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Preface

This article was written in the Spring of 1997. Some while after completing
it 1 learnt of previous work by other authors which overlaps substantially. The
“‘symmetric space” structure which is the main topic of the article was discovered
by S. Semmes:

Complex Monge-Ampére and symplectic manifolds, Amer. J. Math. 114
(1992), 495-550.

I am grateful to J.-P. Bourguignon for informing me about this reference. Bour-
guignon tells me that he and Mabuchi were developing similar ideas at about the
same time.

The “moment map” point of view which is mentioned in the last part of the
paper was discovered by A. Fujiki:

The moduli spaces and Kahler metrics of polarised algebraic varieties, Sugaku
42 (1990), 231-243; English transl., Sugaku Expositions 5 (1992) 173-191.

I hope that it may still be worth making the present article available in its
original form, although it would of course have been written rather differently if I
had been aware of these earlier papers.

§1. Introduction

A Riemannian manifold is called a locally symmetric space if its curvature
tensor is covariant constant; VR = 0. Such symmetric spaces were classified, up to
coverings, by E. Cartan, and the theory is tightly bound up with the classification
of semi-simple Lie groups [11]. One of the memorable features of the theory is that
the (irreducible) symmetric spaces occur in pairs of “compact” and “non-compact”
type. The compact type have positive sectional curvature and the non-compact
type have negative sectional curvature. In particular, let G be a compact Lie group
with a bi-invariant Riemannian metric. This is an example of a symmetric space
of compact type; the curvature tensor is given by the formula

(1) R(X,Y)Z = §[[X,Y], 2],
and the sectional curvature by
2) K(X,Y) =[x, Y]]
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(Here X,Y, Z are tangent vectors which, by left or right translation, can be taken to
lie in the Lie algebra g of G.) The non-compact dual H of G is obtained as follows.
The Lie group G has a complexification G°—a complex Lie group containing G as
a real subgroup and with Lie algebra g° = g g C—and H is the homogeneous
space H = (/G with the metric induced from the invariant pseudo-Riemannian
metric on G¢. The tangent space of H at the identity coset is g°/g = g, and the
curvature of H is given by the formulas

(3) R(X,Y)Z: —%[X>Y]>Z]7

Cartan’s classification applies of course to finite dimensional symmetric spaces. The
object of this paper is to point out that some of the same ideas appear naturally in
an infinite dimensional situation. Let (M?*,w) be a compact symplectic manifold,
so that the space C'°°(M) of functions on M is a Lie algebra under the Poisson
bracket { , }, defined by

() {f,gy™ = df Adg Aw"™ L.

There is also an invariant Z? inner product on C°°(M):

(6) / fgw"

We can write C°(M) = C{*(M) & R, where C§°(M) is the space of functions
of integral zero, the L2-orthogonal complement of the constants. The subalgebra
C5° (M) is the Lie algebra of an infinite dimensional Lie group Gy. If H'(M;R) =0
this is just the identity component of the symplectomorphism group SDIff of (M, w).
In general Gy is the group of “exact” symplectomorphisms, see [16] for example. It
is sometimes convenient to suppose that [w] € H2(M;R) is an integral class and
to fix a complex Hermitian line bundle I — M with a unitary connection whose
curvature is —2miw. Then the full space C*°(M) is the Lie algebra of a group G:
the group of connection-preserving Hermitian bundle maps from L to L (which
necessarily cover exact symplectomorphisms of M),

Now the groups G, Gp have bi-invariant metrics defined by the L? inner product
on their Lie algebras, so it is no surprise that they furnish examples of infinite
dimensional symmetric spaces. The two cases are scarcely different, since there is
a local Riemannian (and Lie group) isomorphism

(7) ngoxsl.

It is clear that the formal part of the familiar theory goes over to these infinite
dimensional spaces, so the curvature tensor of G is given by substituting the Poisson
bracket into (1). Similarly, the geodesics in G are the translates of l-parameter
subgroups, the stuff of Hamiltonian dynamics. What is less obvious is that, if M is
a K&hler manifold, there are “negatively curved duals” of these spaces, as we shall
now describe.

Suppose that V is a compact complex n-manifold which admits a Kahler metric
wp. The “O8-lemma” asserts that any other Kihler metric cohomologous to wy can
be expressed via a Kéihler potential; define H to be the space of Kihler potentials

(8) H = {qb S COO(V) Wy =wy + 158(}5 > 0}
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This space has a better description in the case when [wp] is an integral class, so there
is a corresponding holomorphic line bundle L — V. Then we can identify H with
the space of Hermitian metrics on L having positive curvature (or, more precisely,
the compatible unitary connection has positive curvature). For if hy is a metric
with curvature —27riwo, the curvature of e2®hg is —2mi(wg +109¢) [10, §0.5]. The
advantage of this second description is that it avoids the apparent dependence of
(8) on the base point wo. The real numbers act on H, by addition of constants,
and we define Hy = H/R, which can be viewed as the space of Kéhler metrics on
V, in the given cohomology class.

Each K#hler potential ¢ € H gives a measure dug = 71—,0):; on V. We define
a Riemannian metric on the infinite dimensional manifold H using the L2-norms
furnished by these measures—a tangent vector 8¢ to H at a point ¢ € H is just a
function on V, and we set

(9) l66]3 = /v (66)dps.

Our main result is

TurorREM 1. The Riemannian manifold H is an infinite dimensional symmet-
ric space; it admits o Levi-Civita connection whose curvature 1§ covariant constant.
At a point ¢ € H the curvature is given by

Rd)(él(b’ 62¢)53¢ = ‘i {51¢? 52¢}(}>7 63¢}(1}1
where { , }o is the Poisson bracket on C*° (V) of the symplectic form wq.

(Recall that in infinite dimensions the usual argument gives the uniqueness ofa
Levi-Civita [i.e. torsion-free, metric-compatible] connection, but not the existence
in general.) The formula for the curvature of M entails that the sectional curvature
is non-positive, given by

(10) Ky(816,820) = —11{01¢,028}olg

and, comparing with (1)-(4), these formulas certainly suggest that M should be
regarded as the negatively curved dual of the group G.

In the first half of this paper we dicuss the proof of this theorem. In the second
half we explore the geometry of the space ‘H, in particular the geodesic equation.
We state a number of natural conjectures, or questions, which we hope may be
interesting to investigate further, and we outline the relevance of these ideas to well-
established problems in Kahler geometry. In particular we will see that plausible
results on the existence of geodesics would give a proof of the uniqueness of constant
scalar curvature Kahler metrics.

§2. First proof

We will now give a direct proof of Theorem 1. The first step is to find the
geodesic equation in H. This is the Euler-Lagrange equation, 6E = 0, for the
energy functional

(11) E= /01 /V *dppdt
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on l-parameter families ¢(t) in A, with fixed end points. The first variation of the
measure is given by

dpgry = (1 + 1A¢) dug + O(9?),

where A = A, is the Laplacian on V of the metric wy. So the first variation of £
under a small variation ¥(t) is

= [ [ 200+ 4000 = [}, 9255 0e) + 5AGP)ie)
and the geodesic equation is
2 (bing) = LAy
The t-derivative of dug is %Ati) dug, and
A(d*) = 20A¢ - 2|V,

so the geodesic equation reduces to

(12) ¢ = —3|Vel3.

This geodesic equation shows us how to define a connection on the tangent
bundle of H. The notation is simplest if one thinks of such a connection as a way
of differentiating vector felds along paths. Thus if ¢{t) is any path in H and ¢(t)
is a field of tangent vectors along the path (that is, a function on V x [0,1]), we
define the covariant derivative along the path to be

(13) Dy = (—9—% + 1V, V).

This connection is torsion-free because in the canonical “coordinate chart”, which
represents H as an open subset of G°°(V), the “Christoffel symbol”

T C®(V) x CP(V) — C®(V)
at ¢ is just
I‘(’%ﬂ/’z) = %(V%,V%)q),

which is symmetric in 11,2, The connection is metric-compatible because
Lty = < / Wy = / A NG LT
(14) = [ 2%+ HO W, 9) ds
=2 / (ZL & 1(V9, V4) Ydus = 2Dusp, )

At this stage we could go on to compute the curvature of H. But before doing
this we will pause to explain the really significant property of the connection (13),
which gets to the heart of the link betweeen Kihler and symplectic geometries
(and which gives, by the way, more insight into the manipulations leading to (14)).
By Moser’s theorem [17], the symplectic manifolds (V,wy) are all symplectically
equivalent. The proof in this case is somewhat easier than the general situation
considered by Moser.
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Let ¢(t) be a path starting at 0 in H and consider the t-dependent vector field
X = iViwo,

where V) is the gradient operator defined by the metric w(t) = wy + i00H(t).
Then for fixed ¢ the Lie derivative of w(t) along X, is

Lx, (w(t)) = d(X¢ L w(t))

But X; 1 w(t) = %qug(t), where [ is the action of the complex structure on 1-forms,
80
Lyx,w(t) = 3(dId)p = —iDo¢.

On the other hand, the t-derivative of w(t) is obviously i8¢, Soif f, : V — V is the
l-parameter family of diffeomorphisms obtained by integrating X; (with fy = 1y/),
we have p ()
dw
0 () = £ et + 22490) 2o,

i.e. the diffeomorphism f; gives the desired symplectomorphism from (V,wy) to
(V,w(t)). Now let Y C H x Diff(V) be the set of pairs (¢, f) such that f*(ws) = wy.
This is a principle bundle over H with structure group the group SDiff(V) of sym-
plectomorphisms of (V,wy). Then the discussion above shows that our connection
on the tangent space of H is induced from an SDiff connection on Y — H via the
action of SDiff on the vector space C'*°(V); that is, we have a connection-preserving
bundle isomorphism

TH =Y xgpir C(V).
In this framework the l-parameter family of diffeomorphisms f, above appears as
the horizontal lift of the path ¢(¢) to Y. The metric-preserving property (14) is
just the fact that the action of SDiff on C°° (V) preserves the L? norm.

If HY(V) # 0, the group SDiff is not quite the same as the group Gy of exact
symplectomorphisms considered in Section 1 (with (M,w)} = (V,wg)), but one can
easily adjust the definitions to get a principle Gy bundle over H which descends to
a Go bundle Xy over Hy. As usual, the discussion is cleaner in the case when [wy]
is integral, so we have a holomorphic line bundle L — V and we can regard H as
the space of metrics of positive curvature on L. Then we let X be the set of pairs
(h, f), where h is a metric on L and f is a connection-preserving Hermitian bundle
map from (L, hg) to (L, k), which necessarily covers a diffeomorphism f of V with
f*{we) = wy. (More precisely, we should take X to be the connected component of
(hg, 1) in this space.) Then X is a principle G bundle over H, and our Levi-Civita
connection is induced from a G-connection on X'

We now go back to compute the curvature tensor of H. To do this we consider
a 2-parameter family ¢(s,t) in 7, and a vector field (s, t) along ¢(s,t). We denote
s and t derivatives by suffixes ¢;, etc., where convenient. The curvature is given
by the commutator

(15) R(¢s: ¢t)¢ = (DsDL - DtDs)'z/)-
Expanding out, this is

R(¢Sa¢£)w = ',15 ((Vﬁbs,V@) - (vdst, v"/)ﬁ) + F)%(V(btavw) - ?'())T(V(b‘n Vlr/)))

(16) \
+ 3 ((Vos, V(Ve, Vi) — (Vo V(Vs, V1)) .
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Here we have simply written ( , ) for the inner product on cotangent vectors in V'
defined by wy(s,¢y- Thus, if a, b are fixed cotangent vectors, then

gg(a’ b) = ((zgﬂ(ﬁs)ﬁ, a® b),

where (:60¢,)" denotes the symmetric 2-tensor on V' defined by the real (1, 1)-form
i00¢, in the usual way. So we have

9
Ds
and similarly for —gz(Vrﬁs,w). Then (16) reduces to

(Véi, Vi) = (Vdar, V1) + (Vebr, Vibs) + (600¢5)! (Ve ® V),

R(¢s, d1)¥ = % ((Zga‘ﬁv)n(v@i X Vd)) - (Zgaﬁbl)n(V(bs ® Vqtb))
+ 3 ((V¢s, V(Vbi, Vi) = (Vébr, V(Vs, V) -

Now the second expression on the right hand side of (17) can be written as

i(vvqss)(vqse @ Vi) — (VV ) (Vs ® 1),

1m)

50

(18) AR(ds, ¢ )Y = P(¢s) (Ve @ Vi) — P(4)(Vs ® V),

where P is the differential operator, from functions to symmetric 2-tensors,
(19) P(f) = 2(i6af)! — VV .

On the other hand, we can write the Poisson bracket { , } using the complex
structure structure I:

{f’g} = (Vfa-[v.g) = —(Iva Vg)
So

{{os, 0}, ¥} = (V(ds, [Vt), IV)) = Q) (Ve & V) — Q(¢: (Vs @ V),

where
Q) =T D)(VV]).

The calculation of the curvature tensor is therefore completed by showing that the
operators P and () are the same. First, as a matter of linear algebra, the map
%(1 + I ®I) from s2(T*V) to itself is the standard projection to the (1,1) part.
So the assertion is that for a Kahler manifold the operator 88, which is defined
by the complex structure, can be obtained as a projection of the second covariant
derivative VV, which uses the Levi~Civita connection. This can be seen easily, for
example by working in an osculating coordinate system as in ([10, p.108]). So we
have shown that R(ds, ¢¢)Y = —5{{¢s, ¥+ }, ¥}, as desired.

The expression for the curvature tensor in terms of Poisson brackets shows
that R is invariant under the action of the symplectomorphism group. Since the
connection on T°H is induced from an SDiff-connection, it follows that R is covariant
constant, and hence H is indeed an infinite-dimensional symmetric space.
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§3. The decomposition of H

Here we clarify the relationship between the spaces H and Hy = H/R. There
is obviously a decomposition of the tangent space:

(20) (TH)y = {w : / Ydpg = O} ®R.

v
We claim that this corresponds to a Riemannian decomposition
(21) H =Hy x R.

At one level, this follows from the picture developed above, since the tangent space
decomposition (20) is invariant under the symplectomorphism group, and is there-
fore covariant constant with respect to our torsion-free connection. However it is
interesting to see this more explicitly, partly because we see the appearance of a
functional T on the space of Kihler potentials, which is well known in the literature,
see (1], [21] for example. The decomposition (20) give a 1-form o on H with

(22) o) = | wiu,
and the point is that this 1-form is closed. Indeed

1 ~ -
(23) aara) - asl¥) = 5 [ VAT +OU)
80

-1 ..
(24) (da)olih ) = 5 [ 59— Fdp =0
%

since the Laplacian is self-adjoint. This means that there is a function I : H — R
with I(0) = 0 and d] = «, and it is this function which gives rise to the Riemannian
decomposition (21). We call a Kihler potential ¢ normalised if I(¢) = 0. Then
any Kahler metric has a unique normalised potential, and the restriction of our
metric on H to I~*(0) endows the space Hy of Kéhler metrics with a Riemannian
structure; this is independent of the choice of base point wy and clearly makes
H, into a symmetric space. The functional I can be written more exlpicitly by
integrating o along lines in H to give the formula

- 1
(25) 19)= 2. o7

= H(n —p)!

| wsriooy o
v

§4. Second proof

We will now outline another proof of Theorem 1 which avoids detailed calcula-
tions and shows more clearly the analogy with ordinary symmetric spaces G¢/G.

The tangent bundle of a Lie group, finite or infinite dimensional, is trivialised
by left-invariant vector fields, which are, of course, closed under Lie bracket. Coun-
versely, suppose we have a manifold Z and a trivialisation TZ = Z x U, so for
each element u of the vector space U we have a vector field X, on Z. Suppose
that this collection of vector fields is closed under Lie bracket: this means that U
becomes a Lie algebra with a bracket [, ]y such that Xy, .1, = [Xu, X, 7 is fi-
nite dimensional, one of Lie’s basic integration theorems tells us that this structure
arises from a Lie group structure on Z, but this integration theorem fails in infinite
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dimensions, as we shall see. Let us call a space Z with this structure an “infinites-
imal Lie group”. Now suppose that there is a free action of a genuine Lie group
S on Z which induces a Lie algebra injection Lie(S) C U, Then we can form the
orbit space Z/5, which—leaving aside global topological questions—will obviously
share some of the familiar properties of homogeneous spaces. In particular, suppose
that Z is a “complexification” of S, i.e. that Z has a formally integrable complex
structure, the Lie algebra U is complex, the vector fields X, are holomorphic and
U is the complexification of Lie(S). One way this can occur is when the Lie group
S acts freely on a complex manifold T, preserving the complex structure, and Z is
a submanifold of T with the property that for each z in Z

(26) TZ, =TO(z), ® ITO(2)z,

where O(z) is the S-orbit of z in 7. In this case we just define U to be Lie(S 1®C
and construct the vector fields X, by taking complex-linear combinations of the
vector fields defining the infinitesimal action of S. (We only need T' to have a
formally integrable almost complex structure—this implies that the X, are closed
under Lie bracket.) Then we have

PROPOSITION 2. If S is a Lie group with o bi-invariant metric and Z is an
infinitesimal Lie group which is a complexification of S, then Z/S has the structure
of a Riemannian symmetric space, with holonomy group S (acting via the adjoint
representation) and with curvature R(uy,us)us = —{[u1, ug], ua).

To see this one just needs to see that the standard theory in finite dimensions
only involves infinitesimal calculations—with vector fields and Lie algebras—and
so applies equally well under our hypotheses. Of course the part of the standard
theory which does not go over is the existence of a transitive isometry group of the
Riemannian manifold Z/5.

To bring the discussion above to bear on our problem we want to exhibit the
principle G bundle X — H as an infinitesimal complexification, and this can be
done in two ways, each involving the action of G on a complex manifold as described
above. In fact it will be easier to work with the smaller space Hy, which is essentially
the same by the discussion in Section 3 above.

The first approach was described in [7]. For simplicity we suppose that the
group of holomorphic automorphisms of V is trivial and that H*(V) = 0. We
consider the space J of almost complex structures on V' compatible with the sym-
plectic form wq. This is the space of sections of a fibre bundle over V with fibre the
complex homogeneous space Sp(2n,R)}/U(n), and J inherits a complex structure
from that of the fibre. The symplectomorphism group Gy acts naturally on 7,
preserving the complex structure. If we have a diffeomorphism f: V — V and an
we € Hy with f*(wy) = wo, then the pull-back f*(I) defines a point in 7 and this
gives an embedding ) : &y — J which one readily sees, as in [7], has the properties
envisaged in the abstract picture above.

For the second approach we can drop the assumption on the holomorphic au-
tomorphisms. We consider the space Maps(V, V'), which has a complex structure
induced from the complex structure on V (a tangent vector to Maps(V,V) at a
map g: V — V is a section of the complex vector bundle ¢*(TV)). Now we define
a map i : Xy — Maps(V, V), sending a pair (f,¢) to f. This is an embedding, and
the image p(Ap) consists of the difffeomorphisms f such that (f~1)*(wp) has type
(1,1). Again one sees that this image is a complexification of Gy, where now G, acts
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on Maps(V, V) by composition on the right. Finally one shows that the structure
on Ay defined by the two embeddings A, is the same: this just comes down to
the fact that the infinitesimal action of the vector fields on the integrable almost
complex structures is given by the d-operator of the tangent bundle of V, which is
complex-linear.

In the case when the complex dimension n of V is 1 (and, under our current
hypotheses, V must be the Riemann sphere) the condition that (f~*)*(wy) has
type (1,1) is vacuous, so in this case Xy can be identified with the space Diff(V)
of diffeomorphisms of V (or, more precisely, the identity component in this space).
One needs to beware that the “infinitesimal group” structure on Diffl{V) that we
are considering here is not the same as the genuine group structure on this space.
This corresponds to the fact that there is a non-standard Lie bracket [, ]; on the
space of vector fields on the sphere. We express any vector field £ as &1 + I€5, where
&1,&9 are Hamiltonian, and then set

(61 + I&,m + In2]r = ([€1,m] = [€2, m2)) + T ([E1,m2] + [€2,m]) .

85. The geodesic, WZW, and Monge—Ampeére equations

We will now study the geodesic equation (12) in H in more detail, and interpret
the solutions geometrically. Suppose ¢, t € [0,1], is a path in H. We can view
this as a function on V x [0,1] and in turn as a function on V' x [0,1] x S!, with
trivial dependence on the S factor; that is, we define

d(u,t, e) = ¢ (v).

We regard the cylinder A = [0,1] x S! as a Riemann surface with boundary in the
standard way—so t + is is a local complex coordinate. Let Qg be the pull-back of
wp to V x A under the projection map, and put Qg = Qg + 100, a (1, 1)-form on
V x A. Then we have

PROPOSITION 3. The path ¢, satisfies the geodesic equation (12) if and only if
QZI';'H =0onV x A.

The proof is left as an exercise for the reader {or use Proposition 4 below).

We now turn to variational problems involving 2-dimensional domains. If R is
a compact Riemann surface with boundary, one may consider the harmonic maps
from R to a finite-dimensional symmetric space H = G°/@. These are the critical
points of the energy functional E(f) = % I\Zi |2, with Euler-Lagrange equation
d*(Df) = 0. But there is also a deformation of the harmonic map equation, which
malkes use of the special geometry of the target space. The tangent space of H at
each point is modelled on the Lie algebra of G, so there is a natural Lie bracket
TH x TH — TH which vields a covariant constant 3-form 8 on H. Given a fixed
boundary map ¢ : R — H, we can define a functional £ Z" on the space of maps
from R with boundary value o as follows. Choose a reference map fy : R — H
with boundary value o, and set

(27) EVAW (A =4 [LIVf2+ [,0,

where Z is any 3-chain in H with boundary f(R) — fo(R). This is independent of
the choice of Z, since H is simply connected and € is closed, and the functional
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depends on fy only up to a constant. The Euler-Lagrange equation is, in a local
complex coordinate t -+ 4s on R,

(28) d*(Df)+ [fe, fs] =0

We call this equation the WZW equation because similar ideas appear in the Wess—
Zumino-Witten theory in mathematical physics.

Clearly we can take this formal set-up over to the case of maps from R to H,
which we can interpret as functions ® on V x R, such that Q¢ = Qo + i00d is
positive on the slices V' x {z}, z € R.

PROPOSITION 4. A map from R to H satisfies the WZW equation if and only
if Q= 0.

To see this we first compute the harmonic map “tension field” d*(DF). We
work in a local complex coordinate 7 = ¢ + is on R. The usual calculation of the
Euler-Lagrange equation, just as for the geodesic problem in Section 2, shows that
the tension field is

q)ss + (I)tt + %(lvésli + lvq)t@)))
where V denotes differentiation in the V variable, and | |, is the metric on V defined
by Qg for fixed s,4. So the WZW equation is

(29) Do + Bye + (| VB|5 +[VE3) + (VPs, [VP,)y = 0.

It is now just a matter of algebra to show that this equation is precisely QZI‘,‘H = 0.

We can work at a given point in ¥V x R and choose local complex coordinates
Zo = Ta + Yo on V such that the metric w, is standard at that point, in these
coordinates. Then, at this point,

b . @

TZw
i 0 0
QL oc 2n 7 det . L 0| = - 2> |0rs, |
(I)an 0 . 3 . o
o . . 1

This reduces to the left hand side of (29) when we use the identity
1 .
8 Z I(b?:z“ lg = 5 Z((I)S:uq + ®t90)2 + ((I)“‘-”Uu - (I)Syu)z
(24 [e%

= LIV + [VE|?) + (VO,, IVDy),

and write @7 = —(<I>5q + @yy).

The analogue of the WZW functional EW2ZW for maps to H is a variant of
the functional 7 introduced in Section 3. Given boundary data p : dR — H, we
consider the set of functions ® on V x R which agree with p on the boundary. Then
we define the variation of I on this set by

1
(30) 6, = —— / 5O Q!
o (n+ D yxr v
where the variation 6® vanishes on the boundary by hypothesis. This boundary
condition means that the same argument as in Section 3 works to show that the
formula defines a functional I,, which again has a more explicit expression like (25).
This functional I, reduces to the energy functional on paths, by an integration by
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parts that we leave to the reader, in the case when R is the cylinder and we restrict
to Sl-invariant data.

The equation QiF! = 0 is a degenerate Monge-Ampere equation. A solution
gives rise to a rather concrete geometric structure on V' x R, as is well-known in the
literature in this area [13]. If QZIL,H =0 and 3¢ is strictly positive on the V-slices,
then the null space N C T(V x R) of ¢ at each point has real dimension 2. On the
one hand this field of subspaces forms a foliation, since Qg is closed; on the other
hand the subspaces are complex lines, since g has type (1,1). So a solution of the
WZW equations gives rise to a foliation of V' x R whose leaves are complex curves
transverse to the V-slices. This conclusion fits in tidily with a corresponding result
in the finite-dimensional case. Suppose first that R is simply connected. Then a
map f : R — G¢/G is a solution of the WZW equation if and only if it has a
lift to a holomorphic map from R to the complex Lie group G¢. In the Kéhler
geometry case a foliation of V' x R, transverse to the V-slices, can be viewed as a
map from R to Diff(V), and the condition that the leaves are complex curves is
precisely saying that this map is holomorphic, with respect to the complex structure
on Diff(V) ¢ Maps(V, V) considered in Section 4. The condition that 3¢ has type
(1,1) then tells us that the image of the map lies in the subspace Y C Diff(V),
which is our analogue of the complex group G¢. In the case when R is not simply
connected we can carry out this analysis on the universal cover; a solution of the
finite-dimensional WZW equation on R gives an equivariant holomorphic map from
R to G¢, with respect to a representation m;(R) — G, which in turn can be viewed
as a flat G-connection over R. In the Kéhler geometry case we get a corresponding
statement, where the representation w1 (R) — SDIff(V) is the monodromy of the
foliation. (One can also obtain an interpretation of the WZW equations in terms
of holomorphic maps into Sp(2n, R)/U(n}, using the other point of view in Section
4.

Let us now spell out what this means in the case of a geodesic ¢, t € [0, 1],
in H, starting at ¢ = 0, say. We regard the time derivative $o as a Hamiltonian
on the symplectic manifold (V,wp), so it defines a Hamiltonian flow g, : V — V in
the usual way. For each point v € V let v, : R — V be its trajectory under the
flow: 7(s) = gs(v). Then the projection of the appropriate leaf of the foliation
gives a holomorphic extension T, : [0,1] x R — V, with T',(0, s) = Yu(s), such that
the restriction of the T'y to {t} x R is a trajectory of the Hamiltonian flow of ¢
on the symplectlc manifold (V,wg,). Moreover the map fi : V' — V defined by
fi(v) =T4,(0,t) takes the Hamiltonian system (V,wo, ¢o) to the system (V,wg,, b1).
So we can think of the study of geodesics in H as a kind of “analytic continuation”
of Hamiltonian dynamics, in which the time parameter is made complex, and the
complex curves I', give holomorphic cobordisms between the trajectories of the
family of Hamiltonian systems.

§6. Examples of geodesics

(i) Suppose that a compact, connected, Lie group GG acts on V preserving the
complex structure and a Kahler metric wy. Then the complexification G¢ acts
holomorphically on V, and we get a map from the finite-dimensional space Ge/a
to Ho, taking the coset of o € G to a* (wp). There is no loss in supposing that the
action of @ is infinitesimally effective, so the L? norm on Hamiltonians defines an
invariant metric on G, and hence a metric on G¢/G, making it a symmetric space.
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(Of course for a simple group this structure is unique up to scale.) Then G°/G ‘is
isometrically embedded as a totally geodesic submanifold in Hy, and any geodesic
in G¢/G gives a geodesic in H. We leave the simple verificatic')n to the reader.

(ii) Let h be a function on the standard sphere S? ¢ R3 with h(z,y,2) = 2z
near to the poles py = (0,0, £1), and with no critical points apart from these poles.
Fix an identification of the tangent space to §% at p_ with C. For each re (-1,1)
the set U, = h™!(r, 1] is, differentiably, a disc with smooth boundary in S*. By the
Riemann mapping theorem there is a unique conformal equivalence ¢, : D — U,
from the unit disc D C C, normalised so that a..(0) = p_ and so that the derivative
of v, at 0 is real and positive with respect to the identification above. The map
o extends smoothly to @, : D — U,. In particular, rotation of the disc defines an
action of the circle on the curve 8U, = h=1(r) C S%. When r is close to £1 this is
just the restriction of the usual rotation of the sphere about the z-axis, since h = 2
near py. It is easy to see that there is an area form wg, unique up to scale, such
that the circle action on each curve h=*(r) is the Hamiltonian flow of the function
h with respect to wy.

Now let 3, be the holomorphic map from the cylinder [0,00) x S* to S* de-
fined by composing @, with the standard identification [0,00) x §* — D\ {0}.
For each point v € S? there is, by construction, a unique e®) € S! such that
ﬁ,,,(v)(O,eis('“)) = . For t > 0, define a smooth map f; : §% — 52 by

fe(v) = Eh(v)(t) eiS(U))'

The Schwartz lemma implies that f; is a bijection, and one may also show that the
derivative of f is everywhere invertible, so there is a smooth inverse f; . Now we
set
Wy = (ft_l)*(w())

and write wy = wy + 199¢; for normalised potentials ¢¢. Then ¢; is an infinite
geodesic ray in H(S?), starting at wy and with initial tangent vector ¢ = h at

= 0. (It seems very likely that the same construction works for any function h on
5?2 with two non-degenerate critical points.)

One can argue similarly if & is another function on 92 with critical points only

at p+, and with & > k on 52\ {p,,p_}. Suppose for simplicity that

Kz z)-{ —1+p(z+1) near p_,
s 1+o(z—1) near p.,

with 0 < p < 1 < 0. Then one can use the conformal equivalences between the
annular regions
Ar={ve 8 1 k(v)<r < h(v)}

and standard annuli {w € C : 1 < |w| < R}, for suitable R(r), to construct
symplectic forms w,w’ on §? and a geodesic from w to w' in Hy with tangent vector
h at w and k at w’. Here the Hamiltonian system (52,w, h) (which is isomorphic
to (S2,w', k)) will not, in general, be periodic, since the modulus R of the annulus
varies with 7.

(iii) Consider the complex n-torus T = C"/Zn+iZn, and let wy be the standard
flat metric. The group I' = (S')" acts on 7" via translations in the Lagrangian
subspace {R™ C C", and this induces an isometric action of T on the space Hq
of Kahler metics on 7" so the set H§ of invariant metrics is totally geodesic in
Ha. The Poisson bracket of [-invariant functions vanishes, and it follows that the
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induced metric on Hf is flat, in the sense that its Riemann curvature vanishes.
One might expect (though this is probably not automatically true in infinite di-
mensions) that HE is isometric to an open subset in a pre-Hilbert space, and we
will now verify that this is the case. For simplicity we will take n = 1 and write
evrything out explicitly—in terms of our general picture the point is that the group
of exact symplectomorphisms of T which commute with I is an abelian group—just
the space of maps from R™/Z" to (§')"—and it has a bona fide complexification
Maps(R"/Z", (C*)"). The analysis below arises from writing out the equivalence
between HJ and

Maps(R"/Z", (C*)")

Maps(R»*/Zn, (S1)n)
which we obtain from the set-up in Section 4.

Elements of M} (when n = 1) can be defined by circle-invariant Kihler po-

tentials. Explicitly, H} can be viewed as the set of functions ¢ : R/Z — R with
1 — ¢zz > 0, normalised so that

/ 6+ 162 da =0,
R/Z

and with metric
9 (60) = [ (601~ perie.
JR/Z

Let U be the set of functions ¥ on R/Z with 1 + g > 0, normalised so that

Wdé =0

R/bZ

and endowed with the flat metric
aoow) = [ (owde.
R/Z

(It is convenient to use a different symbol, &, for the coordinate on the circle in the
definition of U.) We will exhibit an isometry

a: (Hg, gnz) = (U gv).
For ¢ € H} define & = £(z) by
£(z) = 7 — bu(z) € R/Z.

Then % =1 — ¢ppa > 0, so the map £(x) is a diffeomorphism of the circle (it is a
covering map of degree 1), with inverse z = z(&).

Now let ¢
A(g) = (1 ~J(;mw).v(€) .

©= [ () u-em=o
R/z R/Z J
so there is a unique function ¥(¢) with [ 1¥d¢ = 0 and ¢ = A(£). Then

Then
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s0 1 is in U. We define a(¢) = . Now suppose we make a small variation ¢ = ¢+1),
so £(z) = &(z) — 1. It follows that

£@=u®+(m’) +0(n")
z(€)

1“¢:vm

and

- _ NePuoe Mo o).

Now set 7(£) == n(x(€)). The chain rule gives

Tep = 1 i e — n11¢’1"l‘1' + Tza _,
€ T e dz \1—0uz) (= ua)® | (L= buz)?

So A(€) = A(€) + 7¢¢ + O(n?). Furthermore,

/r@@=/ 7 (1= guz)dz = O(n?),
RZ R/Z

since ¢ and ¢ are normalised. In sum, the derivative of & maps 7 to 7 and

/72d5= /ﬁ%m: /772(1 ~ $az)dz,

. . . . . -1 . r
so « is an isometry. Finally we can write down the inverse map o™ : U — H;.

Given ¢ € U, we set x(§) = £ + ¢ and B(z) = (%)r(f)' Then [ Bla)dz =

S eedf =0, so B(a) = ¢y, for a unique normalised ¢, and
1

1_¢zw=m§>0.

Thus % lies in Hf. It is easy to check that this construction is inverse to the
previous one, hence completing the proof.

Notice that this transformation takes the geodesic eguation in the invariant
case, namely

(31) ¢tt = —% 2”/(1 - ¢.’L‘.’L‘)7

to the trivial equation 9y = 0 in U; that is, the equation (31) (and more generally
the real homogeneous Monge—Ampére equation in any dimension) can be solved
explicitly, a fact which is perhaps not obvious.

§7. Existence and uniqueness questions

A Riemannian symmetric space G¢/@G, like any complete simply connected
Riemannian manifold of non-positive curvature, has the property that any two
points can be joined by a unique geodesic. Likewise, if R is a compact Riemann
surface-with-boundary and p is a smooth map from 4R to G°/G, then there is a
unique solution of the WZW equation on R with boundary value p. (This is proved
in [8] for the case when G is a unitary group, and the argument extends easily
to the general case. When R is the disc the result is equivalent to a factorisation
theorem for loop groups, and the solution can be given explicitly by following the
argument in [19].) Moreover one can show that this solution gives the absolute
minimum of the WZW functional EWVZW
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The geodesic result can be seen as a particular case of the 2-dimensional theory,
by taking circle-invariant maps of the cylinder. Following through the analogy
developed in this paper, and expressing things in terms of the Monge-Ampere
equation, we are led to the following:

CONJECTURE/QUESTION 5. Let R be a compact Riemann surface with bound-
ary and p: V x R — R a function such that we +100p is a strictly positive (1,1)
form on each slice V x {z} for each fized z € OR. Let S, be the set of functions ®
on V X R equal to p over the boundary and such that wy+100® is strictly positive on
every slice V x {w},w € R. Then there is a unique solution of the Monge-Ampére
equation (Qo+i00®)"+! = 0 in S,, and this solution realises the absolute minimum
of the functional I,.

This question is a version of the Dirichlet problem for the degenerate Monge-
Ampére equation, a topic around which there is a substantial literature; see [1],
[18] for example. Note that regularity questions are very important in this theory,
since the equation is not elliptic: it may be that it is better to work in some larger
class of functions. But the statement above should indicate the general direction
of the problem.

An affirmative answer to Question 5 would of course imply the corresponding
statements for geodesics. In finite dimensions the other familiar existence result
for geodesics is the initial value problem, that is, the definition of the exponential
map. It is easy to see that the analogue of these results fails for H. This is clear
from the point of view of Section 5, since we can construct a Hamiltonian trajectory
vy which does not extend to a holomorphic strip, even for a short “time” interval.
In the case of the S' invariant metrics considered in Section 6 (iii) we can solve
the initial value proble for a short time, since U is an open set, but not for all
time, since U is a proper subset of a pre-Hilbert space. The lack of solutions to
the initial value problem in H can be contrasted with the “dual” space G, where
the exponential map can be defined (viz. Hamiltonian dynamics), but points in
G cannot in general be joined by a geodesic (there are exact symplectomorphisms
arbitrarily close to the identity which are not obtained by Hamiltonian flows). The
existence conjecture (5), if true, would thus lead to a pleasing symmetry between
the two cases.

The only part of (5) which seems to be easily dealt with is the uniqueness, This
can be proved by a maximum principle argument which we give now, although it
is a variant of a standard argument in the literature on Monge—Ampeére equations.

LEMMA 6. Suppose ) is a (1,1) form on V x R such that Q>0o0nV xR and
Q> 0 on each V-slice in V x R. Suppose that f:V xR — R is a smooth function
such that (Q +i00f)** =0 in V x R. Then the mazimum value of [ is attained
on the boundary.

To prove this lemma, choose a function v : R — R with iddvy > 0 on R. Then
for all € > 0 the form Q. = Q + €iddy (where v is regarded as a function on V x R)
is strictly positive on V x R. Let f, = f — ey , so (Q + i08f)""" = 0. At an
interior maximum of f. we have i08f. > 0, and this would give a contradiction,
since we would have Q. + 00 fe > 0; so the maximum value of f, is attained on
the boundary. Now take the limit as e tends to 0 to deduce, just as in the proof of
the ordinary maximum principle, that the maximum value of f is attained on the
boundary.
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COROLLARY 7. If one solution © to the boundary value problem in Conjec-
ture/Question 5 exists, it is unique.

For, if ' were another solution, we could take () = Qg + 196® and f=®—-®
in Lemma 6 and deduce that f < 0. Changing the roles of ® and &', we deduce
that f > 0, so we must have f=0.

In a similar way we get another extremal characterisation of solutions, again
following standard lines, cf. [18]. Given boundary data p, let S*(p) be the set of
functions ¥ on V' X R such that ¥ = p on the boundary and Qg +i90% > 0 in
V x R. This set is not empty, for we can first produce a function ¥y equal to pon
the boundary with Qg + 400, strictly positive on V-slices, using the fact that H
is contractible, and then find ¥ in S*(p) in the form ¥ = ¥y + K- v, where ~v is a
function on R as in the proof of Lemma 6, but chosen so that in adddition v=0
on OR, and the parameter K is made large.

ProposiTion 8. (i) Given p as in Conjecture/Question 5 and any U € S*(p),
the minimum value of U is attained on the boundary. In particular, for any p €
V x R,

inf ¥(p) > —occ.
‘I’Egl’f(p) (7) >

(i) If a solution ® € S(p) of the boundary value problem in Conjecture/Ques-
tion § exists, then, for allpe V x R,

O(p)= inf T(p).
(p) = i @)

To prove (i) we just use the fact that 108 is strictly positive in the R-slices
to see that ¥ has no interior minimum. Part (i) follows immediately from Lemma
6, together with fact that, if ® is a solution and we choose & function v as above,
vanishing on the boundary, then ® + ey lies in S;, for any ¢ > 0.

Of course we could try to view the infimum appearing in Proposition 8 as
defining a “generalised solution” of the Dirichlet problem.

The discussion above focuses on the solutions to the boundary value problem.
On the other hand, leaving aside the questions of the existence of these extrema,
it is interesting to study the infimum of the functional I o This is particularly so
in the case of the geodesic problem, when the functional can be rewritten as the
“energy” of a path. If these infima are strictly positive, for all choices of fixed,
distinct, end points, they make H into a metric space, in the usual fashion. In this
connection we will now observe that assuming the existence of minimising geodesics
we can write down an explicit lower bound for the functional. To do this we observe
that for any ¢ € H

| #do < 160) < [ o

These inequalities just express the converity of the functional I; to derive them,
differentiate along the path #(#). It follows that if ¢ is normalised (i.e. I(¢) = 0)
and not identically zero, then it must take both strictly positive and negative values.
Now suppose that ¢t € [0,1], is a geodesic from 0 to ¢, where ¢ is normalised.
Then the length (or energy) of the geodesic is given by

L= / §1.52d/_L¢t,
Vv
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for any t € [0,1]. In particular, taking t = 0,

VL > M_I/Q/ |golduo > M'I/Q/ bodpio,
1% du>0
where M is the volume of V' (which is of course the same for all metrics in /). Now
the geodesic equation obviously gives ¢ < 0, 80 ¢ < ¢g. It follows that

/ ddio z/ dduo,
Po>0 H>0

where the last term is strictly positive by the remarks above, and depends only on
¢ and not on the geodesic. A similar argument gives

VL>-M"Y2 [ ¢duy.
<0
So we are lead to a conjecture whose statement does not involve the existence of
geodesics:

CONJECTURE/QUESTION 9. If ¢ € Hy is normalised and ¢y, t € [0,1], is any
path from O to ¢ in H, then

1 dJ) 2 2
/ / (?) dpg,dt > M1 (max ( Gdpig, — ¢’dl"</>>) :
0 Jv t g $>0 $<0

The restriction to normalised potentials ¢ is not important, since we know
that 7 splits as a product, and we could immediately write down a corresponding
inequality, involving I(¢), for any ¢ € H.

§8. Extremal Kahler metrics

In this section we will explain how the material we have developed in this
paper is related to certain well-known topics in Kéhler geometry. Consider first the
question, posed by Calabi [4] and solved by Yau [22], of finding a Kéhler metric
in Ho with a prescribed volume form. A volume form gives a linear functional
A C*=(V) — R, and the space H of Kahler potentials is an open subset of
C>*(V). By the definition of the functional I, finding a solution to the problem is
the same as finding a ¢ € Hg such that the derivative of I at ¢ is A; that is, we have
to minimise the the linear functional A over the convex set {¢ € H : I(¢) < 0}.
This variational formulation is well known; the point we want to bring out is that
the prescribed-volume problem essentially involves the affine geometry of H. (The
problem discussed in the previous section is a variant of this prescribed-volume
problem, in that we have fixed boundary values and the prescribed “volume form”
is 0.)

There is another problemm, again going back to Calabi [5], which is tightly bound
up with the geometry of H as a symmetric space which we have discussed in this
paper. This is the problem of finding an “extremal Kéhler metric” in H, which, by
definition, means a metric of constant scalar curvature. This problem includes the
renowned question of the existence of Kihler-Einstein metrics, in the case when
c1(V) is a multiple of [wp]. The link with the symmetric-space geometry of H arises
from the fact that the scalar curvature can be viewed as a moment map for the
action of G on the symplectic manifold 7. This means that, save for the absence of
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a genuine complexified group G¢, the search for critical Kahler metrics can be fitted
into a general pattern of problems involving “Kahler quotients”, see 9, Cl.laptelj 6]
or [12], for example. This is explained in {7], so we will not reproduce the d1s§u531on
here. The main point is that one could hope that this approach may shed hghF on
Yaw's conjecture [23] relating the existence of critical Kahler metrics to stability
in the sense of Hilbert schemes and geometric invariant theory. (In (7] this was
referred to a Tian’s conjecture, but Tian has kindly pointed out to the author that
it is due to Yau. The original conjecture is stated only for the Kahler—Einstein case,
but it seems natural to extend it to general critical metrics. Such an extension has
been suggested by LeBrun, particularly in connection with ruled surfaces, where
Burns and de Bartolomeis [3] and LeBrun [14] have shown that the existence of
critical metrics is tied up with the stability of the corresponding vector bundles.)

To bring this down to earth, consider the question of the uniqueness of critical
metrics. For any metric ¢ in H let Dy be the second-order differential operator
from functions on V' to sections of s4(T'V), given by

Dy f = By ((df 1),
where (df)t is the vector field dual to the 1-form df under the metric w, and Oy
is the O-operator on the tangent bundle of V. (This operator is the “complex
Hessian”: in flat space it is given in local coordinates by D(f) = BTi%fz_ﬁ? in general
Dy f is the component of the Riemannian Hessian VVf complementary to 00F.)
Write S(¢) for the scalar curvature of a metric wy.

ProrosiTION 10. If ¢; is a geodesic in H, then

d , ,
G | #8t0due, = [ 1Ds.dPdu

This equation can been seen most easily in the J-description, with a fixed sym-
plectic form and varying complex structure. Then we write D; for the operator
above formed using a complex structure J. The reason these operators are impor-
tant is that they define the infinitesimal action of the symplectomorphism group
on J (or, more precisely, on the subset of integrable structures, see the discussion
in [7]). A geodesic in H goes over to a path J(£) such that

El—{i%l =ID ) H,
for some fized function H, independent of ¢t. So

d ds
(—ﬁ/VHSd/J.—/VHE{dp.

Now the moment map identity established in [7] states that for any variation 6.J in
J, and any function A,
/(JJ, IDsh)dy = / hoS du,
v v
80
ds \
Y g = / (I'D;H,ID, H)dp = | D, H|P?,
v odt v

and transforming back to the other description, with a fixed complex structure, this
gives the equation stated in Proposition 10.
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COROLLARY 11. If ¢o, ¢ are two critical Kihler metrics in Ho which can be
joined by a geodesic, then there is a holomorphic automorphism o of V such that
a* (wfﬁo) = Wy -

This follows from Proposition 10 because if ¢, is the geodesic the derivative of
fv Sdy vanishes at the endpoints by hypothesis, and so we must have qu.ﬁ = for
all t. But this means that ¢; = o ¢y, where a; = exp(t€) for a holomorphic vector
field £ on V, i.e. we are in the situation considered in example (i) of Section 6.
Another way of expressing this corollary is that if the geodesic existence conjecture
(5) is true then we can deduce the essential uniqueness of critical Kéhler metrics. In
the Kihler—Finstein case this uniqueness has been proved by Bando and Mabuchi
[2], using a different method, but the question for general critical metrics seems to
be open.

The significance of Proposition 10 becomes clearer if we recall that Mabuchi
[15] has shown that one can define a functional, the “K-energy”, on ‘H by specifying
its first variation to be

§K = fv 8¢ S(8) dus.

Thus the critical Kihler metrics are the critical points of K on Hy. (This definition
is in a similar vein to that of the functional I: one has to check that the second
variation is symmetric in its two arguments to see that K is well-defined. It fits into
the general pattern of Kahler quotient theory, in that there is a functional defined
in a similar way, using the moment map, for any Kéhler quotient.) Then Corollary
11 is the statement that K is convez along geodesics in H, a fact which again fits
into the general pattern, compare [9], Chapter 6, for example.

We give two other illustrations of the use of this convexity of the Mabuchi
fuctional.

First, we consider certain modifications of the geodesic equation given by the
motion of a “particle” in H moving in the potential —AK, where A > 0 is a real
parameter. The equation of motion is

¢ = —$1615 + AS(9),
where § is the scalar curvature. Along such a path we have
J = 1Dgéll* + S| = 0,

so these paths would do equally well for proving the uniqueness (Corollary 11). It
seems reasonable to hope that any two points can be joined by a path of this kind,
and the equation for A > 0 has the virtue of being elliptic on V' x [0,1].

Second, this point of view is fruitful in understanding the Calabi equation (5]

¢ = —S(¢) + S,

where S is the average of the scalar curvature, which is a topological invariant of
(V,[w]). This is the gradient flow equation of the functional K on Hy, and on the
other hand it generates the gradient flow of the functional [|S||* on J: the formal
structure is the same as for the Hermitian Yang-Mills gradient flow discussed in
[9], for example. Calabi's inequality

d . )
2118 = Soll* = —IDS|?
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follows immediately from the moment map identity. (Chrusciel [6] has proved that
when V is a Riemann surface the initial value problem for this Calabi equation has
a solution for all positive time, which converges to the constant curvature metric
ast — 00.)

Turning to the existence of extremal Kdhler metrics: one of the cornerstones
of the finite dimensional K&hler quotient theory, in its algebro-geometric formula-
tion as geometric invariant theory, is the “Hilbert criterion”. This states that the
stability of a complex orbit can be detected by looking at complex one-parameter
subgroups C* C G° If one takes these ideas over to the case of 7, we do not
have a genuine complex group G¢, but the geodesics in H furnish a substitute for
the l-parameter subgroups. In this way one can formulate a statement which is
the analogue of the Hilbert criterion for stability (where stability is interpreted in
terms of zeros of the moment map) in our infinite dimensional situation:

CONJECTURE/QUESTION 12. The following are equivalent:
(1) There is no critical Kahler metric in Hy.
(2) There is an infinite geodesic ray ¢y,t € [0,00), in H, such that

/ Sédug < 0
JV

for all t € [0,00).
(3) For any point ¢ € Hy there is a geodesic ray as in (2) starting at ¢.

Notice that, by Proposition 10, it is sufficient that the inequality in part (2)
of this conjecture should hold for large t: that is, the condition has to do with the
asymptotics of the geodesic ray. A further step in this programme would be to
find conditions for the existence of these rays in terms of the complex geometry of
V, perhaps making contact with other work, by Tian [20], [21], Nadel [18], and
others, on obstructions to the existence of Kahler-Einstein metrics.
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