moser-Trudinger inequality. Let us try to generalize
(4.5) to higher dimensional varieties. Consider S2 as the complex manifold
CP1 with its canonical Kähler metric ω. Then ω is Kähler-Einstein, because

Ri̄ = 2gi̄.

We can generalize the Moser-Trudinger inequality in the following way. If
(M,ω) is a compact Kähler manifold of complex dimension n, and

P (M,ω) = {φ ∈ C∞(M,R) | ωφ = ω +
√−1∂∂φ > 0}

is the space of Kähler potentials, we can define

Jω(φ) =
√−1
V

n−1∑

i=0

i + 1
n + 1

∫

M
∂φ ∧ ∂φ ∧ ωi ∧ ωn−i−1

φ ,

where V =
∫
M ωn. If n = 1 we get

Jω(φ) =
√−1
2V

∫

M
∂φ ∧ ∂φ =

1
2V

∫

M
|∂φ|2ω =

1
4V

∫

M
|∇φ|2ω.

Now assume that c1(M) > 0 and pick ω representing the first Chern class.
By ∂∂-lemma there is a unique smooth real-valued function hω such that





Ric(ω) = ω +
√−1∂∂hω∫

M
(ehω − 1)ωn = 0

(5.9)
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Define

Fω(φ) = Jω(φ)− 1
V

∫

M
φωn − log

(
1
V

∫

M
ehω−φωn

)
.

It satisfies the following cocycle relation (see [21])

Fω(φ) = Fω(ψ) + Fω+
√−1∂∂ψ(φ− ψ). (5.10)

We say that Fω is bounded below on P (M, ω) if there is C > 0 such that
Fω(φ) ≥ −C for all φ ∈ P (M, ω). Then if M is Kähler-Einstein (i.e. hω = 0),
the statement that Fω is bounded below means

log
(

1
V

∫

M
e−φωn

)
≤ Jω(φ)− 1

V

∫

M
φωn + C.

For S2 this means that for every φ ∈ P (S2, ω)

log
(∫

M
e−φω

)
≤ 1

16π

∫

M
|∇φ|2ω +

1
4π

∫

M
(−φ)ω + C,

which is precisely (4.5) with φ = −ϕ. Notice that this is still weaker than
the result of Moser, because we are requiring that φ ∈ P (S2, ω).

Let (M,ω) be a Kähler-Einstein manifold with c1(M) > 0, and let Λ1

be the space of eigenfunctions of 4 with eigenvalue 1. Then it is easy to
see that there is a bijection between elements of Λ1 (up to constants) and
holomorphic vector fields: if 41u+u = 0 then X = gi̄ ∂u

∂z̄j ∂i is holomorphic,
and if X is holomorphic then iXω = ∂u with 41u + u = 0. (see [19] for the
details).

Theorem 5.3 (Bando-Mabuchi [5], Ding-Tian [8]) If (M, ω) is a Kähler-
Einstein manifold with c1(M) > 0, so that Ric(ω) = ω, then Fω is bounded
below on P (M, ω) ∩ Λ⊥1 where the orthogonal complement is with respect to
the L2 scalar product. In particular if M has no nonzero holomorphic vector
fields then Fω is bounded below on the whole P (M,ω).

Proof
Fix any φ ∈ P (M,ω), and set ω′ = ωφ. It is easy to prove that the solvability
of the following complex Monge-Ampère equation

(ω′ +
√−1∂∂ψ)n = ehω′−ψω′n

is equivalent to ω′+
√−1∂∂ψ being Kähler-Einstein. Let’s introduce a time

parameter t in the above equation:

(ω′ +
√−1∂∂ψ)n = ehω′−tψω′n. (∗t)
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Since ω is Kähler-Einstein there is a solution of (∗1), namely ψ = −φ.
Suppose that we could get a whole family {ψt} of solutions of (∗t) for t ∈
[0, 1], that varies smoothly in t. Let’s introduce a new functional

Iω(φ) =
1
V

∫

M
φ(ωn − ωn

φ) =
√−1
V

n−1∑

i=0

∫

M
∂φ ∧ ∂φ ∧ ωi ∧ ωn−i−1

φ .

We now calculate the first variation of Iω and Jω along a smooth family
{φt} ⊂ P (M, ω). Set ωt = ωφt , φ̇ = d

dtφt, and compute (see [21])

d

dt
Jω(φt) =

1
V

∫

M
φ̇(ωn − ωn

t ),

d

dt
Iω(φt) =

1
V

∫

M
φ̇(ωn − ωn

t )− 1
V

∫

M
φt4tφ̇ωn

t ,

where 4t is the laplacian of the metric ωt. Now pick ψt as path, and
differentiating (∗t) with respect to t we get

n
√−1∂∂ψ̇ ∧ (ω′ +

√−1∂∂ψt)n−1 = (−ψt − tψ̇)ehω′−tψtω′n = (−ψt − tψ̇)ω′nt

which means
4tψ̇ω′nt = (−ψt − tψ̇)ω′nt . (5.11)

Substituting this we get

d

dt
(Iω′(ψt)− Jω′(ψt)) =

1
V

∫

M
ψt(ψt + tψ̇)ω′nt

= − d

dt

(∫

M
ψte

hω′−tψtω′n
)

+
1
V

∫

M
ψ̇ehω′−tψtω′n.

Since for every t we have
∫

M
ehω′−tψtω′n = V,

differentiating this we get
∫

M
(ψt + tψ̇)ehω′−tψtω′n = 0,

which simplifies the above to

d

dt
(Iω′(ψt)− Jω′(ψt)) = − d

dt

(∫

M
ψtω

′n
t

)
− 1

tV

∫

M
ψte

hω′−tψtω′n.

Multiplying this by t we get

d

de
(t(Iω′(ψt)− Jω′(ψt)))− (Iω′(ψt)− Jω′(ψt)) = − d

dt

(
t

V

∫

M
ψtω

′n
t

)
.
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Integrating this from 0 to t we get

t(Iω′(ψt)− Jω′(ψt))−
∫ t

0
(Iω′(ψs)− Jω′(ψs))ds = − t

V

∫

M
ψtω

′n
t ,

which is equivalent to
∫ t

0
(Iω′(ψs)− Jω′(ψs))ds = t

(
−Jω′(ψt) +

1
V

∫

M
ψtω

′n
)

. (5.12)

Now from the cocycle relation (5.10) we get

Fω(φ) = −Fω′(−φ) = −Fω′(ψ1)

= −Jω′(ψ1) +
1
V

∫

M
ψ1ω

′n + log
(

1
V

∫

M
ehω′−ψ1ω′n

)
. (5.13)

Integrating (∗1) over M we see that the last term is zero. Using (5.12) we
get

Fω(φ) = −Jω′(ψ1) +
1
V

∫

M
ψ1ω

′n =
∫ 1

0
(Iω′(ψs)− Jω′(ψs))ds.

But the integrand is

Iω′(ψs)− Jω′(ψs) =
√−1
V

n−1∑

i=0

n− i

n + 1

∫

M
∂ψs ∧ ∂ψs ∧ ω′i ∧ ω′n−i−1

s

and each of the terms of the sum is nonnegative. Hence we have proved that

Fω(φ) ≥ 0.

Getting the family of solutions ψt is rather technical. We will assume that
M has no nonzero holomorphic vector fields (so that Λ1 = 0) and just give
an idea of the general case. The family ψt is constructed using the continuity
method. Define E = {t ∈ [0, 1] | (∗s) is solvable for all s ∈ [t, 1]}. Then E
is nonempty because 1 ∈ E. If we can prove that E is open and closed in
[0, 1], we’d have finished. To prove that E is open we have to prove that if
s ∈ E then we can solve (∗t) for t close to s. Let ψs be a solution of (∗s), so
that

ω′ns = ehω′−sψsω′n.

Then setting ρ = ψt − ψs we can rewrite (∗t) as

(ω′s +
√−1∂∂(ψt − ψs))n = ehω′−tψtω′n = ehω′−sψse−s(ψt−ψs)e−(t−s)ψtω′n,

(ω′s +
√−1∂∂ρ)n = e−sρe−(t−s)(ρ+ψs)ω′ns ,

log
(ω′s +

√−1∂∂ρ)n

ω′ns
+ sρ = −(t− s)(ρ + ψs).
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So define operators
Φs : C2, 1

2 (M) → C0, 1
2 (M)

by

Φs(ρ) = log
(ω′s +

√−1∂∂ρ)n

ω′ns
+ sρ.

We want to solve the equation

Φs(ρ) = −(t− s)(ρ + ψs)

for |t − s| small. Notice that Φs(0) = 0, so that by the implicit function
theorem it is enough to prove that the differential of Φs at 0 is invertible
(this gives us also that the family ψt is smooth in t). But this differential is

DΦs(v) =
∂

∂t

∣∣∣∣
t=0

Φs(tv) = 4sv + sv,

so that we need to show that λ1(s), the first nonzero eigenvalue of 4s,
satisfies λ1(s) > s. Compute

R′
i̄(s) = −∂i∂̄ log ω′ns = −∂i∂̄ log

ω′ns
ω′n

+R′
i̄ = −∂i∂̄(hω′−sψs)+g′i̄+∂i∂̄hω′

= g′i̄ + s∂i∂̄ψs = g′i̄ + s(g′i̄(s)− g′i̄) = (1− s)g′i̄ + sg′i̄(s) ≥ sg′i̄(s),

so by standard Bochner technique ([21]) we get λ1(s) ≥ s, and that the in-
equality is strict if s < 1. If s = 1 then recall that ω′1 = ω is Kähler-Einstein,
so that Ric(ω) = ω. Since we assume that there are no nonzero holomorphic
vector fields, we have that λ1(1) > 1, so that Φs is locally invertible around
0. Now standard elliptic regularity theory (Schauder estimates) tells us that
the solution ρ we have found is in fact smooth, so E is open. To show that
E is closed it is enough to establish an a priori bound ‖ψ‖C3 ≤ C for a solu-
tion of (∗t). In fact if we have such a bound we can show that E is compact
(hence closed): if ti → τ ∈ [0, 1] and ψi is a sequence of solutions of (∗ti)
then ‖ψi‖C3 ≤ C implies that ‖ψi‖

C2, 34
≤ C and by Ascoli-Arzelà’s theo-

rem we have a compact embedding C2, 3
4 (M) ⊂ C2, 1

2 (M). So a subsequence
of the ψi converges in C2, 1

2 (M) to a solution of (∗τ ), which is smooth by
Schauder estimates. Thanks to Yau’s estimates [23], we can get a uniform
bound ‖ψ‖C3 ≤ C if we have a uniform bound ‖ψ‖∞ ≤ C.

Assume that ψt solves (∗t), and let G(x, y) be the Green function of
(M,ω′), which has the following properties:





ψ(x) =
1
V

∫

M
ψ(y)ω′n(y)−

∫

M
4ψ(y)G(x, y)ω′n(y)

∫

M
G(x, y)ω′n(x) = 0 ∀y ∈ M

G(x, y) ≥ −γ
D2

V
= −A

(5.14)
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if Ric ≥ K > 0, D = diamω′(M), and γ = γ(n,KD2) > 0 is a constant.
For a proof of the existence of G see [3],[19]. Since ψt ∈ P (M, ω′) we get
n +4ψt > 0 so that





ψt(x) =
1
V

∫

M
ψtω

′n +
∫

M
(−4ψt)(G + A)ω′n ≤ 1

V

∫

M
ψtω

′n + nA

sup
M

ψt ≤
∫

M
ψtω

′n + C

where C is a uniform constant. We also have R′
i̄(t) = (1− t)g′i̄ + tg′i̄(t) ≥

tg′i̄(t), and since ω′ = ω′t−
√−1∂∂ψt > 0 we have n−4tψt > 0 so that the

Green formula for (M,ω′t) gives us




ψt(x) =
1
V

∫

M
ψtω

′n
t +

∫

M
(−4tψt)(Gt + A′)ω′nt ≥ 1

V

∫

M
ψtω

′n
t − nA′

sup
M

(−ψt) ≤ − 1
V

∫

M
ψtω

′n
t + nA′

but now A′ is NOT uniform anymore. In fact by Bonnet-Myers theorem
diamω′t(M) is bounded above by a constant times 1√

t
, so that A′ is bounded

above by C
t . It follows that for t ≥ t0 > 0 we have a uniform bound

sup
M

ψt − inf
M

ψt ≤ C +
1
V

∫

M
ψt(ω′n − ω′nt ) = C + Iω′(ψt).

From the definitions of Iω′ and Jω′ it is immediate to get

n + 1
n

Jω′ ≤ Iω′ ≤ (n + 1)Jω′ ,

1
n + 1

Iω′ ≤ Iω′ − Jω′ ≤ n

n + 1
Iω′ ,

so the oscillation of ψt is controlled by Iω′ −Jω′ . But now we show that this
is increasing in t so that it is uniformly bounded above by its value at time
t = 1. Going back to (5.11) we get

d

dt
(Iω′(ψt)− Jω′(ψt)) =

1
V

∫

M
(4tψ̇ + tψ̇)4tψ̇ω′nt . (5.15)

Recall that λ1(t), the first nonzero eigenvalue of 4t, satisfies λ1(t) ≥ t. Now
let fi(t) be an L2-orthonormal basis of eigenfunctions of 4t where f0(t) = 1
for all t,

4tfi(t) + λi(t)fi(t) = 0.

Express ψ̇ =
∑∞

i=0 ci(t)fi(t), with ci(t) ∈ R and compute

d

dt
(Iω′(ψt)− Jω′(ψt)) =

∞∑

i=1

ci(t)2(λi(t)− t)λi(t) ≥ 0,
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because λi(t) ≥ λ1(t) ≥ t. So we have a bound on the oscillation of ψt if t
is away from zero. In fact this gives us a bound on ‖ψt‖∞ simply because
we have, integrating (∗t)

∫

M
ehω′−tψtω′n = V,

but also ∫

M
ehω′ω′n = V.

Supposing that ψt is never 0 we get a contradiction between these two last
equations. Hence ψt attains the value 0 somewhere, so

‖ψt‖∞ ≤ sup
M

ψt − inf
M

ψt.

Finally we deal with the case t = 0. Since ‖ψt‖∞ ≤ C
t for some uniform

C > 0, we get
‖tψt‖∞ ≤ C,

so using (∗t) we get a uniform bound

‖ω′ +√−1∂∂ψt‖∞ ≤ C,

and by Yau’s estimates on the Calabi Conjecture [23],[19], we have a uniform
bound

‖ψt‖∞ ≤ C.

Hence E is closed.
In the general case when M has nontrivial holomorphic vector fields,

Bando and Mabuchi can still construct the family of solutions ψt, if the
starting φ belongs to P (M, ω) ∩ Λ⊥1 (see [5], [19]). For such φ we then get
that Fω(φ) ≥ 0 exactly as above. ¤
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[7] P. Cherrier Une inégalité de Sobolev sur les variétés Riemanniennes,
Bull. Sc. Math. 103 (1979), 353-374.

[8] W.Y. Ding, G. Tian The Generalized Moser-Trudinger Inequality, Non-
linear Analysis and Microlocal Analysis, Proceedings of the International
Conference at the Nankai Institute of Mathematics, World Scientific
1992.

[9] L. Fontana Sharp borderline Sobolev inequalities on compact Riemannian
manifolds, Comment. Math. Helv. 68 (1993), 415-454.
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