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There are many previous finiteness theorems about diffeomorphism types
in Riemannian geometry. Cheeger’s finiteness theorem asserts that given
constants D, υ, and Λ, there are only finitely many n-dimensional compact
differential manifoldX admitting Riemannian metric g such that diamg(X) 6
D, Volg(X) > υ and the sectional curvature |Sec(g)| 6 Λ. This theorem can
be proved as a corollary of the Cheeger-Gromov convergence theorem (cf.
[5, 11]), which shows that if (Xk, gk) is a family compact Riemannian man-
ifolds with the above bounds, then a subsequence of (Xk, gk) converges to
a C1,α-Riemannian manifold Y in the C1,α-sense, and furthermore, Xk is
diffoemorphic to Y for k ≫ 1. In [1], Cheeger’s finiteness theorem is gen-
eralized to the case where the hypothesis on the sectional curvature bound
is replaced by the weaker bounds of Ricci curvature |Ric(g)| 6 λ and the

L
n
2 -norm of curvature ∥Sec(g)∥

L
n
2
6 Λ. Furthermore, if n = 4 and g is an

Einstein metric, then the integral bound of curvature can be replaced by a
bound for the Euler characteristic.

We call (X,L) a polarized n-manifold, ifX is a compact complex manifold
with an ample line bundle L. In [6], a finiteness theorem for polarized
manifolds is obtained. More precisely, Theorem 3 of [6] asserts that for
any two constants V > 0 and Λ > 0, there are finite many polynomials
P1, · · · , Pℓ such that if (X,L) is a polarized n-manifold with c1(L)

n 6 V
and −c1(X) · c1(L)n−1 6 Λ, then one Pi is the Hilbert polynomial of (X,L),
i.e. Pi(ν) = χ(X,Lν). Consequently, polarized n-manifolds with the above
bounds have only finitely many possible deformation types and finitely many
possible diffeomorphism types.

For any constants λ > 0 and D > 0, denote

N(n, λ,D) = {(X,L) | ∃ω ∈ c1(L) with Ric(ω) > −λω, diamω(X) 6 D}.

Then

c1(L)
n = n!Volω(X) 6 V = V (n, λ,D)
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by the Gromov-Bishop comparison theorem, and

−c1(X) · c1(L)n−1 = −
∫
X
Ric(ω) ∧ ωn−1 6 nλV.

The following proposition is a corollary of Theorem 3 in [6]. Here we give
an analytic proof.

Proposition 0.1. Polarized manifolds in N(n, λ,D) have only finitely many
possible Hilbert polynomials, and for any (X,L) ∈ N(n, λ,D) we have

(0.1) |χ(X,Lν)| 6 C(n, λ,D)νn,

for all ν > 1, where C(n, λ,D) is a constant depending only on n, λ and
D. Furthermore, any (X,L) ∈ N(n, λ,D) can be embedded in the same
CPN with Lm ∼= OCPN (1)|X for integers m = m(n, λ,D) > 0 and N =
N(n, λ,D) > 0. As a consequence, manifolds in N(n, λ,D) have only finitely
many possible deformation types and finitely many possible diffeomorphism
types.

Proof. Let (X,L) ∈ N(n, λ,D), and ω ∈ c1(L) be a Kähler metric with
Ric(ω) > −λω, and diamω(X) 6 D. Fix a Hermitian metric h on L with
curvature equal to ω. The Gromov-Bishop comparison theorem gives

1 6 c1(L)
n = n!Volω(X) 6 V = V (n, λ,D).

We would like to estimate h0,p(Lν) = dimH0,p(X,Lν), 0 6 p 6 n, for ν > 1.
We denote by ⟨·, ·⟩ the pointwise inner product on Ω0,p(X,Lν) (smooth Lν-
valued (0, p)-forms on X) induced by the metric hν on Lν whose curvature
is −

√
−1νω, and by | · | its corresponding norm. For any s ∈ Ω0,p(X,Lν) we

have

∆|s|2 = gij∂i∂j |s|
2 = |∇s|2 + |∇s|2 + ⟨∆s, s⟩+ ⟨s,∆s⟩,

where ∆s = gij∇i∇js is the rough Laplacian and ∆s = gij∇j∇is its “con-
jugate”. Commuting covariant derivatives we get

∆s = ∆s− νns− Ric♯(s),

where if p > 1 and we write locally s = si1...ipdz
i1 ∧ · · · ∧ dzip with si1...ip

local smooth sections of Lν , then

Ric♯(s) =

p∑
j=1

gkℓRkij
si1...ℓ...ipdz

i1 ∧ · · · ∧ dzip ,

while if p = 0 we let Ric♯(s) = 0. This gives

∆|s|2 = |∇s|2 + |∇s|2 + 2Re⟨∆s, s⟩ − νn|s|2 − ⟨s,Ric♯(s)⟩.

Next, we apply the Bochner-Kodaira identity [9, Theorem 6.2], which for
any s ∈ Ω0,p(X,Lν) gives

∆∂s = −∆s+ νs+Ric♯(s),
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and so if we assume that ∆∂s = 0, we obtain

∆|s|2 = |∇s|2 + |∇s|2 + 2⟨Ric♯(s), s⟩+ 2ν|s|2 − νn|s|2 − ⟨s,Ric♯(s)⟩

= |∇s|2 + |∇s|2 + ⟨Ric♯(s), s⟩ − ν(n− 2)|s|2,

noting that ⟨Ric♯(s), s⟩ = ⟨s,Ric♯(s)⟩. Using that

⟨Ric♯(s), s⟩ > −λp|s|2,

we finally obtain

∆|s|2 > −(ν(n− 2) + λp)|s|2.
A standard Moser iteration argument (see e.g. [2, Lemma 2.4]) applied to
this differential inequality gives

(0.2) sup
X

|s|2 6 A(ν(n− 2) + λp)n
∫
X
|s|2ω

n

n!
= A(ν(n− 2) + λp)n∥s∥2L2 ,

where A depends only on the Sobolev constant of ω and on n. Thus A =
A(n, V, λ,D) by a result of Croke [3].

Now we use the arguments in Lemma 11 and Theorem 12 of the paper
of Li [7]. By the Hodge Theorem, we have an isomorphism H0,p(X,Lν) ∼=
H0,p(X,Lν), the space of ∆∂-harmonic forms in Ω0,p(X,Lν). Let

ρ =
∑

|si|2

for an orthonormal basis si of H0,p(X,Lν). The function ρ is easily seen to
be independent of the choice of orthonormal basis. Let x ∈ X such that

ρ(x) = sup
X

ρ > 0.

Then

E0 = {s ∈ H0,p(X,Lν)|s(x) = 0},
is a proper linear subspace of H0,p(X,Lν), with orthogonal complement E⊥

0 .
We claim that dimE⊥

0 6
(
n
p

)
. If s1, · · · , sr, r >

(
n
p

)
, is an orthonormal basis

of E⊥
0 , then there are ai, i = 1, · · · , r, such that

∑
aisi(x) = 0. Thus∑

aisi ∈ E0, which is a contradiction.
Let s1, · · · , sr ∈ H0,p(X,Lν) be an orthonormal basis of E⊥

0 , which we
can complete to an orthonormal basis of H0,p(X,Lν) with an orthonormal
basis sr+1, · · · , sN of E0. We have

h0,p(Lν) =

∫
X
ρ
ωn

n!
6 V sup

X
ρ = V sup

X

(
r∑

i=1

|si|2
)

6
(
n

p

)
V sup

i
∥si∥2L∞

6
(
n

p

)
V A(ν(n− 2) + λp)n,
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using (0.2), and thus for any ν > 1 we have

|χ(X,Lν)| =

∣∣∣∣∣∑
p

(−1)ph0,p(Lν)

∣∣∣∣∣ 6∑
p

(
n

p

)
V A(ν(n−2)+λp)n 6 C(n, λ,D)νn,

thus proving (0.1). Since the Hilbert polynomial P of (X,L) is given by

P (ν) = χ(X,Lν) =

∫
X
eνc1(L)ToddX = a0ν

n + a1ν
n−1 + · · ·+ an ∈ Z,

it follows that we have only finitely many possible values for a0, · · · , an by
taking sufficiently many values of ν and solving the linear equations. Hence
(X,L) has only finitely many possible Hilbert polynomials.

Now, by Matsusaka’s Big Theorem (cf. [8]), there is an m0 > 0 de-
pending only on P such that for any m > m0, Lm is very ample, and
H i(X,Lm) = {0}, i > 0. By choosing a basis Σ of H0(X,Lm), we have an
embedding ΦΣ : X ↪→ CPN such that Lm = Φ∗

ΣOCPN (1). We regard ΦΣ(X)

as a point in the Hilbert schemeHilbPm
N parametrizing the subshemes of CPN

with Hilbert polynomial Pm(ν) = P (mν), where N = h0(X,Lm) − 1. Fi-
nally, ΦΣ(X) belongs to finitely many possible components of finitely many
possible Hilbert schemes, and thusN(n, λ,D) has only finitely many possible
deformation and diffeomorphism types. �

Note that for any polarized manifold (X,L), the volume of (X,ω) as in
the definition of N(n, λ,D) is bounded below uniformly away from zero. We
remark that a similar diffeomorphism finiteness result fails for the family
of closed Riemannian manifolds (M, g) of real dimension m with Ric(g) >
−λg, diamg(X) 6 D, volg(X) > v > 0. Indeed Perelman [10] constructed

Riemannian metrics on ♯kCP2 for all k > 1, which have positive Ricci cur-
vature, unit diameter and volume bounded uniformly away from zero.
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