Extremal Sobolev Inequalities and Applications

Valentino Tosatti

1 Sobolev Spaces

Definition 1.1 Let Q be an open subset of R™, and fix a natural number k
and a real 1 < p < oco. The Sobolev space H,f(Q) is the space of all functions
u € LP() such that all the weak derivatives of u of order < k are in LP ().

If u € Hy () we set

1/p
llip = 3 (/Q rvau|P) ,

0<]a|<k

then H ,’c’ (©2) becomes a Banach space. If p = 2 then it is also a Hilbert space,
with the scalar product

(u,v)i’Q = Z /QVO‘UVD‘U.

0<]al<k

We will always write ||u||, := ||u/|op. It is also true that the Sobolev space
H? () is the completion of {u € C®(Q) | |lul|x,p < co} with respect to the
norm || - ||, (this was first proved by Meyers and Serrin [14]).

Proposition 1.2 The space C°(R™) of smooth functions with compact sup-
port is dense in Hy (R™).

Proof

Let f : R — R be any smooth function that is identically 1 for t < 0
and identically 0 for ¢ > 1. Since H}(R™) is the completion of C*°(R™),
it is enough to show that every function ¢ € C*°(R™) N HL(R") can be
approximated in H!(R™) by functions in C°(R™). Consider the sequence

() = (@) f(|z] = j)-

We have that ¢; € C°(R"): in fact |z| is not differentiable at = = 0,
but f(t) is identically 1 for ¢ < 0 so that ¢; is smooth for j > 0. As
Jj — 00, pj(r) — @(x) for every x € R”, and |¢;(x)| < |p(x)| which
belongs to LP(R™), so by Lebesgue dominated convergence theorem we have
lej —¢llp — 0.

For every fixed k and every multiindex a of length k we have V¥ ;(z) —
V®p(x) as j — oo, and by induction

Vej(x)| < [V¥%(z)| + C Z V(@) - [VE1 £ ()],
0<|l|<k—1
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for some constant C, where f;(x) = f(|z| — 7). We note that f®)(¢) and
|V?*|z|| are bounded for s > 1, so we get

V% ()| < [V%(@)[+C" Y [Vie(a)|.
0<|1]<k—1

But the right hand side above belongs to LP, so again by Lebesgue dominated
convergence, ||[V¥(¢; — ¢)|l, — 0. O

This is false for general domains 2 C R™, and we denote by Héc P(Q)
the closure of C2°(£2) with respect to || - ||, p-

Now let (M, g) be a smooth Riemannian manifold of dimension n,
connected and without boundary, and let u : M — R be a smooth func-
tion. Then for k a natural number, we let V*u be the k-th total covariant
derivative of v and |V*u| be its norm with respect to g. In a local chart this
is

\VFul?> = gt gdnyy, .V, uV g, .. V.

If p > 1 is a real number, we set

k
=3 (
J=0

Definition 1.3 The Sobolev space Hj, (M) is the completion of

[

] 1/p
|Vju|pdV> :
M

{ue C(M) | [lullgp < oo}
with respect to the norm || - ||k p-

We have that H} (M) is Banach space and if p = 2 then it is also a Hilbert
space, with the scalar product

k
(u,fu)i; = Z/M<Vju, Viv)dv,
=0

where (-,-) is the pairing induced by g. If M is compact and h is another
Riemannian metric on M, then there is a constant C' > 0 such that

1
5g§h§09,

because this is true in every chart and we can cover M with finitely many
charts. Also this is true for the covariant derivatives of g and h up to any
finite order k. Then the Sobolev norms with respect to g and h are also
equivalent, so they define the same Sobolev space. Hence we have proved
the



Proposition 1.4 If M is compact then the Sobolev spaces Hy (M) do not
depend on the Riemannian metric.

By definition of Sobolev spaces we have that C°°(M) is dense in HY (M), so
we can ask when does this happen for C2°(M). Of course if M is compact
these two spaces coincide, but if M is just complete, in general C°(M) is
NOT dense in Hj,(M). Nevertheless the following is true:

Proposition 1.5 If (M, g) is a complete Riemannian manifold, then C2°(M)
is dense in HY(M).

Proof

We notice that we cannot proceed like in Proposition 1.2 because in general
the distance function d(z, P) for a fixed P € M is only Lipschitz in . So
let’s define a function f : R — R by f(t) =1 for t <0, f(t) =1 —t for
0 <t<1and f(t) =0 for t > 1, so that f is Lipschitz and |f'| < 1. Tt
is enough to show that we can approximate any ¢ € C>°(M) N HY (M) by
smooth functions with compact support. Fix P € M and define

pj(x) = p(x)f(d(z, P) = j).

Then each of the ¢; is Lipschitz, so by Rademacher’s theorem is differ-
entiable a.e., has compact support and so is bounded. But Vy; is also
bounded, because

V(@) < [Ve(2)| + Mm)'tzﬁ] 'O < [Ve(@)] + le()],

where we have used that |Vd| =1 a.e. Hence all the ¢, belong to HY (M).
Exactly like in the proof of Proposition 1.2 we can prove that ¢; — ¢ in
HY(M). We now have to show that we can approximate each ¢;, but this
is easy: by definition there are functions cp? € C*°(M) that converge to ¢;
in HY (M) as k — oo. Now pick a; € C°(M) that is identically 1 on the
support of ¢;; then we have that ajgoé? € C2°(M) converge to ¢, in HY (M),
and we have finished. (]

2 The Sobolev Inequalities

2.1 The Euclidean case

We have the following fundamental

Theorem 2.1 (Sobolev Embedding) Assume n > 2, let k,l be two nat-
ural numbers, k > 1, and p,q two real numbers 1 < q < p satisfying

1

p

k—1

1
= —
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Then

Hi(R™) C H (R")
and the identity operator is continuous. If n = 1 then for every natural
numbers k > 1 and p,q real numbers 1 < q < p < 0o we have a continuous
embedding

H!(R) C H(R).
Proof
The proof consists of several steps. First assume n > 2.

Step 1 (Gagliardo-Nirenberg Inequality [10],[16]) We prove
that every ¢ € C2°(R"™) we have

1o

Pick a point P = (y1,...,yn) in ]R”, call Dril,m,xij the j-plane through P
parallel to the one generated by the coordinated axes z;,...,x;;, so for
example Dy, .. = R". Since ¢ has compact support, we can apply the
fundamental theorem of calculus to get

n

(2.1)

axz 1

1

y1 9 +oo 8
W(P)_ ¢(xlay2a---ayn)dx1:_/ (xl,y2,---,yn)dx1
(9 Tl Y Ox 1

1
P <5 [ ol e e

r1
Doing the same for all the other coordinates, multiplying them all together
and taking the (n — 1)-th root we get
1

n 1 n=t
p(P)|r1 < —/—— / 8m<pdx-~/ Oz, p|dzy,
| ( )‘ on/(n—1) ( D, ’ 1 ‘ 1 D, ‘ ’

Now we integrate this inequality for y; € R: the first integral does not
depend on y; so it can be taken out. Then we apply Holder’s inequality
n — 2 times to the remaining terms this way:

= (o) ()

1 n

We get
/ lo(Y1,y2, -5 yn)| " Tdyr <
Day
1
m . |8x190|(3317y27---7yn)d331 |8w290|(y17x27y37"'7yn)dy1d‘r2
1 T1,TQ

1

n—1
/ laﬂfngo‘(ylay%'"wfn)dyldxn) .
D

T1,Tn



Integration of yo,...,y, over R and the use of Holder’s inequality again,

leads to
1 Aol
(pnlg(/ 8ch.../ 833"90) ,
Lo < g ([ ol [ 1000l

which is exactly (2.1).

Step 2 (Sobolev Inequality) We prove that there exists a constant
K (n,q) such that for every p € H{(R™) we have

el < K(n, @) Vellg, (2.2)
1

Where%:a—%,and1§q<n.
By Proposition 1.2 it is enough to prove (2.2) for ¢ € C°(R™). First of all
for every ¢ we have |0p/0z;| < |Vy| so by (2.1)

HSO||n/(n 1) *||V90H1

This gives us the Sobolev inequality for ¢ = 1. Now let 1 < ¢q¢ < n,
p = ng/(n — q), and set u = |p[P(*~D/" Then, using (2.1) and Holder’s
inequality we get

(n—1)/n (n—1)/n 1
(Ler) = (L o)™ <5 [ v
n—1 / n—1 /0 1/d 1/q
="t e v <o" ([ wer ) ([ )

where L + L =1, ' = (p(n —1)/n) — 1. So

q " q
le_lzl_l_l pn—n—p
¢ q pon pn
/:pn_n p
n )
hence p'q’ = p and we get
lplpt 1)/"<p ||90Hp/q IVellg

so dividing by [|¢][p /7" and computing

= =/ -1
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which is (2.2).
Now (2.2) tells us that we have a continuous embedding
H{(R") C LP(R") = H{(R™)

Wher61§q<n,11;:
the case k = 1.

%. So we have proved the Sobolev embedding in

Q=

Step 3 We prove that if the Sobolev embedding holds for any 1 <
g < n and k = 1 then it holds for any k, so that if 1 < ¢ < p; and
1/pr =1/q — (k —1)/n then H](R") is continuously embedded in H (R™).

By definition of Sobolev spaces it is enough to prove that there is a
constant C' > 0 such that for every ¢ € C*(R") N H(R™) we have

lellip < Cliellk,g-

Notice that here we don’t need ¢ to have compact support, so this step
will work also for complete Riemannian manifolds. The first step is Kato’s
inequality: for every smooth function 1 and every multiindex r we have

VIVl < [V,

where |V"1)| # 0. This is true in more generality: if E — M is a vector bun-
dle over a Riemannian manifold M, with metric and compatible connection
V, and if £ is a section of E then

ldI¢]] < [VE]
where & # 0. The proof is very simple:

2|dle]|le] = |d(1€*)] = 21{VE, €)] < 2|Ve][¢].

Now that we have Kato’s inequality, since H{(R™) C LP(R") there is a
constant A such that for all ¢ € H{(R") we have

[Pl < AUVl + [[914)-

Apply this to ¢ = |V"p| with r = k — 1,k — 2,...,0 which all belong to
HI(R™), and get

IVl < AUVIVTlllg + V7 0llg) < AUV el + 1V 0llg),

where we have also used Kato’s inequality. Now add all these k inequalities
and get

lelle-1.p < 24| 1,q-



By definition we have p = py_1. We have just shown that we have a con-
tinuous inclusion H}(R™) C H;* ' (R™). Now iterate the reasoning above to
get a chain of continuous inclusions

HJ(R") C H{*7'(R™) © HYP(R™) C -+ C HE () (RY) = HPY(R).

Step 4 Now assume n = 1. Exactly as in step 1, for every ¢ € C°(R)
and for every x € R we have

1
p@l <3 [

This immediately implies that

dp

H}(R) C L>(R).
Now assume that ¢ € C°(R) and p > 1. By the Markov inequality

Vol({z | p(z) > 1}) < ¢l < o0,

/W’:/ Isop+/ P < (suplcp\)pllw\ﬁr/ el
R {p=1} {p<1} R R

1
lelly < 5

1 1
p = 5lIVellilioly + el

hence
H}(R) C LP(R).

Now let ¢ > 1, ¢ € C°(R) and set u = |p|?. Then

1 1
1 q _ q VA a
ol =z [9u =2 [1ervel < £ ([1ae)" ([ iwa)
R R R R

where é + % =1. Then (¢ — 1)¢’ = ¢, so

T o
[ol? < Sl HIvellg,

hence
H{(R) C L*(R),

and if p > ¢ we proceed as above using Markov inequality to get
HI(R) C LP(R).

The last step when k& > [ > 0 follows exactly as in step 3. O



2.2 The compact manifold case

Theorem 2.2 (Sobolev Embedding) Let M be a compact Riemannian
manifold of dimension n. Let k,l be two natural numbers, k > I, and p,q
two real numbers 1 < q < p satisfying

1 1 k-l

p q n

Then
H{(M) C Hf (M)

and the identity operator is continuous.

Proof
Since the proof of the Step 3 of the Sobolev embedding on R" carries on
word by word to this context, it is enough to prove that we have a continuous
embedding

HY(M) € LP(M) = HE(M)

where 1 < ¢ < n, % =1_ %, and so it is enough to prove an inequality of

the form !
lell, < CUIVellg + llellg) (2.3)

for every ¢ € C°(M). Let (2, 71i)1<i<n be a finite cover of M with coor-
dinate charts such that for all 1 <m < N

1
55@‘ < g7 <28,

where g;7 are the components of g in the chart €,,. Let {a;} be a partition
of unity subordinate to this covering. If we prove that there is a constant C'
such that

leigllp < CUIV(@ip)llg + [leigllq) (2.4)
then since |V(a;p)| < |Vo| + |¢| - [Vay], we'd get

N
Z (e71%)
i=1

which is of the form (2.3). So we have to prove (2.4). On the compact set
K; = supp «; C §; the metric tensor and all its derivatives of all orders are
bounded, in the coordinates 7;. So we get

”SOHP =

N
<3 lasell < ON (9l + (14 maxsup (Taillely ).
p =1

p € HI(M) <= (aup € HY(M),Vi) < (cspon; ' € HI(R™), Vi),

where we defined a;p o ni_l to be zero outside 7;(K;). Then we have

1/p 1/p
( / IaisOIPdV) < o2 < / !awoml(fﬂ)lpdw)
M n
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1/q 1/q
([ 1v@ppav) " =202 ([ 9(apon )

Now Theorem 2.1 tells us that there is a constant C' > 0 such that

(flessenmpar) " <[ wioenmras)

and putting together these 3 inequalities we get (2.4). This finishes the
proof. O

2.3 The best constants

Theorem 2.3 (Aubin, Talenti [2],[20]) The best constant in the Sobolev
inequality (2.2) on R™ is

= % <”5;1__ql)>1_; (F(n/q)r(lr:(—t ;r_l)n/q)wn—ly

forq>1, and
1
1 n
K(n,1) = < n )
n \wnp—1

Recall that I'(1) =1, I'(1/2) = /7, T'(z + 1) = 2T'(z), I'(n) = (n — 1)! and

27Tn/2
Wn-1= =~

I'(n/2)
In particular we get
(4m)™(n — 1)!
(2n —1)!

Qﬂ.n—‘rl
Won+1 = |
.

Wan =

3 The Logarithmic Sobolev Inequalities

Theorem 3.1 ([6]) If f € HZ(R™) with || f|l2 = 1, |f| > 0 a.e., then

2
2 <" / 2) . 1
[ 1Progisl < g (- [ (9] (31)
Proof

We set p = % and apply the Sobolev inequality to get

2/p
(/ |f!”> < K22 [ [VsP.
R™ R"
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Using Jensen’s inequality we get

oz [ 1172 0=2) [ 17P10g]1]

and putting together these two inequalities we get

-2 [ 1ii10g]f1 < Dtog (k002 [ 197).

Since 5= =4 we get

2(p—2)
/ f\?logf\s’;mg(f«n,z)? / rwr?). (3:2)
Rn Rn

This is almost what we want to prove, but we want a better constant. To
achieve this we have to let n go to infinity. First we compute the asymptotic
behaviour of K (n,2)? for n big. By Theorem 2.3 we have that

K(n.2)" = % (n = 2) ( (n/2)IE‘((n/2 +) );uM)i 2
B n(nl— 2) ( (;1;5”; ) = m(nl ~2) (rm;)) n

and by Stirling’s formula we have

<r€%> ~ne

2
K(’/’L,Q)Q ~ %

SO

Now we use this asymptotic behaviour in the following way: set m = nl
with [ > 0, and for z € R™ set F(x) = Hézl f(zk) where each z is in R™.
Since || f|l2 = 1 we have || F||2 = 1 so we can apply inequality (3.2) to F' and

get
I / |f|21og|f|s”llog<u<<nz,2>2 / IVf|2>-

Now we let | — 0o, and we have [K(nl,2)? — %, so we have proved (3.1).
U

. 2
Define the Gaussian measure on R” by dy = (27r)_%e_%dx. Then
we have the following

Theorem 3.2 (Gross [11]) If g € H{(R™,dp), [palgl?dp =1, |g] > 0
a.e. then

/R|9|210g|g|du§/]R \Vgldu (3.3)

10



Proof
We will show that (3.3) is actually equivalent to (3.1). First of all set

172
flz) = (2m) e~ g(x), so that || flla = fpa |g/2dp = 1. Now compute

Vg = (2m)Fe T <Vf+f2$)

2 _ n o2 o, |fPPlzl? - ﬁz
Vgl = (2m)%e> (w T )

and using integration by parts

Z 8:(,'Z _;/Rn|f’2

S0 Y fon f%xi = —%. Substituting into (3.3) we get

2 n 2|2
[ 17 (tog161+ gtz +10g (5 ) ) < =5 [ (1wsp+ LEEE)

which simplifies to

[ 1P roglf1+ Frosene®) < [ (0P
Now fix 6 > 0 and change f(z) with ¢§ 3f (6x) in this last inequality, to get
[ 1rP ol + Flog(eret) <8 [ V4P - Do (3.)

We have just shown that (3.3) is equivalent to (3.4) for all 6 > 0. But the
right hand side of (3.4) achieves its minimum for

Smin = (|~
min 4fRn |vf’27

so having (3.4) for all § > 0 is equivalent to having (3.4) for dy,in, which is

2] M ogeme?) < - Moo [
L 1rosl1+ loseret) < = Jiog (1 1g7p

and this is precisely (3.1). O

3

Notice that the constant of the Gross logarithmic Sobolev inequality
does not depend on n.

11



4 The Moser-Trudinger Inequality

Let D be a bounded domain in R™. Then, using Hoélder’s inequality, for
every ¢q € [1,n) we have a continuous embedding

HY(D) ¢ H{(D),
and now by Sobolev embedding, we have
H{(D) C L"(D)

where % == — % Since ¢ is arbitrarily close to n we get continuous embed-

dings

1
H™(D) C LP(D)

for all p € [1,00). The point is that we don’t get an embedding into L*°(D)
as the following example shows. Let D = {z € R? | 0 < |z| < 1/e} and
define f: D — R by f(z) = log|log |z|| . Then |f|? is integrable and

1/e d
IV = 2r / o
0

r|logr|?

so that f € HZ(D), but f is not bounded on D. On the other hand

1/e
lef|l, = 277/ r|logr|dr < co.
0

This is a general phenomenon as we will soon see.

Theorem 4.1 (Trudinger [22]) Let D be a bounded domain in R™. Then
there exist constants C,a > 0, with C' depending only on n, such that every
Y E Hé’n(D) with ||Vl <1 satisfies

/ el < ovol(D). (4.1)
D
Proof

First assume that ¢ € C°(D). Fix x € D and use polar coordinates (r,0)
centered at z. Let y € R, r = |z — y|, and write

(P(-'E) _ _/ 3g0(7’, 9) dr = _/ ’$ . y[l_"a—wrn_ldr,
0 r 0

15 or

()] < /0 &~y Vil dr

and integrate over S"~! to get

1

Wn—1

()] < /D = 4|1 V() dy.

12



By density this holds for every ¢ € Hy™(D) and a.e. z € D. Now fix
p>mnandset 1/k =1/p—1/n+1, so that k > 1, f(z,y) = |z —y/*™",
9(y) == |Ve(y)| and write
11, 11
fg=(fog")(f5)F 7 (g") .

Since 1/p+ (1/k —1/p) + (1/n—1/p) = 1 we can apply Hoélder’s inequality
to get

/f:vy dy<</ @, y)g ()dy>;<Df’“(:v,y)dy

From this we get

lello = (/. rw<x>\pd$>i < (1(f f<xay>g<y>dy>pdx>l
= </ (fyreowom) (] fk(x’y)dy>£ldx>p< [ o)
o 1225(/f )
g ([ rem) (farom)’ (from) ™

1
1 o\ F
S . ( / kaydy) IVl = —— sup ( [ o=yt >dy> 196
Wn—1 zeD Wn—1 zeD D

Let B be the ball with center = and the same volume as D, say that its
radius is R. Then by spherical symmetrization we have that

1 1
& &
([ie=uttman)” < ([ o= yriay)
D B

and the last term is independent of z, so that we have

1 1 )
E R k k+n—kn \ %

sup (/ |z — y’k(l—n)dy> < %l/ﬁ </ T(k—l)(l—n)dr) wl/k <R>

zeD \JD 0 k+n—kn

1/k k+n—kn 1
= R % .
“n- (k+n— kn)l/k

~_
=
|
S E
N\
S
Ne)
3
s
U
<
~_
3=
|
I

b~

IN
e

Now

1 + 1 / L*l+l

p+1—p/n\ = » n-1
= <:(7 n

(k+n — kn)l/k < n ) =+P

where C' > 0 only depends on n, so putting all together

1 k+n—kn
k

lellp < ClIVeollnp = R

13



Notice that

n—1) —1)

p( n p(n
ollb < CP[Vellhp™ = R* < CP||Velhp = Vol(D)

for p > n. By changing the constant we may assume that we have such an

inequality also for p = %, 1<k<n-—1. Then

a¢W"U_“”W/‘ T o ol
¢ _ 0|71 < Vol(D ClIVelln) T
/ 35 ), (D)3 % (€19l ™ (2

p=0 ="

(a(eCHV(pHn)ﬁ#)p (pe—ﬁy
p! .

= Vol(D) i

p=0

Since emT > e we have, using Stirling’s formula, that the sum

$ )

p=0 P!

converges, so if we choose « small enough so that

n

<1
-1

a(eC|Veplln) 7~
we have finished. This is possible since by hypothesis we have

IVelln < 1.

O

Corollary 4.2 Let D be a bounded domain in R™. Then there exist constant
u, C > 0 with C depending only on n, such that every ¢ € Hé’n(D) satisfies

| e < ovolD) explul Vel (4:2)

Proof
Start with Young’s inequality: if u,v are two real numbers and % + % =1,
then

ulP [l
v< - 4 B0
p q
Also for every € > 0 we have
bl

uv = (ue)(v/e) §sp?+5 .

14
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Apply this with u = ©/[|Vpl|,, v = [[Velln, p = 724, ¢ =n, ¥ /p = a and
get
afp|m1 e
ps——F THVSOHZ-
IVelln

Take this inequality, exponentiate it and integrate it over D. Since ||Vul||,, =
1 we can apply (4.1) to the first term and get

/ ¢ < OVOl(D) exp(ul| Ve |7).
D

O

The best constants in these inequalities were calculated by J.Moser

Theorem 4.3 (Moser [15]) The best constant for the inequality (4.1) is

1

=

oy = nw,’”

This means that (4.1) holds for o = au, and if o > v, the left hand side is
finite but can be made arbitrarily large. The best constant for the inequality
(4.2) is

1)n—1n1—2nwgil‘

fin = (n —
Let’s examine the case of compact Riemannian manifolds.

Theorem 4.4 (Aubin [4]) Let M be a compact Riemannian manifold of
dimension n. Then there exist constants

C,a,pu,v>0
such that for all ¢ € H{'(M) we have

| etav < Comu Vel + vl (13)
and for all ¢ € H'(M) with ||Vo|, <1 we have
/ eV ay < ¢ (4.4)
M
Theorem 4.5 (Cherrier [7]) For a compact Riemannian manifold of di-

mension n the best constants in the inequalities (4.4) and (4.3) are the same
an and py, as before.

Theorem 4.6 (Moser [15]) Consider S* with the canonical metric. Ev-
ery ¢ € H{(S?) with [¢ ¢dV =0 satisfies

/S e#dV < Cexpluz| Vi)

where o = 16%.
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As a corollary we can easily see that every ¢ € HZ(S?) satisfies

1 1
log/ e?dV < / |V|?dV + / wdV + C. (4.5)
S2 167 S2 47 S2

We have the following generalization to higher derivatives: If u is a
real function defined in R™ define

YNGR if m even

D™y = (4.6)
VA@=D/2if m odd

Theorem 4.7 (Adams [1]) If m is a positive integer, m < n then there is

a constant C(m,n) such that for all uw € C™(R™) supported in D a bounded
domain, with ||D™u|, <1, p=n/m, we have

/ AUl < cvol(D), (4.7)
D

where zl? + % =1, for all B < Bo(n,m)

n/22mr m41y\ ¢
n (” (% >> if m odd

Wn—1 T n—m+1
ol m) = ) (1.9
n W"/22mf(%) / )
— if m even
ot \ TR

Moreover if B > Bo(n,m) then there is no such inequality.

Finally we have the

Theorem 4.8 (Fontana [9]) Let M be a compact Riemannian manifold
of dimension n, and let m be a positive integer, m < n. Then there is a

constant C'(m, M) such that for allu € C™ (M) with ||[D™ul|, <1, p=n/m,
and [y, udV =0 we have

/ Al < ¢, (4.9)
D

where l-l—% =1, for all B < Po(n,m) give in the previous theorem. Moreover
if B> Po(n,m) then there is no such inequality.

5 Applications

5.1 The Ricci Flow

The first application we will give of the previous material is due to G.Perelman.
He used the logarithmic Sobolev inequality to prove a technical result about
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the Ricci flow.

Let (M, g) be a compact Riemannian manifold of dimension n, define
Wi £.7) = [ [F(VIP+ R+ f = nl(dmr) Fefav,
M
where f € C*°(M), 7 € R, 7 > 0, that satisfy
/ (4r7)"ze fadV = 1. (5.1)
M
We immediately see that for every a > 0 we have

W(g?f77—) = W(a-g?f’aT)'

Suppose now that g, f, 7 depend also smoothly on time ¢ € [0,7") and satisfy

9.
ot =
0

Y _ 2 _ v (5.2)
o/ = —OF VP R+
0

—7 =-1

\ Ot

We say that g moves along the Ricci flow. Then we can compute (see [13])

0
Tw=1 2
(%W /M "

We now let

1 .
R;; + V,-ij — Egij (47TT)_5€_de > 0. (5.3)

p(g,7) = mnfW(g, f,7)
where the inf is taken over all f satisfying (5.1), and
v(g) = inf u(g, 7)

where the inf is taken over all 7 > 0. We want to show that there always
exists a smooth minimizer f of u(g, 7). Set

_rL
2

=e 7 (4nr) "4

so that we can write

W(g, f,7) = /M [4T|V<1>\2 — 2log B2 + B> (TR - glogélm'” %

/@2:1.
M
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Then a theorem of O.S.Rothaus [18] assures us that there is a smooth min-
imizer f for W(g, f,7), and that the corresponding ® satisfies

4rAD — Blog B = P (u(g, = TR+ n+ %log 4m> L (54)

This implies that v(g) is nondecreasing along the Ricci flow: consider a time
interval [to, 1] and the minimizer f(¢1), so that

plg(tr), 7(t)) = W(g(tr), f(t1), 7(t1))-

Solve the backward heat equation for f on [tg,?1] to obtain a solution f(t)
satisfying f(¢1) = f(t1). Then since W is nondecreasing we get

W(g(to), f(to), 7(t0)) < W(g(tr), f(t1), 7(t1))-

But if f(to) is the minimizer of y at time o we have

1(g(to), 7(to)) = Wig(to), f(to), 7(t0)) < W(g(to), f(t0), 7(t0)),

so that wu(g(to), 7(to)) < wu(g(t1),7(t1)). It follows that also v(g) is nonde-
creasing along the flow.

Let’s compute W in one explicit example. On R™ with the canonical
metric, constant in time, fix tg > 0, set 7 =ty — ¢t and

2
f(t) = 20

so that (4#7)7%e_f is the fundamental solution of the backward heat equa-
tion, that starts at ¢ = #g as a d-function at 0. Then it is readily verified
that (gean, f,7) satisfy (5.2). We can compute that

L

TIVIP+ B+ f-n=r i+ 27

Now we have the well-known Gaussian integral
|2

/ efl%dm‘ = (4%7)%,

and differentiating this with respect to 7 we get

Hence

||

W(gcanafaT) :/ (4777')7% < _n> e dr=n—n=0,
for all ¢t € [0, ).
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Theorem 5.1 Start with an arbitrary metric g;;. Then the function u(g, )
is negative for small T > 0 and tends to zero as T tends to zero.

Proof
Assume 7 > 0 is small so that the Ricci flow starting from g;; exists on [0, 7].
Set u = (47rT)_%e*f and compute its evolution

%u = —/Au+ Ru.
This is the conjugate heat equation in the following sense: if [1 = % —Ais
the heat operator, with respect to the metric moving along the Ricci flow,
and [0* = —% — A + R then for any two functions u,v € C*°(M x [0,T))
we have
0

/ uvdV:/ (vOu — ud*v)dV.

This can be easily proved remembering that %dV = —RdV and fM(uAv —
vAu)dV = 0. Now solve the conjugate heat equation for u starting at
t = T with a Jd-function concentrated around some point, with total integral
1. Since the conjugate heat equation for u is now linear and R exists on
[0, 7], the solution we get is defined on all [0,7]. Set 7(t) = 7 — ¢ and get
an f(t) from the wu(t) (this way we've got a global solution for f, which
satisfies a nonlinear evolution equation). Then as ¢ — 7 the situation ap-
proaches the Euclidean one, for which we computed above that W = 0. So
W(g(t), f(t),7(t)) tends to zero as t — 7, and we have by monotonicity

ulg.7) < Wi(g(0), £(0),7(0) < lim W(g(#), £(2), () = 0.

To show that lim,_,o u(g,7) = 0 we won’t use the Ricci flow anymore, but
we’ll employ the Gross logarithmic Sobolev inequality. Assume that there
is a sequence 7, — 0 such that p(g, %) < ¢ < 0 for all k and cover M with
finitely many charts Uy, ..., Uy such that each Uj; is a geodesic ball B(p;,0),
for some 6 > 0. Let g7, = (27)71g;; and gy = g™. Then each (Uj, gk, p;)
converges as k — 00 to (R", gean, 0) in the C*° topology. Then we can easily
compute that

W(g, f,7) = /M [2|V<I>\Z — ®?log &% 4 P2 (% —n— glog 277)] dV;,

_f n
2

b=c2(2m) 2

P24V, =1,
M
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where dV; = (27)"2dV, |V®]2 = 27|V®|?, R, = 27R. Let ¢, be the

minimizer realizing p(g, 7% ), which satisfies

R, n
— 20,1 — 2¢1 log ), = <M(9,Tk) — g 210g27T> Ok

2
2 —
M

Write

(5.5)

Fi(®) =2|V[7, — &°log &* + & (R;k —n— Zlog%r)

so that
ka()\CI))de B ka(q>)de B

[(A®)2dV, [ @2V,
Since by hypothesis u(g, 7%) < ¢ < 0, we know that

log \2.

/ Fi.(pr)dVi < ¢ <0,
M

so that up to a subsequence
c
/ Fk((pk)dvk < —=<0.
Uy N

Clearly we also have fUl (pide < 1. Let’s fix the attention on Uj. Since
gr. converges t0O geqn uniformly on compact sets of R”, elliptic PDE theory
tells us that there is a subsequence of @, still denoted ¢ that converges
uniformly on compact sets of R to a limit ¢o,. The functions Fj on the
other hand converge to the function

F(®) = 2|V|? — % log & — & (n + glog 27r) :
and s can’t be identically zero because

/ F(poo)dx = klim Fi(pr)dVy, < % < 0.

—00 Uy
Set
2= [ e (5.6)
so that
Poo C
Yo < -
/nF(E)dx_N+210g€< (5.7)
Let



Then by (5.6) we get

/ ~foo *(2m)~ Tdy =
and by (5.7)

/Rn <;|Vfoo|2 + foo — n> (27r)7geff°°d:c < % < 0. (5.8)

This last inequality is precisely the opposite of the Gross logarithmic Sobolev
inequality (3.3). We verify this by setting
2
x
foo = |— — 2log ¢.

2
Then Vo
View=2—-2—,
/ s
2 2 2
IVl _Jef? | ,IVof _,(Voa)
2 2 ¢? ¢
z2
(252(271')7%67%611' =1.

R
The left hand side of inequality (5.8) becomes

2 2 2 2
/ <|:L'|+2|V¢] _2<V¢’ >+|x|—210g¢—n) ¢2(27T)_%e_%da:.

2 @2 1) 2
We can integrate by parts the third term to get
_n 8(75 _l=? Lne o ; =
(2) Z 8951 z'e =—(2m) 2 Z/ngbaxixle 2

=1
- (2m)3 Z / T ren [ et -

a¢ . 2
2 -5 z ——_ 271) " 2 20,12 ,—5—
™) Z R R O S

SO

n

_n x|? n n ||? i
E _ 2
(2m) 8:61 =3t (2m) / ¢ 2 ¢

Substituting this into the left hand side of (5.8) we get

x\2

/n (2|V¢)|2 — 2¢%log ) (2m)"2e 2 da <
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which contradicts (3.3). So we must have that lim,_, (g, 7) = 0. O

We have the following application of the previous theorem. If g(¢),
t € [0,T), is a metric evolving along the Ricci flow, we say that is a shrinking
breather if there exist an 0 < a < 1, two times ¢ < t2 and a diffeomorphism
h: M — M such that

ag(ti) = h*g(ta).

If this holds for every t1, to we say that g(t) is a shrinking Ricci soliton. This
is equivalent to the existence of a one-form b and a number A < 0 such that

QRZ'j(O) + 2)\9@‘(0) + Vibj + iji =0.

If b = V f for some smooth function f we say that g(¢) is a gradient shrinking
Ricci soliton. This means

Rij(0) + Agi(0) + ViV f = 0.
We want to prove the

Theorem 5.2 (Perelman [17]) Every shrinking breather is a gradient shrink-
ing Ricci soliton.

Sketch of proof
Assume that g¢(t) is a Ricci breather defined on [0,7], so that there are
0 <a<l1,t; <ty and h as above. Since

Wig(t2), £,7) = Wiag(tr), £,7) = W (9(t2), £, © )

we get v(g(t2)) = v(g(t1)). Define A(gi;) to be the lowest nonzero eigenvalue
of the operator —4/A + R, and

— 2

A(gij) = Vol(gij) ™ A(gij)-

Since we are on a shrinking breather we have that A(g(t1)) = A(g(t2)).
In [17] it is shown that if g(t) moves along the Ricci flow, then A(g(t))
is nondecreasing whenever it is nonpositive, and that monotonicity is strict
unless g(t) is a Ricci soliton. Hence we are left with the case when A(g(t)) > 0
for all ¢ € [t1,t2]. It is not hard to see using (5.4) that A(g;;) > 0 implies
that

lim p(g,7) = +oo,
T—00

because when 7 is big, 1(g, 7) is approximately 7A(g;;). In particular this is
true for g;; = g(t2). Now apply theorem 5.1 to get that p(g(t2),7) < 0 for
7 sufficiently small, and

lim M(g(t2)> T) = 0.
T7—0
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These things together imply that there is a 7 > 0 that realizes the infimum

v(g(t2)) = p(g(t2),7) <O0.

Now by the theorem of Rothaus, there is a function f that realizes the
infimum

V(g(tQ)) = H(g(tg),%) = W(g(t2)7fv7:) < 0.

Now we flow f by the backward heat flow to get a family f(t), ¢t € [t1, 2]
and set 7(t) = T +ty —t, so that (5.2) are satisfied. By monotonicity we get

v(g(ta)) = Wg(ta), f,7) = W(g(tr), f(tr), 7 + t2 — t1) = v(g(t1))-

Since v(g(t2)) = v(g(t1)) these inequalities must be equalities, so that W is
constant on [t1,t2]. But then formula (5.3) tells us that g(t) is a gradient
shrinking Ricci soliton on this interval. (]

5.2 Kahler Geometry

Now we turn to the Moser-Trudinger inequality. Let us try to generalize
(4.5) to higher dimensional varieties. Consider S? as the complex manifold
CP! with its canonical Kéhler metric w. Then w is Kéhler-Einstein, because

Ri; = 2g,5.

We can generalize the Moser-Trudinger inequality in the following way. If
(M, w) is a compact Kéhler manifold of complex dimension 7, and

P(M,w) ={¢ € C°(M,R) | wy = w +/—190¢ > 0}

is the space of Kahler potentials, we can define

n—1

VI it ) i A m—iel
Jw(gi))_iv iz;n_'_l/MagZ)/\agb/\w Awy ,

where V' = wa". Ifn=1 we get

V-1 — 1 9 1/ 5
=— [ 0pNOp=—— 0 == :
o ), 98n 00 QV/erw v ) Vel

Jw(¢) -
Now assume that c;(M) > 0 and pick w representing the first Chern class.
By 00-lemma there is a unique smooth real-valued function h,, such that

Ric(w) = w + v/—100h,
/ (eh‘d —1w" =0
M
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Define . ,
Fo(¢) = Ju(o) — v /M pw™ — log (V /M eh“‘%;") .

It satisfies the following cocycle relation (see [21])

F.(¢) = F,(v¥) + Fw+\/?135¢(¢ — ). (5.10)

We say that F, is bounded below on P(M,w) if there is C' > 0 such that
F,(¢) > —Cforall p € P(M,w). Then if M is Kahler-Einstein (i.e. h, = 0),
the statement that F,, is bounded below means

log <‘1/ /M a%”) < Jo () — % /M pw" + C.

For S? this means that for every ¢ € P(S?,w)

- L N S
g </M€ ”> = Tor /M'W)' “t /M( P+ G,

which is precisely (4.5) with ¢ = —p. Notice that this is still weaker than
the result of Moser, because we are requiring that ¢ € P(S?,w).

Let (M, w) be a Kéhler-Einstein manifold with ¢1(M) > 0, and let Ay
be the space of eigenfunctions of A with eigenvalue 1. Then it is easy to
see that there is a bijection between elements of A; (up to constants) and
holomorphic vector fields: if Aju+wu = 0 then X = g% %@- is holomorphic,
and if X is holomorphic then ixw = du with Aju +u = 0. (see [19] for the
details).

Theorem 5.3 (Bando-Mabuchi [5], Ding-Tian [8]) If (M,w) is a Kihler-
FEinstein manifold with ¢ (M) > 0, so that Ric(w) = w, then F,, is bounded
below on P(M,w) N Af where the orthogonal complement is with respect to
the L? scalar product. In particular if M has no nonzero holomorphic vector

fields then F,, is bounded below on the whole P(M,w).

Proof
Fix any ¢ € P(M,w), and set w’ = wy. It is easy to prove that the solvability
of the following complex Monge-Ampére equation

(W 4 V=100 = el =M

is equivalent to w’ 4 /—100¢ being Kihler-Einstein. Let’s introduce a time
parameter ¢ in the above equation:

(W' 4+ V/=109)" = el ~Hym, (%¢)
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Since w is Kéhler-Einstein there is a solution of (1), namely ¥ = —¢.
Suppose that we could get a whole family {1} of solutions of (x;) for ¢ €
[0, 1], that varies smoothly in ¢. Let’s introduce a new functional

n—1
L(¢) = {1//M P(w" —WZ) = \/‘? Z/M 9P N Ip Aw' /\wg*ifl.
i=0

We now calculate the first variation of I, and J, along a smooth family
{¢¢} C P(M,w). Set wy = wg,, ¢ = %(Z)t, and compute (see [21])

d 1 .
Gulo) = [t - ),

d 1 . 1 .
9 1) = 5 /M B — o) - o /M e,

where /\; is the laplacian of the metric wy. Now pick 1 as path, and
differentiating () with respect to ¢ we get

ny/ =100 A (o' + V=1000;)" ™ = (=t — tih)el " = (=g — ta) )"

which means _ '
Appuw = (= — t)wy”. (5.11)
Substituting this we get

G T = o) = 5 [ -+ el

dt
_ d h, 1—tr, In 1 / i ho r—tpe m
= (/M e w + v sze w'.

Since for every t we have

/ ehw/—t’t/)tw/n — ‘/'7
M

differentiating this we get

[ (s tiger v —o,
M

which simplifies the above to

d d m 1 1=ty In
i (L () = Jur (Y1) = an (/M hrw; ) itV el 7M.,
Multiplying this by ¢ we get
d d [t N
() = L) = (L) — Tutw)) = 5 (5 [ weet?).
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Integrating this from 0 to ¢t we get

wuwnauwm—[}uwo— (3e))d =—/¢w

which is equivalent to

/0 t(Iw'(¢s)—Jw’(¢s))dS:t< w (Y) + / Py’ ) (5.12)

Now from the cocycle relation (5.10) we get

Fu(¢) = —Fu(=0¢) = —Fu(¢1)

= —Ju (1) + / ™ + log <V/ ehw’wlw’">. (5.13)
M

Integrating (1) over M we see that the last term is zero. Using (5.12) we
get

(@) = —Ju (1) + /ww / L (46s) = Jur (36,)) ds

But the integrand is

-1 .
L) = T hs) = Yo Z 1 [ o0 B nw A
=0

and each of the terms of the sum is nonnegative. Hence we have proved that
Fu(¢) 2 0.

Getting the family of solutions 1) is rather technical. We will assume that
M has no nonzero holomorphic vector fields (so that A; = 0) and just give
an idea of the general case. The family v is constructed using the continuity
method. Define E' = {t € [0,1] | (*s) is solvable for all s € [¢,1]}. Then E
is nonempty because 1 € E. If we can prove that F is open and closed in
[0, 1], we’d have finished. To prove that E is open we have to prove that if
s € E then we can solve (x;) for ¢ close to s. Let 15 be a solution of (kg), so
that

w;n _ eh“’/ 81#5

Then setting p = 1y — 15 we can rewrite (*;) as

(Wb V10Dt = )" = T — el R
(W, +V/=180p)" = e*Spef(t*S)(ﬁws)w;n

(Wi + V=190p)"

m
ws

log

==t —=5)(p+vs).
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So define operators
1 1
®,: C*2 (M) — C%2 (M)
by
! +/—100p)"
D (p) = log (ws + p P) +s
w n
We want to solve the equation

Ds(p) = —(t = 5)(p + 1s)

for |t — s| small. Notice that ®4(0) = 0, so that by the implicit function
theorem it is enough to prove that the differential of ®4 at 0 is invertible
(this gives us also that the family v, is smooth in ¢). But this differential is

_2
Ot

p.

S

Dd4(v) O (tv) = Asv + sv,
so that we need to show that A\;(s), the first nonzero eigenvalue of A,
satisfies A1(s) > s. Compute

w/n

R;]—(s) = —8,~8]—10gw;” = —8i8510g wifn—’_R;j = —8¢8J—(hw1—s¢5)+g§j+8i8jhwz
= gij + 50,005 = gz/'j + 5(925(5) - ggj) =(1- 3)923‘ + 3927(3) > 5925(5%

so by standard Bochner technique ([21]) we get A\1(s) > s, and that the in-
equality is strict if s < 1. If s = 1 then recall that v} = w is Kéhler-Einstein,
so that Ric(w) = w. Since we assume that there are no nonzero holomorphic
vector fields, we have that A\;(1) > 1, so that ®; is locally invertible around
0. Now standard elliptic regularity theory (Schauder estimates) tells us that
the solution p we have found is in fact smooth, so E is open. To show that
E is closed it is enough to establish an a priori bound ||¢| ¢ < C for a solu-
tion of (#;). In fact if we have such a bound we can show that E is compact
(hence closed): if t; — 7 € [0,1] and 1); is a sequence of solutions of ()
then ||¢il|cs < C implies that ||¢iHCQ% < C and by Ascoli-Arzela’s theo-

rem we have a compact embedding 02’%(M) C C’Q’%(M). So a subsequence
of the v); converges in C’Q’%(M) to a solution of (%), which is smooth by
Schauder estimates. Thanks to Yau’s estimates [23], we can get a uniform
bound ||¢||cs < C if we have a uniform bound |9 < C.

Assume that v, solves (%), and let G(z,y) be the Green function of
(M,w'"), which has the following properties:

vie) = 5 [ 0" 0) - [ MG ")
/ G(z,y)w™(z) =0Vy € M (5.14)
M
2
| G(z,9) 2 —7D7 =-A
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if Ric > K > 0, D = diam,/(M), and vy = v(n, KD?) > 0 is a constant.
For a proof of the existence of G see [3],[19]. Since ¢y € P(M,w') we get
n 4+ Ay > 0 so that

1
i) = V/ Y™ +/ (=AY)(G + A)w / Y™ +nA
M
suptn < [+ C
M M
where C' is a uniform constant. We also have Rj;(t) = (1 — t)g;; + tgj;(t) >

tg;;(t), and since W' = wj — V—100v; > 0 we have n — Awpy > 0 so that the
Green formula for (M,w)) gives us

1
= / (UAAS +/ D) (G + A )wy > / Yt —nA'
V'
1
sup(—vy) < —/ Py +nA
M Vi Iu

but now A’ is NOT uniform anymore. In fact by Bonnet-Myers theorem
diam,, (M) is bounded above by a constant times %, so that A’ is bounded

above by % It follows that for ¢ > ¢y > 0 we have a uniform bound

1
Supwt — infwt < C+ / wt(wln — wl{/n) =C+ le(wt).
M M ViJu

From the definitions of I,/ and J, it is immediate to get

n+1
n

Jw’ < Iw/ < (n+ 1)Jw’7

n
Iy<Iy—Jy<——I,,
n+1“ =% Yo 41"

so the oscillation of v is controlled by I, — J,/. But now we show that this
is increasing in t so that it is uniformly bounded above by its value at time
t = 1. Going back to (5.11) we get

4 ot~ do) = [ (Sab+ b 515

Recall that A\ (¢), the first nonzero eigenvalue of A, satisfies A;(¢) > ¢t. Now
let f;(t) be an L?-orthonormal basis of eigenfunctions of A; where fo(t) = 1
for all ¢,

Aifi(t) + Ai(t) fit) =
Express 1) = 3.°°, ¢;(t) fi(t), with ¢;(t) € R and compute
i (00 = (00 = L0 ~ D0 20,
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because \;(t) > Ai(f) > t. So we have a bound on the oscillation of ) if ¢
is away from zero. In fact this gives us a bound on ||[¢)¢||» simply because

we have, integrating ()
/ ehw/*t’d)tw/n — V,
M

/ el = V.
M

Supposing that 9, is never 0 we get a contradiction between these two last
equations. Hence vy attains the value 0 somewhere, so

but also

|Vt]|oc < sup s — inf 1.
M M

Finally we deal with the case t = 0. Since ||| < % for some uniform
C >0, we get
[tt]loe < C,

so using (*¢) we get a uniform bound
w4+ V=100¢]| 00 < C,

and by Yau’s estimates on the Calabi Conjecture [23],[19], we have a uniform
bound

Hthoo < C.
Hence E is closed.

In the general case when M has nontrivial holomorphic vector fields,
Bando and Mabuchi can still construct the family of solutions ¢, if the
starting ¢ belongs to P(M,w) N A{ (see [5], [19]). For such ¢ we then get
that F,(¢) > 0 exactly as above. O
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