
LECTURES ON GEODESICS IN THE SPACE OF KAEHLER METRICS,
LECTURE 3: HRMA, HCMA AND TORIC KAEHLER MANIFOLDS

STEVE ZELDITCH

It is very hard to find computable examples of geodesics in the space of Kaehler metrics.
It seems that they come in two types: (i) geodesics of toric Kaehler metrics, the topic
of Lecture 2; (iii) geodesics coming from special test configurations and Hele-Shaw flows.
Besides Donaldson’s construction (reviewed in §1) there are not many examples of geodesic
rays. Almost the only other explicit examples are toric cases or ‘test configurations’. This
lecture is devoted to the HRMA and to toric Kahler manifolds where the toric geodesic
equation reduces to the HRMA.

The only (embedded) toric Kaehler manifolds of complex dimension one are the Riemann-
ian metrics on S2 = CP1 which are invariant under rotations around the third axis. Thus
we are interested in “ one parameter families of surfaces of revolution which are geodesics in
the Mabuchi-Semmes-Donaldson metric.’ It is not obvious, but surfaces of revolution (i.e.
toric Kaehler metrics on S2) form a totally geodesic submanifold HTm of Hω.

The reason that one can explicitly solve the MSD geodesic equation in the toric case is that
the HCMA may be linearized by the Legendre transform. Roughly speaking, we transfer the
problem from Kaehler potentials to symplectic potentials, where the equation for geodesics
becomes linear and solvable. All of the difficulty lies in Legendre transforming back and
dealing with the singularities that arise from this transform.

The torus invarince in complex dimension one is S1 invariance and it reduces the HCMA
to the HRMA. A toy model for the HRMA is the equation det Hessf = 0 for a function f(x, t)
on the upper half plane t > 0. The initial value problem is briefly reviewed in §2.

1. Donaldson Example

This example is from [Dkahler], Let ϕ̇0 = h. Let Ur = h−1(r, 1]. Identify C with TqCP1

(south pole). Let αr : D → Ur be the unique Riemann map with αr(0) equal to the south
pole. Rotation of the disc defines a circle action on ∂Ur. Key idea: Define ω0 so that the
Hamiltonian flow of h on each level coincides with the S1 action. Here, the coordinates
(t, eiθ) on the cylinder [0,∞]× S1 correspond to e−teiθ.

For each v ∈ S2 there exists a unique eis(v) ∈ S1 so that αh(v)(0, e
is(v)) = v. Put

ft(v) = αh(v)(t, e
is(v))

in polar coordinates. Thus,

Γv(t, s) = αh(v)(e
−teis(v)eis).

The leaf through v×{0} is the image of this map. For fixed t one rotates the circle of radius
e−t. For fixed s one has the image of a radial line. Hence ft(v) takes v up the radial line
through v. Then define ωt = f−1∗

t ω.

Date: July 5, 2015.
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That ωt is a geodesic ray (for t > 0) follows from the fact that f ∗t ωt = ω and that ft is
obtained by analytic continuation of the Hamilton flow of h with respect to ω. It follows
that ωt = ω + ddcϕt and that ∂∂̄Φ (the spacetime potential) solves the HCMA.

How ‘rare’ is this construction? There are two types of rarities. First, it is rare that if
one has a perfect Morse function h and a symplectic form ω on S2, then the orbits of Xω

h all
have the same period. Such an h is known as an action variable. Secondly, it is extremely
rare that the the Riemann mapping function for the superlevel sets Ur of h induce the same
parameterization of S1 → ∂Ur as given by the Hamilton orbit parametrization of this curve.
This is a much more stringent condition than the orbits having the fixed period 2π.

However for every perfect Morse function h, this construction finds an ω for which (ω, h)
is the initial data of a geodesic ray ωt. The argument does not obviously run in the reverse
direction, i.e. given ω it is not clear that there exists such an h.

2. Cauchy problem for the HRMA in the upper half plane

This section is from [Fo1, Fo2]. The HRMA on the upper half plane is, detD2Φ(x, t) = 0, (x, t)R× R+

Φ|t=0 = u ∂tΦ = v (t = 0).

Proposition 2.1. If Φ ∈ C3, and ∂2
xΦ(x, t) > 0 for all (x, t) then the null foliation of D2Φ

consists of straight lines along which Φ is affine linear.

Proof. The main statement is that the leaves are totally geodesic. Let T be a smooth vector
field tangent to the null foliation. The null foliation has dimension one. Then ∇TdΦ = 0

Let Z be any vector field. Then

D2Φ(Z,∇TT ) = (∇ZdΦ)(∇TT ) = = T (∇ZdΦ)(T ))− (∇T∇ZdΦ)(T )

= 0− (∇Z∇Tdu)(T ))− (∇[T,Z]dΦ)(T ) = 0.

Here we use that ∇ZdΦ(T ) = D2Φ(T, Z) = 0 since T ∈ kerD2Φ and that R(Z, T ) = 0 since
the metric is Euclidean. Further, ∇TdΦ(T ) = 0.

Then if γ(t) is an integral curve (necessarily a line) we have

d2

dt2
Φ(γ(t)) = D2Φ(γ̇, γ̇) = 0.

�

For the initial value problem, D2Φ(x, 0) is completely determined by the initial data and
the equation detD2Φ(x, 0) = 0 (which determines ∂2

t Φ(x, 0). The straight lines (characteris-
tics) are generated by kerD2Φ(x, 0) along the t = 0 axis. There lifespan of the solution is the
minimal time T before straight lines in kerD2Φ(x, 0) starting at t = 0 intersect. At such a
time, it is impossible to have the solution affine linear along two intersecting characteristics.
Each transports the initial data to the crossing point and the values in general are different.

If the initial null directions point away from each other, and no characteristic lines cross,
then there is a global solution.
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3. Toric Kaehler metrics

This section is from [RZAIM]. We now generalize the HRMA discussion to any toric
Kaehler manifold. All of the important objects in the theory of geodesics are explicitly
computable. In particular, we have several (equivalent) formulae for the Moser maps fs.
The orbits fs(z) are the characteristics and the lifespan of a solution again depends on
whether the characteristics cross.

As will be explained below, the HCMA on a toric Kaehler manifold reduces to the HRMA
on the real points x of the open orbit, which is equivalent to Rn. As explained below,
u = Lϕ0 is the symplectic potential, (the Legendre transform of ϕ0 and µτ = ∇ϕτ is the
moment map corresponding to the symplectic form ωτ of the geodesic

ωτ = f−1∗
τ ω0.

Remark: Possibly confusing notational issue: We usually reserve the notation ϕ for a
relative Kaehler potential, as in ωϕ = ω0 + i∂∂̄ϕ. But on the open orbit there exist a Kaehler
potential for ω0 as well, and the combined potential is denoted ψ as in ω = i∂∂̄ψ. In this
introduction we write ϕ but later we write ψ.

Before getting started, we list the key results and formulae. Undefined notation will be
defined in later sections.

3.1. Key formulae. The Hamiltonian flow is given by
µ0 ◦ exptX

ωϕ0
ϕ̇0
◦ µ−1

0 (y, θ) = ∇ψ0 ◦ exp tX
ωϕ0
ϕ̇0
◦ (∇ψ0)−1.(y, θ)

= (y, θ − t∇yϕ̇0 ◦ (∇ψ0)−1), (y, θ) (P \ ∂P )× (S1)n,

exp tX
ωϕ0
ϕ̇0

.(x, θ) = = (x, θ − t(∇2ψ0)−1∇xϕ̇0), (x, θ) ∈ MR × (S1)n.

The analytic continuation in time is thus the Moser flow,

fτ (z) = exp−
√
−1τX

ωϕ0
ϕ̇0

(z) = z − τ(∇2ψ0)−1∇xϕ̇0, τ ∈ S∞. (1)

Other formulae are given in Lemma 6.4:



(i) fτ (e
ρ) = eρ − τ(D2ϕ0)−1∇ρϕ̇0(eρ), Lemma (6.2)

(ii) fτ (e
ρ) = eρ + τ∇u̇0(∇ρϕ0(eρ)) = ∇u0 ◦ ∇ϕ0(eρ) + τ∇u̇0(∇ρϕ0(eρ)), (47),

(iii) fτ = µ−1
0 ◦ µτ (eρ) = ∇us ◦ (∇u0)−1, all s ≥ 0, (38)

(iv) fτ (∇u0(x)) = ∇xu0(x) + τ∇xu̇0(x) = ∇uτ ◦ (∇u0)−1, all τ ≥ 0 (40).

Note that

y = ∇ϕ0(x), x = ∇u0(y) =⇒ ∇y = ∇2
yu0.∇x. (2)

Also,

(∇2ϕ0)−1∇xϕ̇0 = ∇yu̇0. (3)
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3.2. Main results. The first result (Theorem 6.8) is that

eρ → ∇u0 ◦ ∇ϕ0(eρ) + τ∇u̇(∇ρϕ0(eρ))

is invertible if and only if ∇u0 + τ∇u̇τ is invertible if and only if u0 + τ u̇0 is convex. If there
exists T so that u0 + τ u̇0 fails to be convex for τ ≥ T then the life span of the solution of
the geodesic equation is T .

The proof is based on the identity,

Lemma 1.

∇2u0(y).∇xfs(∇u0(y)) = ∇2
y(u0 + su̇0).

To prove the identity, we start with (1),

fs(z) = z − s(∇2ψ0)−1∇xϕ̇0, τ ∈ S∞, z ∈Mo, (4)

or in terms of the moment coordinates ((iv))

fs(∇u0(y)) = ∇yu0(y) + s∇yu̇0, s ∈ R+, y ∈ P \ ∂P. (5)

Applying the gradient with respect to y to this equation we obtain

∇2u0(y).∇xfs(∇u0(y)) = ∇2
y(u0 + su̇0).

Since ∇2u0 is invertible for y ∈ P \ ∂P , it follows that the gradient of fs is invertible at
z ∈Mo if and only if u0 + su̇0 is strictly convex on P \ ∂P . More details are given in §6.3.

The second result is Theorem 7.2: the HMRA reduces to a Hamilton-Jacobi equation. Let

F (σ, ξ) = σ − ϕ̇0((∇ϕ0)−1(ξ)),

where σ ∈ R, ξ ∈ Rn. Then if σ = ϕ̇τ and ξ = ∇ϕτ , one has

F (ϕ̇τ ,∇ϕτ ) = 0 ⇐⇒ ϕ̇τ ◦ fτ = ϕ̇0.

This follows from the explicit formulae, modulo mainly regularity considerations and exis-
tence of an inverse to fτ . Namely, it satisfies the conservation law, ϕ̇τ − ϕ̇0 ◦ f−1

τ = 0. But
this means that the ‘vertical projection’ of the Lagrangian submanifold {(s, ϕ̇s, z, dϕs)} ,
namely has a projection to (s, ϕ̇s, z, dϕs) → (ϕ̇s, dϕs) takes its image in the set {F = 0},
and the Lebesgue measure of the image is therefore zero. Details are in §6.3.

The origin of these formulae is that the Hamiltonian flow Gt of ϕ̇0 is linear in “action-angle
variables” Gt(I, θ) = (I, θ + t∇IH(I)) when we express ϕ̇0 = H(I). In fact, I = µ(eρ) and
H = −u̇0. Analytic continuation to imaginary time switches the component in which the
flow is linear so that Gis(I, θ) = (I − sJ∇IH(I), θ).

Regarding (i), (D2ϕ0)−1∇ρϕ̇0(eρ) is the ω0-metric gradient of ϕ̇0 so

(D2ϕ0)−1∇ρϕ̇0(eρ) = JXω0
ϕ̇0
,

and (i) says that the imaginary time continuation of the Hamiltonian flow of Xω0
ϕ̇0

is linear
motion in the direction, JXω0

ϕ̇0
.
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3.3. Background. In this section we review toric Kaehler manifolds. The main ideas are
from [A, G].

A toric Kähler manifold is a Kähler manifold (M,J, ω) on which the complex torus (C∗)m
acts holomorphically with an open orbit M o. Choosing a basepoint m0 on the open orbit
identifies M o ≡ (C∗)m and give the point z = eρ/2+iϕm0 the holomorphic coordinates

z = eρ/2+iϕ ∈ (C∗)m, ρ, ϕ ∈ Rm. (6)

The real torus Tm ⊂ (C∗)m acts in a Hamiltonian fashion with respect to ω. Its moment
map µ = µω : M → P ⊂ t∗ ' Rm (where t is the Lie algebra of Tm) with respect to ω
defines a singular torus fibration over a convex lattice polytope P ; as in the introduction, P
is understood to be the closed polytope. We recall that the moment map of a Hamiltonian
torus action with respect to a symplectic form ω is the map µω : M → t∗ defined by
d〈µω(z), ξ〉 = ιξ#ω where ξ# is the vector field on M induced by the vector ξ ∈ t. Over the
open orbit one thus has a symplectic identification

µ : M o ' P o ×Tm.

We let x denote the Euclidean coordinates on P . The components (I1, . . . , Im) of the moment
map are called action variables for the torus action. The symplectically dual variables on Tm

are called the angle variables. Given a basis of t or equivalently of the action variables, we
denote by { ∂

∂θj
} the corresponding generators (Hamiltonian vector fields) of the Tm action.

Under the complex structure J , we also obtain generators ∂
∂ρj

of the Rm
+ action.

The action variables are globally defined smooth functions but fail to be coordinates at
points where the generators of the Tm action vanish. We denote the set of such points by
D and refer to it as the divisor at infinity. If p ∈ D and Tm

p denotes the isotropy group of p,
then the generating vector fields of Tm

p become linearly dependent at P .
We assume M is smooth and that P is a Delzant polytope. It is defined by a set of linear

inequalities

`r(x) := 〈x, vr〉 − λr ≥ 0, r = 1, ..., d,

where vr is a primitive element of the lattice and inward-pointing normal to the r-th (m−1)-
dimensional facet Fr = {`r = 0} of P . We recall that a facet is a highest dimensional face
of a polytope. The inverse image µ−1(∂P ) of the boundary of P is the divisor at infinity
D ⊂M . For x ∈ ∂P we denote by

F(x) = {r : `r(x) = 0}

the set of facets containing x. To measure when x ∈ P is near the boundary we further
define

Fε(x) = {r : |`r(x)| < ε}. (7)

4. Kähler potential in the open orbit

On a simply connected open set, a Kähler metric may be locally expressed as ω = 2i∂∂̄ϕ
where ϕ is a locally defined function which is unique up to the addition ϕ→ ϕ+ f(z) + f(z)
of the real part of a holomorphic or antiholomorphic function f . Here, a ∈ R is a real
constant which depends on the choice of coordinates. Thus, a Kähler metric ω ∈ H has a
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Kähler potential ϕ over the open orbit M o ⊂ M . Invariance under the real torus action
implies that ϕ only depends on the ρ-variables, so that we may write it in the form

ϕ(z) = ϕ(ρ) = F (eρ). (8)

The notation ϕ(z) = ϕ(ρ) is an abuse of notation, but is standard. For instance, the Fubini-
Study Kähler potential is ϕ(z) = log(1 + |z|2) = log(1 + eρ) = F (eρ). Note that the Kähler
potential log(1 + |z|2) extends to Cm from the open orbit (C∗)m, although the coordinates
(ρ, θ) are only valid on the open orbit. This is a typical situation.

On the open orbit, we then have

ωϕ =
i

2

∑
j,k

∂2ϕ(ρ)

∂ρk∂ρj

dzj
zj
∧ dz̄k
z̄k

=
∑
j,k

∂2ϕ(ρ)

∂ρk∂ρj
dρj ∧ dθk (9)

Positivity of ωϕ implies that ϕ(ρ) = F (eρ) is a strictly convex function of ρ ∈ Rn. The
moment map with respect to ωϕ is given on the open orbit by

µωϕ(z1, . . . , zm) = ∇ρϕ(ρ) = ∇ρF (eρ1 , . . . , eρm), (z = eρ/2+iθ). (10)

The formula (10) follows from the fact that the generators ∂
∂θj

of the Tm actions are Hamil-

tonian vector fields with respect to ωϕ with Hamiltonians ∂ϕ(ρ)
∂ρj

, since

ι ∂
∂θj

ωϕ = d
∂ϕ

∂ρj
. (11)

The moment map is a homeomorphism from ρ ∈ Rm to the interior P o of P and extends
as a smooth map from M → P̄ with critical points on the divisor at infinity D. Hence, the
Hamiltonians (11) extend to D.

Note that the local Kähler potential on the open orbit is not the same as the global smooth
relative Kähler potential with respect to a background Kähler metric ω0. That is, given a
reference metric ω0 with Kähler potential ϕ0, it follows by the ∂∂̄ lemma that ω = ω0 +ddcϕ
with ϕ ∈ C∞(M). The Kähler potential ϕ on the open orbit defines a singular potential on
M which satisfies ddcϕ = ω + H where H is a fixed current supported on D. We generally
denote Kähler potentials by ϕ and in each context explain which type we mean.

5. Legendre transform and symplectic potential

The Legendre transform Lϕ of the open-orbit Kähler potential ϕ, a convex function on
Rm in logarithmic coordinates, is the so-called dual symplectic potential

uϕ(x) = Lϕ(x), (12)

a convex function on the convex polytope P . Under this Legendre transform, the complex
Monge-Ampère equation on HTm linearizes to the equation ü = 0 and is thus solved by

ut = uϕ0 + t(uϕ1 − uϕ0). (13)

Hence the solution ϕt of the geodesic equation on H is solved in the toric setting by

ϕt = L−1ut. (14)

Our goal is to show that ϕk(t; z)→ L−1ut as in (13) in a strong sense.
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The Legendre conjugate of a continuous function f = f(x) on Rn is defined by

Lf(y) = f ?(y) := sup
x∈Rn

(
〈x, y〉 − f(x)

)
.

For simplicity, we will refer to f ? sometimes as the Legendre dual, or just dual, of f . Usually,
f is assumed to be convex but it need not be– and in our applications, it often is not.

5.1. Generalities on the Legendre transform. Consider the Legendre transform f ∗ of
a convex functions f on R. Then f ∗(ξ) = xξξ− f(xξ) where f ′(xξ) = ξ. One thinks of f ∗(ξ)
as a function of ‘slopes’ ξ and xξ is the unique point where the graph of f has slope ξ. The
tangent line at this point is y = ξ(x−xξ)+f(xξ) and its y-intersect is −ξxξ+f(xξ) = −f ∗(ξ).
Here xξ = (f ′)−1(ξ). I.e. f ′(xξ) = ξ. Write xξ = g(ξ). Then f ′(g(ξ)) = ξ so g′(ξ) = 1

f ′′(g(ξ))
.

Note also that d
dξ
f ∗(ξ) = g(ξ) + (ξ − f ′(g(ξ)))g′(ξ) = g(ξ) and

d2

dξ2
f ∗(ξ) =

dg

dξ
=

1

f ′′(g(ξ)
.

Hence f ∗ is convex and f, f ∗ have innverse derivatives and Hessians.
One often writes xξ = f(x)+f ∗(ξ) but it is understood that there is only one independent

variable and either x = xξ = g(ξ) or the inverse.

5.2. Symplectic potential. By (9), a Tm-invariant Kähler potential defines a real convex
function on ρ ∈ Rm. Its Legendre dual is the symplectic potential uϕ: for x ∈ P there is a
unique ρ such that µϕ(eρ/2) = ∇ρϕ = x. Then the Legendre transform is defined to be the
convex function

uϕ(x) = 〈x, ρx〉 − ϕ(ρx), eρx/2 = µ−1
ϕ (x) ⇐⇒ ρx = 2 log µ−1

ϕ (x) (15)

on P . The gradient ∇xuϕ is an inverse to µωϕ on MR on the open orbit, or equivalently on
P , in the sense that ∇uϕ(µωϕ(z)) = z as long as µωϕ(z) /∈ ∂P .

The symplectic potential has canonical logarithmic singularities on ∂P . There is a one-
to-one correspondence between Tm

R -invariant Kähler potentials ψ on MP and symplectic
potentials u in the class S of continuous convex functions on P̄ such that u− u0 is smooth
on P̄ where

u0(x) =
∑
k

`k(x) log `k(x). (16)

Thus, uϕ(x) = u0(x) + fϕ(x) where fϕ ∈ C∞(P̄ ). We note that u0 and uϕ are convex, that
u0 = 0 on ∂P and hence uϕ = fϕ on ∂P . By convexity, maxP u0 = 0.

We denote by Gϕ = ∇2
xuϕ the Hessian of the symplectic potential. It has simple poles on

∂P . It follows that ∇2
ρϕ has a kernel along D. The kernel of G−1

ϕ (x) on Tx∂P is the linear

span of the normals µr for r ∈ F(x). We also denote by Hϕ(ρ) = ∇2
ρϕ(eρ) the Hessian of

the Kähler potential on the open orbit in ρ coordinates. By Legendre duality,

Hϕ(ρ) = G−1
ϕ (x), µ(eρ) = x. (17)

This relation may be extended to D → ∂P . The kernel of the left side is the Lie algebra of
the isotropy group Gp of any point p ∈ µ−1(x).



8 STEVE ZELDITCH

5.3. Repetition. Since it is T-invariant, the Kähler potential may be identified with a
smooth strictly convex function on Rn in logarithmic coordinates. Therefore its gradient
∇ψ is one-to-one onto the convex polytope P = Im∇ψ and one has the following explicit
expression for its Legendre dual ([Ro])

u(y) = ψ?(y) = 〈y, (∇ψ)−1(y)〉 − ψ ◦ (∇ψ)−1(y), (18)

which is a smooth strictly convex function on P , satisfying

∇u(y) = (∇ψ)−1(y), (19)

and (
∇2u(y)

)−1
= ∇2ψ((∇ψ)−1(y)). (20)

Following Guillemin, the function u is called the symplectic potential of the metric
√
−1∂∂̄ψ.

The space of all symplectic potentials is denoted by LH(T). Put

uG :=
d∑

k=1

lk log lk, (21)

where lk are the defining linear functionals of the polytope P (we refer to [?, §4.2] for
notation). A result of Guillemin states that for any symplectic potential u the difference
u− uG is a smooth function on P (that is, up to the boundary). In other words,

LH(T) = {u ∈ C∞(P \ ∂P ) : u = uG + F, with F ∈ C∞(P )}. (22)

5.4. Simplest example. Let ωFS denote the Fubini-Study form of constant Ricci curvature
1 on the Riemann sphere, given locally by

ωFS =

√
−1

π

dz ∧ dz̄
(1 + |z|2)2

.

The associated open-orbit Kähler potential can be taken as

ψ0(x) = log(1 + |z|2)− 1

2
Re z = log(1 + e2x)− x. (23)

The corresponding moment polytope is [−1, 1], and the symplectic potential dual to ψ0 can
be computed via the moment map y(x) = ψ′0(x) ∈ [−1, 1],

u0(y) = (1 + y) log(1 + y) + (1− y) log(1− y), y ∈ [−1, 1]. (24)

Let ϕ̇0 ∈ C∞(S2) be given and set

u̇0 = −ϕ̇0((ψ′0)−1( · )) = −ψ̇0((ψ′0)−1( · )) ∈ C∞([−1, 1]).

6. Geodesics in the space of toric Kaehler metrics: Linearization of the
Monge-Ampère equation

On a a toric manifold manifold (Mn, ω), torus-invariant Cauchy data (ωϕ0 , ϕ̇0) on the
open-orbit, Mo ≡ (C?)n has the form, ωϕ0 =

√
−1∂∂̄ψ0, where ψ0 is the open-orbit potential.

The HCMA in this setting reduces to a HRMA:
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

MAψ = det∇2ψ = 0, on [0, T ]× Rn,

ψ(0, · ) = ψ0( · ), on Rn,

∂ψ

∂s
(0, · ) = ϕ̇0( · ), on Rn,

(25)

for a convex function ψ on [0, T ]× Rn (properly defined for Lipschitz functions)
Recall that on a symplectic toric manifold the Legendre transform

f 7→ Lf = f ?

is a bijection between the set of T-invariant Kähler potentials on the open orbit M0 ' (Cn)?

of the (complex) torus action

H(T) := {ψ ∈ C∞(Rn) :
√
−1∂∂̄ψ = ωϕ|M0

with ϕ ∈ HωandIm∇ψ = P},
and the set of ‘symplectic potentials’ on the moment polytope P ⊂ Rn

LHTm := {u ∈ C∞(P \ ∂P ) ∩ C0(P ) : u = ψ?},

with ψ ∈ HTm .
The Legendre transform linearizes the Monge-Ampère geodesic equation.

Proposition 6.1. Let M c
P be a toric variety. Then under the Legendre transform ϕ→ uϕ,

the complex Monge-Ampére equation on HTm linearizes to the equation u′′ = 0. Hence the
Legendre transform of a geodesic ϕt has the form ut = u0 + t(u1 − u0).

Proof. It suffices to show that the energy functional

E =

∫ 1

0

∫
M

ϕ̇2
tdµϕtdt (26)

is Euclidean on paths of symplectic potentials. For each t let us pushforward the integral∫
M
ϕ̇2
tdµϕ under the moment map µϕt . The integrand is by assumption invariant under the

real torus action, so the pushforward is a diffeomorphism on the real points. The volume
measure dµϕt pushes forward to dx. The function ∂tϕt(ρ) pushes forward to the function
ψt(x) = ϕ̇t(ρx,t) where µϕt(ρx,t) = x. By (15), the symplectic potential at time t is

ut(x) = 〈x, ρx,t〉 − ϕt(ρx,t).

We note that

u̇t = 〈x, ∂tρx,t〉 − ϕ̇t(ρx,t)− 〈∇ρϕt(ρx,t), ∂tρx,t〉. (27)

The outer terms cancel, and thus, our integral is just∫ 1

0

∫
P

|u̇t|2dxdt.

Clearly the Euler-Lagrange equations are linear.
�
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6.1. The Cauchy problem for the symplectic potential. It is well-known that the
Legendre transform linearizes the HRMA. This fact also has a geometric interpretation that
we now briefly review.

Let (M,ω) be a toric Kähler manifold of complex dimension n and let T = (S1)n denote
the real torus of dimension n which acts on (M,ω) in a Hamiltonian fashion. We denote
by H(T) the class of T-invariant Kähler metrics in the cohomology class of ω. On the
open-orbit of TC = (C?)n, a T-invariant Kähler metric has a Kähler potential ψ and we
also write ψ ∈ H(T). The Legendre transform is an isometry between (H(T), gL2) and
(LH(T), L2(P )). It transforms the Christoffel symbols of (H(T), gL2) to zero and thus
linearizes the Monge-Ampère equation to the equation ü = 0. differential of the Legendre
transform acts as minus the identity, that is if ηs is a curve in H(T) and if us := η?s are the
corresponding symplectic potentials then

η̇s = −u̇s ◦ ∇ηs. (28)

Therefore the IVP on (H(T), gL2) is transformed to the following initial value problem for
geodesics in the space of symplectic potentials:

ü = 0, , u0 = ψ?0, u̇0 = −ψ̇0 ◦ (∇ψ0)−1. (29)

It may now seem that solving the geodesic equation with toric initial data is trivial: use
that L is an isometry from H to L2(P ) and thus transforms the IVP geodesic equation to
the linear equation

ü = 0, u0 = ψ?0, u̇0 = −ψ̇0 ◦ (∇ψ0)−1, (30)

whose solution is given by

us := u0 + su̇0.

The problem is transforming back. It gives a simple illustration of many of the problems
involved in solving the geodesic equation.

Define the convex lifespan by

T cvx
span(ψ0, ψ̇0) := sup { s : ψ?0 − sψ̇0 ◦ (∇ψ0)−1is convex on P

If s < T cvxspan, i.e., us is strictly convex and hence belongs to LHTm , it is well-known that
the IVP for geodesics has an explicit solution,

ψ(s, x) = ψs(x) := (u0 + su̇0)?(x),

s ∈ [0, Tspan), x ∈ Rn.

But the Legendre transform potential ϕ ceases to solve the HCMA for any T > T cvxspan. Let
∆(ψ) := { (s, x) : ψ ∈ HTm is finite, differentiable at (s, x) ∈ R+ × Rn} denote the regular
locus of ψ, and let

Σsing := R+ × Rn −∆(ψ),

denote its singular locus. Since ψ is everywhere finite, the former is dense while the latter
has Lebesgue measure zero in R+ × Rn. Set,

Σsing(T ) := [0, T ]× Rn −∆(ψ).
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Figure 2. The graphs of −u̇0 and −(u̇∗∗0 ) over P .

6.2. Complexifying Hamiltonian flows on toric manifolds.

Lemma 6.2. Let (M,J, ω) be a toric Kähler manifold. Given a toric Kähler potential ϕ0 let
ψ0 be a smooth strictly convex function on Rn such that over the open orbit ωϕ0 =

√
−1∂∂̄ψ0,

and let ϕ̇0 be a smooth torus-invariant function on M . For every z ∈ Mo, the orbit of the
Hamiltonian vector field X

ωϕ0
ϕ̇0

admits an analytic continuation to the strip S∞. Moreover,
it is given explicitly by

fτ (z) = exp−
√
−1τX

ωϕ0
ϕ̇0

: z 7→ z − τ(∇2ψ0)−1∇xϕ̇0, τ ∈ S∞. (31)

This expression remains valid on the divisor at infinity if we restrict to the orbit coordinates
x̃ on a slice containing z.

Here (and in similar expressions below) by (∇2ψ0)−1∇xϕ̇0 we mean the usual matrix
multiplication of the matrix (∇2ψ0)−1(x) and the vector ∇xϕ̇0(x).

Proof. The moment coordinates y on the polytope P and the angular coordinates on the
regular orbits are action-angle coordinates for the (S1)n Hamiltonian action on (M,ωϕ0), in
other words

(∇ψ0)?ωϕ0 =
n∑
j=1

dyj ∧ dθj, over (P \ ∂P )× (S1)n, (32)

where (∇ψ0)? denotes the push-forward under the diffeomorphism ∇ψ0. The Hamiltonian
vector field of ϕ̇0 is given in these coordinates by

(∇ψ0)?X
ωϕ0
ϕ̇0

= −
n∑
j=1

∂ϕ̇0

∂yj

(
(∇ψ0)−1(y)

) ∂
∂θj

, y ∈ P \ ∂P. (33)

Therefore the Hamiltonian flow of X
ωϕ0
ϕ̇0

is given, in terms of the moment coordinates, by

∇ψ0◦exp tX
ωϕ0
ϕ̇0
◦(∇ψ0)−1.(y, θ) = (y, θ−t∇yϕ̇0◦(∇ψ0)−1), over (P \ ∂P )× (S1)n, (34)

and in terms of the coordinates on Mo by

exp tX
ωϕ0
ϕ̇0

.(x, θ) = (x, θ − t(∇2ψ0)−1∇xϕ̇0).
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It therefore admits a holomorphic extension to a map exp
√
−1τX

ωϕ0
ϕ̇0

, τ = s +
√
−1t, given

in these coordinates by

exp−
√
−1τX

ωϕ0
ϕ̇0

.(x, θ) = (x− s(∇2ψ0)−1∇xϕ̇0 , θ − t(∇2ψ0)−1∇xϕ̇0),

s ∈ R+, t ∈ R.
(35)

For each z ∈ Mo, this is a holomorphic map of S∞ into Mo ⊂ M since in terms of the
complex coordinates zj := xj +

√
−1θj it is given by an affine map

τ 7→ z − τ(∇2ψ0)−1∇xϕ̇0, τ ∈ S∞.
�

6.3. Moser flows on toric manifolds. Having derived an explicit expression for the ana-
lytic continuations of the Hamiltonian orbits for all imaginary time, we now turn to investi-
gate the invertibility of the resulting Moser maps.

Lemma 6.3. Let (M,J, ω) be a toric Kähler manifold. Given a toric Kähler potential ϕ0

let ψ0 be a smooth strictly convex function on Rn such that over the open orbit ωϕ0 =√
−1∂∂̄ψ0, and let ϕ̇0 be a smooth torus-invariant function on M . The Moser maps fs(z) =

exp−
√
−1sX

ωϕ0
ϕ̇0

.z defined by Lemma 6.2 are smoothly invertible if and only if

s < T cvx
span := sup { a > 0 : ψ?0 − aϕ̇0 ◦ (∇ψ0)−1 is convex}. (36)

Note that the formula for T cvx
span is well-defined independently of the choice of the open-orbit

Kähler potential ψ0 for ωϕ0 .

Lemma 6.4. Let ψs be a smooth solution of the HRMA (25), and let fs denote the associated
Moser diffeomorphisms given by Lemma 6.2. Then on the open-orbit,

f−1
s = (∇ψ0)−1 ◦ ∇ψs = ∇u0 ◦ (∇us)−1, s ∈ [0, T cvx

span), (37)

and if we let us(y) = u0(y) + su̇0(y), then

fs = ∇us ◦ (∇u0)−1, all s ≥ 0. (38)

These expressions remain valid globally on M if we use the Euclidean gradient in the orbit
coordinates x̃ along each slice.

Proof. From the proof of Lemma 6.2 (cf.(35)) we have the following formula for the Moser
maps, restricted to the open orbit,

fs(z) = z − s(∇2ψ0)−1∇xϕ̇0, τ ∈ S∞, z ∈Mo, (39)

or in terms of the moment coordinates

fs(∇u0(y)) = ∇yu0(y) + s∇yu̇0, s ∈ R+, y ∈ P \ ∂P. (40)

Since ∇y = ∇2
yu0.∇x, applying the gradient with respect to y to this equation we obtain

∇2u0(y).∇xfs(∇u0(y)) = ∇2
y(u0 + su̇0).

Since ∇2u0 is invertible for y ∈ P \ ∂P , it follows that the gradient of fs is invertible at
z ∈ Mo if and only if u0 + su̇0 is strictly convex on P \ ∂P . The analysis for z ∈ M \Mo is
similar, following the technicalities outlined in the proof of Lemma 6.2. Since by definition
u0 = ψ?0, we obtain (36). �
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6.4. Review of convex analysis. A geometric, definition of Monge-Ampere mass is due
to Alexandrov, and uses the notion of a subdifferential of a convex function.

Proposition 6.5. (See [RT], Section 2) For any convex function f , the measure MA f ,
defined by

(MA f)(E) := Lebesgue measure of ∂f(E),

is a Borel measure.

The following result of Rauch-Taylor links these two definitions and will be crucial below.

Theorem 6.6. (See [RT], Proposition 3.4) For every convex function f on Rn+1 one has the
equality of Borel measures MAf =MA f . In particular, the real Monge-Ampère measure is
zero if and only if the image of the subdifferential map has Lebesgue measure zero in Rn+1.

Recall the following duality between differentiability and strict convexity.

Lemma 6.7. (See [Ro], Theorem 26.3.) A closed proper convex function is essentially strictly
convex if and only if its Legendre dual is essentially smooth.

Theorem 6.8. Suppose the initial Kaehler potential ψ0 ∈ H(T ) and velocity ϕ̇0 ∈ Tψ0H(T )
are torus-invariant.Then:
(i) The Cauchy problem for HCMA has a unique smooth solution for any T ≤ Tspan given by

ϕt = ψt − ψ0 ∈ Hω, t ∈ [0, T ], (41)

where
ψt = L(Lψ0 − tϕ̇0 ◦ (∇ψ0)−1) ∈ H(T ), (42)

and
Tspan := sup{t > 0 : Lψ0 − tϕ̇0 ◦ (∇ψ0)−1 is convex}.

Moreover, there exists no admissible solution to the Cauchy problems for any T > Tspan.

Proposition 6.9. Let (M,ω) be a Kähler toric manifold and let ϕ̇0 be a torus-invariant
function.

• Each Hamilton orbit Γz(it) = exp tXω
ϕ̇0

(I, θ)z admits a global holomorphic extension
in time t to a half-plane;
• One can always solve HCMA leafwise along any complexified orbit;
• However, the map fs(z) = Γz(s) is a diffeomorphism if and only if u0 + τ u̇ is convex.

Thus, only the third problem with Donaldson’s formal solution arises in the toric case,
but it is enough to destroy the IVP for (ωϕ0 , ϕ̇0) unless −u̇0(x) = ϕ̇0(∇ϕ−1

0 (x)) is convex.
To see that orbits analytically continue, we write them in action-angle variables. We

denote by β(eiθ) · z the action of eiθ ∈ Tm on M Let µ0 = (I1, . . . , Im) be the moment map
with respect to ω of the Tm action, i.e. (I1, . . . , Im)(ρ) = µ0(eρ/2). Then the orbits of the
Tm action are given in these action-angle coordinates by

β(eiθ) · (I, θ) = (I, θ + θ0).

The real torus Tm acts holomorphically on M and that its complexification (C∗)m acts
holomorphically.

The Hamiltonian flow of ϕ̇0 w.r.t. ωϕ0 can be explicitly solved in “action-angle” coordinates
(I, θ). Action coordinates= moment map, angle coordinates come from real torus action.
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Proposition 6.10. Each orbit admits a analytic continuation in t. Df fails to be invertible
once u+ τ u̇ fails to be convex.

Proof. The orbit is
exp tX

ωϕ0
ϕ̇0

(z0) = ρ0/2 + iθ0 + it∇Iϕ̇0(z0).

It is linear in t, hence admits an AC in t. So “good” hypothesis is satsified.

Theorem 1. (i) The Legendre potential ψ solves the HRMA on the dense regular locus,

MAψ = 0 on ∆(ψ) ⊂ R+ × Rn.

In addition, [0, T cvxspan]× Rn ⊂ ∆(ψ).
(ii) Whenever T > T cvxspan, ψ fails to solve the HRMA. In particular, the Monge-Ampère
measure of ψ charges the set Σsing(T ) with positive mass,∫

[0,T ]×Rn
MAψ =

∫
Σsing(T )

MAψ > 0.

Equivalently, ϕ = ϕ∞ ceases to solve the HCMA when T > T cvxspan. However, it does solve the
HCMA on a dense set in ST ×M .

6.5. Ideas of proofs.

Proposition 6.11. Let (M,ω) be a Kähler toric manifold and let ϕ̇0 be a torus-invariant
function.

• Each Hamilton orbit Γz(it) = exp tXω
ϕ̇0

(I, θ)z admits a global holomorphic extension
in time t to a half-plane;
• One can always solve HCMA leafwise along any complexified orbit;
• However, the map fs(z) = Γz(s) is a diffeomorphism if and only if u0 + τ u̇ is convex.

Thus, only the third problem with Donaldson’s formal solution arises in the toric case,
but it is enough to destroy the IVP for (ωϕ0 , ϕ̇0) unless −u̇0(x) = ϕ̇0(∇ϕ−1

0 (x)) is convex.
The real torus Tm acts holomorphically on M and that its complexification (C∗)m acts

holomorphically.
To see that orbits analytically continue, we write them in action-angle variables. We

denote by β(eiθ) · z the action of eiθ ∈ Tm on M Let µ0 = (I1, . . . , Im) be the moment map
with respect to ω of the Tm action, i.e. (I1, . . . , Im)(ρ) = µ0(eρ/2). Then the orbits of the
Tm action are given in these action-angle coordinates by

β(eiθ) · (I, θ) = (I, θ + θ0).

6.6. Loss of convexity = intersection of characteristics. We compute the derivative
Dfτ in action-angle variables to obtain,

Dfτ =

I 0

0 ∂ρ
∂I
− τ ∂2Ĥ

∂Ij∂Ik

 =

I 0

0 ∇2
I(u0 + τ u̇)

 .

Here, we observe that Ĥ = −u̇ and that ∂ρ/∂I = ∇2u0(I). Indeed, ρ(I) is the inverse of
the moment map µ(ρ) so ∂ρ/∂I is the inverse of Dµ. But the inverse of µ is ∇xu0 and the
inverse of Dµ = ∇2ρ is ∇2

xu0.
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It follows that
detDfτ (I, θ) = 0 ⇐⇒ det(∇2

I(u0 + τ u̇)) = 0.

Clearly, fτ is a diffeomorphism wherever u0 + τ u̇ is convex. On the other hand, it fails to be
a diffeomorphism at points (θ, I) where det(∇2

I(u0 + τ u̇)) = 0.
Since ωt = f ∗−tω0 we see that ωt and ϕt have singularities wherever ft fails to be invertible.

�

7. HRMA and the Hamilton-Jacobi equation

Next, we show that in the case of the HRMA the leafwise obstruction vanishes and char-
acterizes the Legendre transform subsolution among all subsolutions of the Cauchy problem.

Proposition 7.1. (i) The Legendre transform potential, given by

ψL(s, x) := (ψ?0 − sϕ̇0 ◦ (∇ψ0)−1)?(z), x ∈ Rn, s ∈ R+, (43)

is the unique admissible leafwise subsolution to the HRMA (25) for all T > 0.
(ii) The corresponding unique admissible leafwise subsolution to the HCMA is given by

ϕL(s+
√
−1t, ex+

√
−1θ) := ψL(s, x)− ψ0(x). (44)

The proof uses the following characterization of the HRMA in terms of a Hamilton–Jacobi
equation:

Theorem 7.2. (HRMA and Hamilton–Jacobi) η ∈ C1([0, T ] × Rn) is an admissible weak
solution of the HRMA (25) if and only if it is a classical solution of the Hamilton–Jacobi
equation

F (∇η) = 0, η(0, · ) = ψ0, (45)

where F (σ, ξ) = σ − ψ̇0 ◦ (∇ψ0)−1(ξ), where σ ∈ R, ξ ∈ Rn.

Recall that the initial Neumann data ψ̇0 of the HRMA (25) is a bounded function on Rn

obtained by restricting the global Neumann data ϕ̇0 on the toric manifold to the open-orbit.

Proof of Theorem 7.2. Given the Cauchy data (ψ0, ψ̇0) of (25), we set

u̇0 := −ψ̇0 ◦ (∇ψ0)−1.

Lemma 7.3. Let η be a C1 admissible solution for the HRMA (25). Define the set-valued
map,

G : s ∈ R+ 7→ Im ∇η({s} × Rn) ⊂ Rn+1.

Then G(s) = G(0) = {(−u̇0(y), y) : y ∈ P \ ∂P}, for each s ∈ [0, T ).

The proof is in [RZAIM].
Thus, by Lemma 7.3 and the differentiability assumption, for each (s, x) ∈ [0, T ] × Rn

there exists a unique y ∈ P \ ∂P such that(∂η
∂s

(s, x),∇xη(s, x)
)

= (−u̇0(y), y),

or, in other words,
∂η

∂s
(s, x) = −u̇0 ◦ ∇xη(s, x), (46)

which concludes the proof of one direction of Theorem 7.2.
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For the converse, suppose that η ∈ C1([0, T ] × Rn) is a solution of the Hamilton–Jacobi
equation. Then Im∇η ⊂ G(0), and since G(0) has zero Lebesgue measure in Rn+1, η is a
weak solution of the HRMA. �

Proposition 7.4. Let (M,J, ωϕ0) be a toric Kähler manifold, and let ϕ̇0 ∈ C∞(M) be torus-
invariant. Assume that the corresponding Cauchy problem for the HCMA is T -good. Then
any C1 π?2ω-psh solution of the HCMA up to time T is the unique T -leafwise subsolution.

Proof of Proposition 7.4. Let ψL denote the leafwise subsolution of the HRMA (25) given
by Proposition 7.1 and let η be a C1 admissible solution of (25). Both ψL and η are convex
functions on [0, T ]×Rn. By Theorem 7.2 both ψL and η are solutions of the Hamilton–Jacobi
equation (45). The method of characteristics implies that C1 solutions of (45) are unique as
long as the characteristics of the equation do not intersect each other. The equation for the
projected characteristic curves x(s) is

x(s) =
(
s, x0 + s∇u̇0(∇ψ0(x0))

)
.

Thus, the projected characteristic do not intersect as long as the map (s, x) 7→ (s, x +
s∇u̇0(∇ψ0(x))) is invertible, or equivalently as long as

x 7→ ∇u0 ◦ ∇ψ0(x) + s∇u̇0 ◦ ∇ψ0(x) (47)

is invertible on Rn; this is precisely as long as ∇u0 + s∇u̇0 is invertible on P \∂P , or as long
as u0 + su̇0 is strictly convex, i.e., precisely for s < T cvx

span.
�

8. Appendix on Moser maps and analytic continuation of orbits

Finally, we relate the orbits of the Moser map, the Hamiltonian orbits, and the character-
istics in Rn+1 of the HRMA. The following generalizes to weak C1 solutions of the HRMA
the well-known ‘conservation law’ of smooth solutions of the HCMA.

Definition 8.1. Assume fs is invertible as a C1 map. Define ϕ̇s, ωs resp. Xs by

ϕ̇s := ϕ̇0◦f−1
s , ωs = (f−1

s )?ω0,
d

dt
fs+
√
−1t =: Xs◦fs+√−1t, ϕ(s+

√
−1t) := ϕ0+

∫ s

0

ϕ̇σdσ.

Since Γz : ST →M is a holomorphic map we have

d

dt
Γz(s+

√
−1t) = −J d

ds
Γz(s+

√
−1t) =⇒ d

ds
fs+
√
−1t(z) = −JXs ◦ fs+√−1t. (48)

Proposition 8.2. Let η be a C1 weak solution of the HRMA (25), and let ϕ = η − ψ0,
considered as a function M . Also, let fs be the Moser maps fs(z) Then

ϕ̇s ◦ fs = ϕ̇0.

Further, the fs-orbits (s, fs(x)) are the leaves of the real Monge–Ampère foliation, namely
the projected characteristics of the Hamilton–Jacobi equation (45).

Proof. By combining (46) and and Proposition 7.4, one sees that this equation is equivalent
to the Hamilton–Jacobi equation in Theorem 7.2.

To prove the last statement we note that the leaves of the Monge–Ampère foliation are
orbits of the complexified Hamiltonian action exp tX

ωϕ0
ϕ̇0

. The real orbits lie on the orbits of
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the Hamiltonian (S1)n-action and the real slice of this torus orbit is a point. Hence the real
slice is the imaginary time orbit, i.e., the orbit of fs. �

Lemma 8.3. Suppose that fτ is defined by analytic continuation of the Hamilton flow of
(ϕ̇0, ωϕ0). Then,

fs+
√
−1t = hs+

√
−1t ◦ fs. (49)

Consequently, Xs = −JXωs
ϕ̇s
, so that ; d

ds
fs+
√
−1t(z) = −JXωs

ϕ̇s
◦ fs+√−1t (see (48) and

Definition 8.1).

9. Appendix: Lagrangian submanifolds and Legendre transformation

Let Λ ⊂ T ∗Rd be a Lagrangian submanifold, so that

Λ = {(x, ξ = ∇S(x)) : x ∈ U}.
The transformation from a generating function S(x) to a generating function S ∗ (ξ) is a

Legendre transform. If Λ can be represented as is projectible to the ξ- variables we define
F (ξ) = S(x)〈ξ, x〉 and look for its critical points xξ ∈ U . These points solve dxS(xξ) = ξ, so
by our assumption on W there exists a unique solution xξ ∈ U , corresponding to the unique
point (xξ, ξ) ∈ Λ with momentum coordinate ξ. If we now take S∗(ξ) = S(xξ)− 〈xξ, ξ〉, we
find that it indeed generates Λ:

∇ξS
∗(ξ) =

∂xξ
∂ξ

(∇xS(xξ − ξ)− xξ = −xξ.
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