
LECTURES ON GEODESICS IN THE SPACE OF KAEHLER METRICS,
LECTURE 4: QUANTIZATION

STEVE ZELDITCH

Another facet of geodesics is GAT or “geometric approximation theory”. It is very difficult
to work directly with infinite dimensional geometry and GAT is a special method in projective
K’́ahler geometry to make fiinite dimensional approximations of the infinite dimensional
locally symmetric space Hω by genuine finite dimensional symmetric spaces of type GC/G
with G = SU(N). The compact group SU(N) is analogous to SDiff(M,ω0) and GC =
SL(N,C) is analogous to Υ = {(f, ωϕ) : f ∗ωϕ = ω0}.

The approximating spaces are known as Bergman metric spaces of degree k and denoted
by Bk. They are submanifolds Bk ⊂ Hω but not totally geodesic ones. There is also a
canonical map Hilbk : Hω → Bk. The composite map Bk ⊂ Ho → Bk is a complicated map
denoted by Tk : Bk → Bk.

Geodesics of Bk are induced by geodesics of SL(N,C)/SU(N), which are given by the
action of one parameter subgroups etA. Hence Monge-Amp‘ere geodesics of Hω are limits,
in some sense, of curves of Bergman Kaehler metrics induced by one parameter subgroups.
This was first explored in [PS2], in which a kind of almost everywhere convergence was
proved, then uniform convergence was proved in [B, B2]. In the special case of toric Kaehler
manifolds, C2 convergence was proved in [SZ].

We assume throughout that (M,ω0) is a projective Kaehler manifold. Thus there exists a
quantizing line bundle L→M and a Hermitian metric h on L with curvature form ω0.

The ideas in these notes are due to Yau, Tian, Donaldson and many others, but the
source of the results is not usually indicated. We refer to [PS3] for the historical and further
mathematical background. Much of the notes is copied-pasted from prior articles of the
author, again without attribution.

1. Bergman metric spaces

Bergman metrics of degree k are special Kähler metrics induced by holomorphic embed-
dings

ιs(z) = [s1, . . . , sNk
] : M → (CPNk−1, ωFS)

of M into complex projective space.
Let H0(M,Lk) denote the space of holomorphic sections of the kth power Lk → M of

L and let dk + 1 = dimH0(M,Lk). We let BH0(M,Lk) denote the manifold of all bases
s = {s0, . . . , sdk} of H0(M,Lk). Given a basis, we define the Kodaira embedding

ιs : M → CPdk , z → [s0(z), . . . , sdk(z)]. (1)
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We then define a Bergman metric (or equivalently, Fubini-Study) metric of height k to be a
metric of the form

hs := (ι∗shFS)1/k =
h0(∑dk

j=0 |sj(z)|2
hk0

)1/k
, (2)

where hFS is the Fubini-Study Hermitian metric on O(1)→ CPdk . The space of all Bergman
metrics of degree k is then,

Bk = {hs, s ∈ BH0(M,Lk)}. (3)

We use the same notation for the associated space of potentials ϕ such that hs = e−ϕh0 and
for the associated Kähler metrics ωϕ.

Given a reference basis {sj} one obtains all others by applying an element A ∈ GL(Nk,C)
to it. The new basis sAj =

∑
Ajlsl induces the embedding

ιsA : M → CPNk−1, ιsA = A ◦ ιs,
and the associated Bergman metric is,

ι∗sAωFS =
1

k
i∂∂̄ log

Nk∑
j=1

|sAj(z)|2. (4)

Since U(Nk) is the isometry group of ωFS, the space of metrics is the quotient symmetric
space PNk

= GL(Nk,C)/U(Nk). With no loss of generality one may restrict to SL(Nk,C)
and obtain the quotient SL(Nk,C)/SU(Nk).

1.1. Quantization of Hermitian metrics as inner products. We denote by Ik the space
of Hermitian inner products on the finite dimensional vector space H0(M,Lk). If we fix one
reference inner product G0, then any other may be represented by a positive Hermitian
operator relative to G. If we also fix a basis, an inner product is represented by a positive
Hermitian matrix. So Ik ' Pk, the positive Hermitian matrices of rank Nk.

As in [D1, D4], we define maps

Hilbk : H → Ik,
by the rule that a Hermitian metric h ∈ H induces the inner products on H0(M,Lk),

||s||2Hilbk(h) = R

∫
M

|s(z)|2hkdVh, (5)

where dVh =
ωm
h

m!
, and where R = dk+1

V ol(M,dVh)
. Also, hk denotes the induced metric on Lk.

The sequence {Hilbk(ϕ)} of inner products induced by ϕ ∈ Hω is thought of as the
quantization of ϕ.

1.2. Converting inner products to Bergman metrics. Further, we define the identifi-
cations

FSk : Ik ' Bk
as follows: an inner product G = 〈 , 〉 on H0(M,Lk) determines a G-orthonormal basis
s = sG of H0(M,Lk) and an associated Kodaira embedding (1) and Bergman metric (2).
Thus,

FSk(G) = hsG . (6)
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The right side is independent of the choice of h0 and the choice of orthonormal basis. As
observed in [D1, PS1], FSk(G) is characterized by the fact that for any G-orthonormal basis
{sj} of H0(M,Lk), we have

dk∑
j=0

|sj(z)|2FSk(G) ≡ 1, (∀z ∈M). (7)

1.3. Geometric Approximation theory. Metrics in Bk are defined by an algebro-geometric
construction. By analogy with the approximation of real numbers by rational numbers, we
say that h ∈ H (or its curvature form ωh) has degree k if h ∈ Bk. A basic fact is that the
union

B =
∞⋃
k=1

Bk

of Bergman metrics is dense in the C∞-topology in the space H. Indeed,

FSk ◦Hilbk(h)

h
= 1 +O(k−2), (8)

where the remainder is estimated in Cr(M) for any r > 0; left side moreover has a complete
asymptotic expansion (see [PS2] for precise statements).

1.4. Bergman metrics in terms of positive Hermitian matrices. We have fixed a
reference metric ω0, and it determines reference Bergman metrics ω0(k) by GAT. We choose
a basis of sections {si(z)} = {s1(z), ..., sNk

(z)} of H0(M,Lk) which is orthonormal with
respect to the reference (background) metric hk0 on Lk and the corresponding Kähler metric
ω0 = − 1

k
i∂∂̄ log hk0 on M

1

V

∫
M

s̄i(z)sj(z)hk0
ωn0
n!

= δij, (9)

where n = dimM . The Bergman kernel of the background metric is the kernel of the
orthogonal projection onto H0(M,Lk) with respect to the inner product above, and is given
by

Bk(z1, z2) =

Nk∑
j=1

sj(z1)s̄j(z2) (10)

Given a positive Hermitian matrix P = Pij the associated Bergman metric is,

ωab̄(z) =
1

k
∂a∂̄b̄ log s̄i(z)Pijsj(z). (11)

In terms of A ∈ GL(Nk,C) above, P = A†A. We introduce the Bergman potential as follows

ϕP =
1

k
log s̄i(z)Pijsj(z) =

1

k
log |〈eΛUs(z), Us(z)〉|2. (12)
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1.5. Bergman geodesic rays. In the symmetric space metric of Bk, a geodesic is

ϕk(t) =
1

k
log |etAZ(z)|2.

If Z(z) = [sα(z)] and eA = U∗eD(λ)U then

ϕk(t) =
1

k
log
∑
j

etλj |sUj (z)|2,

where in SL(Nk,C)/SU(Nk) the ray starts at the origin and has initial vector (U,Λ). so

ϕ̇k(0) =
1

k

〈(A+ A∗)Z(z), Z(z)〉
||Z(z)||2

= ι∗shA.

Here, we use that if iA ∈ u(N) then A∗ = A. In general,

ϕ̇k(t) =
1

k

〈AetAZ(z), etAZ(z)〉
||etAZ(z)||2

= ι∗etAshA.

Proposition 1.1. We have,

d

dt
ι∗s
(
(exp itΞωFS

hA

)∗
ωFS) = LJΞ

ωt
h
etA

∗
AetA

ι∗etAsωFS.

Proof. We apply the previous formula, but to the basis etAs. This new embedding gives a
new restriction hA|etAs(M) = hetA∗AetA .

�

Now that we have defined the spaces H and Bk, we can compare Monge-Ampère geodesics
and Bergman geodesics. Geodesics of H satisfy the Euler-Lagrange equations for the energy
functional and as in the first Lecture are the paths ht = e−ϕth0 which satisfy the equation

ϕ̈− 1

2
|∇ϕ̇|2ωϕ

= 0, (13)

which may be interpreted as a homogeneous complex Monge-Ampère equation on A ×M
where A is an annulus. It is not hard to see that Bergman geodesic rays are not the same as
Mabuchi geodesic rays, but they are ‘sub-solutions’, i.e. have positive Monge-Ampère mass
in space-time.

Geodesics in Bk with respect to the symmetric space metric are given by orbits of certain
one-parameter subgroups σtk = etAk of GL(dk + 1,C). In the identification of Bk with the
symmetric space Ik ' GL(dk + 1,C)/U(dk + 1) of inner products, the 1 PS (one parameter

subgroup) etAk ∈ GL(dk + 1) changes an orthonormal basis ŝ(0) for the initial inner product

G0 to an orthonormal basis etAk · ŝ(0) for Gt where Gt is a geodesic of Ik. Geometrically, a
Bergman geodesic may be visualized as the path of metrics onM obtained by holomorphically
embedding M using a basis of H0(M,Lk) and then moving the embedding under the 1 PS
subgroup etAk of motions of CPdk . The difficulty is to interpret this simple extrinsic motion
in intrinsic terms on M .
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2. Phong-Sturm endpoint theorem

GIven h0, h1 ∈ H, let h(t) denote the Monge-Ampère geodesic between them. We then
consider the geodesic Gk(t) of Ik between Gk(0) = Hilbk(h0) and Gk(1) = Hilbk(h1) or
equivalently between FSk ◦ Hilbk(h0) and FSk ◦ Hilbk(h1). Without loss of generality,
we may assume that the change of orthonormal basis (or change of inner product) matrix
σk = eAk between Hilbk(h0), Hilbk(h1) is diagonal with entries eλ0 , ..., eλdk for some λj ∈ R.

Let ŝ(t) = etAk · ŝ(0) where etAk is diagonal with entries eλjt. Define

hk(t) := FSk ◦Gk(t) = hŝ(t) =: h0e
−ϕk(t). (14)

It follows immediately from (7) that

ϕk(t; z) =
1

k
log

(
N∑
j=0

e2λjt|ŝ(0)
j |2hk0

)
. (15)

We emphasize that ϕk(t; z) is the intrinsic Bk geodesic between the endpoints FSk◦Hilbk(h0)
and FSk◦Hilbk(h1). It is of course quite distinct from the Hilbk-image of the Monge-Ampère
geodesic; the latter is not intrinsic to Bk and one cannot gain any information on the H-
geodesic by studying it.

The main result of Phong-Sturm [PS1] is that the Monge-Ampère geodesic ϕt is approxi-
mated by the 1PS Bergman geodesic ϕk(t, z) in the following weak C0 sense:

ϕt(z) = lim
`→∞

[
sup
k≥`

ϕk(t, z)

]∗
, uniformly as `→∞, (16)

where u∗ is the upper envelope of u, i.e., u∗(ζ0) = limε→0 sup|ζ−ζ0|<ε u(ζ). In particular,
without taking the upper envelope, supk≥` ϕk(t, z) → ϕ(t, z) almost everywhere as ` → ∞.

See also [B] for the subsequent proof of an analogous result for the adjoint bundle Lk ⊗K
(where K is the canonical bundle) with an error estimate ||ϕk(t)− ϕ(t)||C0 = O( log k

k
).

In [SZ] it is proved that convergence is in C2 in the case of toric Kaehler manifolds.
Let us summarize the notation for hermitian metrics and geodesics of metrics:

• For any metric h on L, hk denotes the induced metric on Lk, and for any metric H
on Lk, H

1
k is the induced metric on L;

• Given h0 ∈ H, ht = e−ϕth0 is the Monge-Ampère geodesic;
• hk = FS ◦ Hilbk(h) ∈ Bk is the natural approximating Bergman metric to h, and
hk(t) = e−ϕk(t)h0 is the Bergman geodesic (14).

2.1. The initial value problem. In [RZ] the initial value problem for geodesic rays is stud-
ied from the quantization viewpoint. Consider the Hilbert spaces of sections L2(M,LN), N ∈
N, associated to powers of a Hermitian line bundle (L, h0) polarizing (M,ωϕ0), and the cor-
responding orthogonal projection operators ΠN ≡ ΠN,ϕ0 : L2(M,LN) → H0(M,LN), onto
the Hilbert subspaces H0(M,LN) of holomorphic sections.

Consider the self-adjoint zeroth-order Hermitian Toeplitz operators ΠN ϕ̇0ΠN , where ϕ̇0

denotes the operator of multiplication by ϕ̇0. Define the associated one-parameter subgroups
of unitary operators on H0(M,LN)

UN(t) := ΠNe
√
−1tNΠN ϕ̇0ΠN ΠN . (17)
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There is no obstruction to analytically continuing the quantization: each UN(t) admits an
analytic continuation in time t and induces the imaginary time subgroup

UN(−
√
−1s) : H0(M,LN)→ H0(M,LN), (18)

with UN(−
√
−1s) ∈ GL(H0(M,LN),C). Set

ϕN(s, z) :=
1

N
logUN(−

√
−1s, z, z). (19)

Definition 2.1. Call ϕ∞(s, z) := liml→∞(supN≥l ϕN)reg(s, z) the quantum analytic contin-
uation potential, where ureg denotes the upper semicontinuous regularization of u.

The limit ϕ∞ is constructed out of the quantized potentials ϕN similarly to the geodesic
rays constructed by Phong–Sturm, by using upper envelopes.

Denote ST := [0, T ] × R. The IVP for geodesics is equivalent to the following Cauchy
problem for the homogeneous complex Monge–Ampère equation:

(π?2ω +
√
−1∂∂̄ϕ)n+1 = 0 on ST ×M,

ϕ(0, s, · ) = ϕ0( · ), ∂sϕ(0, s, · ) = ϕ̇0( · ) on {0} × R×M.
(20)

Definition 2.2. The smooth lifespan (respectively, lifespan) of the Cauchy problem (20)
is the supremum over all T ≥ 0 such that (20) admits a smooth (respectively π?2ω-psh)
solution. We denote the smooth lifespan (respectively, lifespan) for the Cauchy data (ωϕ0 , ϕ̇0)
by T∞span ≡ T∞span(ωϕ0 , ϕ̇0) (respectively, Tspan ≡ Tspan(ωϕ0 , ϕ̇0)).

Definition 2.3. The quantum lifespan TQspan of the Cauchy problem (20) is the supremum
over all T ≥ 0 such that ϕ∞ of Definition 2.1 solves the HCMA (20).

We pose the following conjecture, which would give a general method to solve the Cauchy
problem for the HCMA to the extent possible.

Conjecture 2.4. The quantum analytic continuation potential ϕ∞ solves the HCMA (20)
for as long as it admits a solution. In other words, TQspan = Tspan.

The conjecture is proved by toric Kaehler manifolds in [RZ]. It is also true for real analytic
metrics.
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