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EXTENSION OF SEMI-FLAT FORMS ACROSS SINGULAR

FIBERS

VALENTINO TOSATTI

The purpose of this appendix is to show that the natural semi-flat forms
that one constructs on elliptic K3 surfaces with only (reduced and) irre-
ducible singular fibers, which are defined only on the complement of the sin-
gular fibers, extend as closed positive currents to the whole total space. We
also show that there are such elliptic K3 surfaces which are non-isotrivial,
and also admit another elliptic fibration. Combining these two results with
the argument in [1, §3] (which rules out the existence of closed positive
currents in our class on such K3 surfaces) shows that on such K3 surfaces
the semi-flat form (away from the singular fibers) cannot be semipositive
definite, see [1, Theorem 3.1].

To start, we put ourselves in a slightly more general setting, as follows.
Let (Xn, ωX) be a compact Kähler manifold, Y a compact Riemann surface,
and f : X → Y a surjective holomorphic map with connected fibers. Let
Y 0 be the locus of regular values for f , whose complement in Y is a finite
set, and X0 = f−1(Y 0), which is Zariski open in X, so that f : X0 → Y 0

is a proper holomorphic submersion. We will call the fibers over points in
Y \Y 0 the singular fibers of f .

Suppose that for every y ∈ Y 0 we have a smooth function ρy on the fiber
Xy = f−1(y) which satisfies

(1) ωX |Xy + i∂∂ρy ≥ 0,

∫
Xy

ρy(ωX |Xy)
n = 0.

Proposition 0.1. If all the singular fibers of f are reduced and irreducible,
then there is a constant C such that

sup
Xy

ρy ≤ C,

holds for all y ∈ Y 0.
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Proof. Let ωy = ωX |Xy , and gy be its Riemannian metric, where in the

following we fix any y ∈ Y 0. Thanks to (1), on Xy we have

(2) ∆gyρy ≥ −n+ 1.

We have that Vol(Xy, gy) = c, a constant independent of y, and that the
Sobolev constant of (Xy, gy) has a uniform upper bound independent of y
thanks to the Michael-Simon Sobolev inequality [5], see the details e.g. in
[8, Lemma 3.2]. Furthermore, diam(Xy, gy) ≤ C, a constant independent of
y, thanks to [8, Lemma 3.3].

So far we have not used the assumptions that all singular fibers are re-
duced and irreducible. This is used now to prove that the Poincaré constant
of (Xy, gy) also has a uniform upper bound independent of y, as shown by
Yoshikawa [10] (see also the shorter exposition in [6, Proposition 3.2]).

At this point we can use a classical argument of Cheng-Li [2], which is
clearly explained in [7, Chapter 3, Appendix A, pp.137-140], to deduce that
the Green’s function Gy(x, x

′) of (Xy, gy), normalized by∫
Xy

Gy(x, x
′)ωy(x

′) = 0,

satisfies the bound

(3) Gy(x, x
′) ≥ −A,

for all y ∈ Y 0 and for all x, x′ ∈ Xy, with a uniform constant A. The point
of that argument is that A only depends on the constant in the Sobolev-
Poincaré inequality, that here as we said we control uniformly, on the di-
mension and on bounds for the volume and diameter, which we all have.

We can now apply Green’s formula on Xy. Choose a point x ∈ Xy such
that ρy(x) = supXy

ρy, and then, using that ρy has average zero, together

with (2) and (3), we obtain

ρy(x) = −
∫
Xy

∆gyρy(x
′)Gy(x, x

′)ωy(x
′)

= −
∫
Xy

∆gyρy(x
′)(Gy(x, x

′) +A)ωy(x
′)

≤ (n− 1)

∫
Xy

(Gy(x, x
′) +A)ωy(x

′)

≤ (n− 1)AVol(Xy, gy).

�

We now specialize to the setting where X is a K3 surface, Y = P1 and
f : X → P1 is an elliptic fibration. We further assume that ρy is chosen so

that ωX |Xy + i∂∂ρy > 0 is the unique flat metric on Xy cohomologous to
ωX |Xy (and we still assume that ρy has fiberwise average zero). In this case



APPENDIX EXTENSION OF SEMI-FLAT FORMS ACROSS SINGULAR FIBERS 3

ρy varies smoothly in y ∈ Y 0, and so it defines a smooth function ρ on X0.
Thanks to Proposition 0.1, we conclude that

sup
X0

ρ ≤ C.

This, together with the Grauert-Remmert extension theorem [3], immedi-
ately gives:

Corollary 0.2. In this setting, if we have that ωX + i∂∂ρ ≥ 0 on X0, then
this extends to a closed positive current on all of X, in the class [ωX ].

This proves the desired extension property. Lastly, as we mentioned at
the beginning, to apply this result in [1, §3] we need the following examples:

Proposition 0.3. There exists a complex projective K3 surface X which
admits two elliptic fibrations, one of which is non-isotrivial and has only
reduced and irreducible singular fibers.

Proof. Let X ⊂ P2 × P1 be a general hypersurface of degree (3, 2). It is
known that X has Picard number 2 [9, Section 5.8]. The projection to
the P1 factor gives an elliptic fibration on X, which is clearly not isotrivial
provided X is general.

To obtain the other fibration we compose the first fibration with the
automorphism σ of X obtained as follows. Projecting X to the P2 factor
shows thatX is a double cover of P2 ramified along a sextic, and the covering
involution of this cover is the σ that we want.

Explicitly, if we let L = OP2(1)|X , M = OP1(1)|X , the the first elliptic
fibration is defined by |M | and the second elliptic fibration by |3L − M |
(since σ∗M = 3L−M).

Lastly, we show that every elliptic fibration on X has only reduced and
irreducible singular fibers. Given an elliptic fibration f : X → P1, let
j : J → P1 be its Jacobian family [4, Section 11.4]. Then J is also an elliptic
K3 surface, every fiber of j is isomorphic to the corresponding fiber of f , J
has the same Picard number as X, but j always has a section. We can then
apply the Shioda-Tate formula [4, Corollary 11.3.4] to j to obtain

2 = ρ(J) = 2 +
∑
t∈P1

(rt − 1) + rank MW(j),

where rt is the number of irreducible components of the fiber Jt and MW(j)
is the Mordell-Weil group of j. In particular we conclude that rt = 1 for all
t, i.e. all fibers of j (and therefore all fibers of f) are irreducible. Lastly, all
fibers of f are reduced by [4, Proposition 3.1.6 (iii)]. �
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