
LECTURES ON GEODESICS IN THE SPACE OF KAEHLER METRICS
AND HELE-SHAW FLOWS: LECTURE 1

STEVE ZELDITCH

CAVEAT LECTOR: these notes are a guide to the four lectures I am giving on July
6-10, 2015 at Northwestern University. The sources of the results of the first lectures are
[D1, M, S, RZ] (see also [Ch, Dar, DL] for further background and more recent results). The
notes are sometimes taken almost verbatim from the sources, and I may have forgotten to
indicate that in some places.

1. Main results proved/discussed Lecture 1

• The Mabuchi-Semmes-Donaldson Riemannian metric on the space of Kaehler metrics
in a fixed class.

• Geodesics in the space of Kaehler metrics. The Riemannian Connection.

• Reformulation of geodesic equation as an HCMA. Null foliation.

• Null leaves as complexified Hamiltonian orbits. Moser maps. Formal solution.

• Solvability: the HRMA in 1 + 1 dimension.

2. Geodesics

Let M be a complex manifold. We use the following standard notation: ∂
∂z

= 1
2
( ∂
∂x
−

i ∂
∂y

), ∂
∂z̄

= 1
2
( ∂
∂x

+ i ∂
∂y

). We often find it convenient to use the real operators d = ∂ + ∂̄, dc :=
i

4π
(∂̄ − ∂) and ddc = i

2π
∂∂̄.

Let L→M be a holomorphic line bundle. The Chern form of a Hermitian metric h on L
is defined by

c1(h) = ωh := −
√
−1

2π
∂∂̄ log ‖eL‖2

h , (1)

where eL denotes a local holomorphic frame (= nonvanishing section) of L over an open set
U ⊂M , and ‖eL‖h = h(eL, eL)1/2 denotes the h-norm of eL. We say that (L, h) is positive if
the (real) 2-form ωh is a positive (1, 1) form, i.e., defines a Kähler metric. A complex valued
2-form is of type (1, 1) precisely if it satisfies ω(Jv, Jw) = ω(v, w). The Kaehler form is real
and of type (1, 1).

We write ‖eL(z)‖2
h = e−ϕ or locally h = e−ϕ, and then refer to ϕ as the Kähler potential

of ωh in U . In this notation,

ωh =

√
−1

2π
∂∂̄ϕ = ddcϕ. (2)
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If we fix a Hermitian metric h0 and let h = e−ϕh0, and put ω0 = ωh0 , then

ωh = ω0 + ddcϕ. (3)

The metric h induces Hermitian metrics hk on Lk = L⊗ · · · ⊗ L given by ‖s⊗k‖hN = ‖s‖kh.

2.1. Background on geodesics. Let (M,J, ω) be a compact Kaehler manifold of dimension
n. Here, J : TM → TM is the complex structure tensor, ω is a symplectic form of type
(1, 1), and the associated Riemannian metric is gJ(X, Y ) = ω(JX, Y ).

The space of Kaehler metrics in the cohomology class of ω is the infinite dimensional space,

Hω = {ϕ ∈ C∞(M) : ωϕ := ω + i∂∂̄ϕ > 0}. (4)

We will often assume that [ω] ∈ H2(M,Z) is an integral class, so that there exists a Hermitian
holomorphic line bundle (L, h)→ (M,ω) whose curvature form ∂∂̄ log h = ω. Then e−ϕ = h
may be interpreted as a Hermitian metric on L and Hω may be interpreted as the Hermitian
metrics on L having positive curvature.

There are several natural Riemannian metrics on Hω. The one which has received the
most attention is the Mabuchi-Semmes-Donaldson metric [M, S, D1], defined by

gM(ζ, η)ϕ :=

∫
M

ζη dµϕ, ϕ ∈ Hω, ζ, η ∈ TϕHω ' C∞(M),

where

dµϕ =
ωnϕ
n!

is the volume form associated to ωϕ.

Remark: There are other natural metrics on Hω. For interest, Calabi’s metric is

〈ψ1, ψ2〉ϕ :=

∫
M

(∆ϕψ1)(∆ϕψ2)dVϕ.

It turns out to have constant curvature +1. Another metric is

〈ψ1, ψ2〉ϕ :=

∫
M

(∇ϕψ1) · (∇ϕψ2)dVϕ,

where the inner product is that of ωϕ.

2.2. Equation for geodesics. In this section we follow [D1] almost verbatim.
The geodesic equation is the Euler-Lagrange equation for the energy functional

E(ϕt) =

∫ 1

0

∫
M

ϕ̇2
tdµϕtdt

where ϕt : [0, 1]→ Hω is a path with fixed endpoints.

Proposition 2.1. The geodesic equation is

ϕ̈− 1
2
|∇ϕ̇t|2ωϕt = 0

Remark: The equation implies that ϕ̇t(z) is increasing as t increases for all z ∈ M . in
particular ϕt(z) is strictly convex in t.
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Proof. A variation of the path is a one-parameter of paths ϕt,ε with fixed endpoints. We
consider paths of the form, ϕt + εψt. The first variation of the volume form is the term of
order ε in

dµϕ+εψ =
(ωϕ + εddcψ)n

n!
= dµϕ +

εn

n!
ddcψ ∧ ωn−1

ϕ +O(ε2) = dµϕ +
ε

2
∆ϕψdµϕ +O(ε2),

and so

1
ε
(E(ϕt + εψt)− E(ϕt)) = 1

ε

(∫ 1

0

∫
M

(ϕ̇+ εψ̇)2dµϕ+εψ −
∫ 1

0

∫
M

(ϕ̇)2dµϕ

)
= 2

∫ 1

0

∫
M

(ϕ̇ψ̇)dµϕ +
∫
M

∫ 1

0
ϕ̇2
t∆ϕψdµϕ +O(ε).

We integrate the time derivative on ψ̇t by parts in the first term onto ϕ̇tdµϕt and ∆ϕψ in
the second term onto ϕ̇2

t to get

δEϕt(ψ) = 2

∫ 1

0

∫
M

(
− d

dt
(ϕ̇dµϕt) + 1

2
(∆ϕϕ̇

2
t )

)
ψdµϕ.

Hence the geodesic equation is

−2
d

dt
(ϕ̇dµϕt) + 1

2
(∆ϕϕ̇

2
t ) = 0.

Since
d

dt
dµϕt = 1

2
(∆ϕtϕ̇t)dµϕt ,

the geodesic equation simplifies to

−2ϕ̈t − ϕ̇t(∆ϕtϕ̇t) + 1
2
(∆ϕϕ̇

2
t ) = −2ϕ̈t + |∇ϕ̇t|2ωϕt = 0. (5)

�

The equation
ϕ̈− 1

2
|∇ϕ̇t|2ωϕt = 0

at first seems like a Hamilton-Jacobi equaiton,

∂

∂t
ϕ̇t +Ht(x, dϕ̇t(x)) = 0

with a time-dependent Hamiltonian H(x, ξ) on the cotangent bundle T ∗M . However, Ht

depends on the solution ωϕt and this feedback effect makes it much more complicated.

2.3. Levi-Civita connection. If ϕt is a path in Hω and ψ(t) is a vector field along the
path ϕt, i.e. a function on M × [0, 1], then the covariant derivative of ψ along the path ϕt
is defined by

Dtψ(z) :=
∂ψ(z, t)

∂t
− 1

2
〈∇zψ(z, t),∇zϕ̇t(z)〉ωϕt (z). (6)

Here, ∇ at time t is the gradient with respect to the metric ωt := ωϕt . We often denote it
by ∇t, with the risk that it might be confused with differentiating in t; it is the connection
acting in the z variable with a metric depending on t.

Remark: ϕt being known, this is a linear transport equation for ψt. Below we will see how to
solve it by the method of characteristics, i.e. by using the flow of the time-dependent vector
field ∇tϕ̇t.
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The Christoffel symbol

Γ : C∞(M)× C∞(M)→ C∞(M)

is
Γ(ψ1, ψ2) = −1

2
〈∇ψ1,∇ψ2〉ωϕ .

The connection is compatible with the metric, i.e.

d
dt
||ψt||2ϕt = 2〈Dtψ, ψ〉ωϕt . (7)

Indeed,
d
dt
||ψt||2ϕt =

∫
M

2ψ dψ
dt

+ 1
2
ψ2∆ϕ̇dµϕ

=
∫
M

2ψ̇ψ − 1
2
〈∇ψ2,∇ϕ̇〉dµϕ

= 2
∫
M

(ψ̇ − 1
2
〈∇ψ,∇ϕ̇〉)ψdµϕ = 2〈Dtψ, ψ〉ϕt

proving (7).

2.4. Moser flow. Let ϕt be a path starting at the background metric, and define

Xt := −1
2
∇ωϕt

ϕ̇t. (8)

Here, ∇ωϕt
is the gradient with respect to the metric ωϕt . For fixed t,

LXtωϕt = dιXtωϕt .

Let X
ωϕt
ϕ̇t

denote the Hamilton vector field of the Hamiltonian ϕ̇t with respect to the sym-
plectic form, ωϕt . The gradient and the Hamilton vector fields are related by,

∇ωϕt
ϕ̇t = JX

ωϕt
ϕ̇t

.

This is because the metric and symplectic form are J-related. Then

ιXtωϕt = ωϕt(JX
ωϕt
ϕ̇t

, ·).
Now, by definition of the Hamilton vector field,

ωϕt(X
ωϕt
ϕ̇t

, ·) = dϕ̇t.

By definition, dcϕ̇t = Jdϕ̇t, where for a 1-form α, Jα(X) = α(JX). Thus,

dcϕ̇t(Y ) = ωϕt(X
ωϕt
ϕ̇t

, JY ) = −ωϕt(JX
ωϕt
ϕ̇t

, Y ),

since ωϕt and J are compatible. It follows that

ιXtωϕt = −dcϕ̇t
and so

LXtωϕt = −ddcϕ̇t.
Now let

ft : M →M,
d

dt
ft(x) = Xt(ft(x)) (9)

be the one parameter family of diffeomorphisms integrating Xt with f0 = id. Then

d

dt
f ∗t ωt = f ∗t LXtωt + ω̇t = −ddcϕ̇t + ddcϕ̇t = 0. (10)
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Hence,

f ∗t ωt = ω0, (11)

i.e. ft : (M,ω0) → (M,ωt) is a symplectic diffeomorphism. In particular, if ft is invertible,
then the pullback operator

f−1∗
t : L2(M,ω0)→ L2(M,ωt)

is unitary: ∫
M

ψ(f−1
t (x))dµϕt =

∫
M

ψ(x)dµ0. (12)

Thus, f−1∗
t : Tϕ0Hω → TϕtHω is an isometry.

2.5. Parallel translation. We now consider the equation for parallel translation of a vector
field ψt along a curve ϕt, i.e. D

Dt
ψt = 0. By (6), and from the definition of Xt, the condition

that ψt be parallel is that

∂ψ(z, t)

∂t
− 1

2
〈∇zψ(z, t), Xt〉ωϕt (z) = 0. (13)

By the definition of ft this is
d

dt
ψt(ft(z)) = 0. (14)

Thus, ψt(ft(z)) = F (z) for some smooth F or ψt(z) = F (f−1
t (z)).

By the calculations above, parallel translation preserves norms and inner products of
vectors.

Since the metric and connection are compatible, we can construct a normal frame along a
curve (in particular, a geodesic) ϕt by finding an orthonormal basis of L2(M,dµ0) and then
transporting it as above.

2.6. Curvature. Donaldson [D1] proves:

Theorem 2.2. The Riemannian curvature tensor of gM at ϕ is given by

Rϕ(ψ1, ψ2)ψ3 =
1

4
{{ψ1, ψ2}, ψ3}ωϕ ,

i.e. by repeated Poisson bracket. The sectional curvatures are given by

Kϕ(ψ1, ψ2) = −1

4
||{ψ1, ψ2}ωϕ ||ωϕ .

Remark: Donaldson computes the sign incorrectly in [D1] but it is computed correctly by
Mabuchi in Theorem 4.3 of [M] and (1.8) of Semmes [S].

Recall that

Kϕ(ψ1, ψ2) = 〈Rϕ(ψ1, ψ2)ψ2, ψ1〉, if ψ1, ψ2 are orthonormal.

Let ad(ψ1)ψ2 = {ψ2, ψ1}. Then (ψ) is a skew-adjoint operator on L2(M,dVω) where ω is the
symplectic form and dVω = ωn

n!
is the associated volume form. Indeed, ad(ψ1)ψ2 = Xω

ψ1
(ψ2),
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and LXω
ψ1
ω = 0. Hence

〈Rϕ(ψ1, ψ2)ψ2, ϕ1〉 = −1
4

∫
M

(
LXω

ψ2
{ψ1, ψ2}

)
ψ1dVω = 1

4

∫
M
{ψ1, ψ2}(LXω

ψ2
ψ1)dVω

= = 1
4

∫
M
{ψ1, ψ2}{ψ1, ψ2}dVω.

Better, let us write XA for the Hamilton vector field of A with respect to ω. Also write
X(f) for df(X). We use,

[XA, XB] = XA,B, XB(A) = {B,A} = −{A,B} = −XA(B).

Then

gϕ(Rϕ(A,B)B,A) =
∫
M

([XA, XB](B))AdVω =
∫
M

(
X{A,B}B

)
AdVω = −

∫
M

(XB{A,B})AdVω

=
∫
M
{A,B})XBAdVω =

∫
M
{A,B}){B,A}dVω

= −
∫
M
|{A,B})|2dVω.

(15)

• The sectional curvatures are all ≤ 0, i.e. (Hω, gM) is non-positively curved.

• The curvature tensor Rϕ depends only on the Poisson bracket at ϕ and is therefore
covariant constant. This is because parallel translation is compatible with the moving
symplectic structures.

One may define the Poisson bracket {f, g} by the formula, df ∧ dg ∧ ωn−1 = {f, g}ω ωn.
If ψ1,t, ψ2,t, ψ3,t are parallel along ϕt then the Poisson bracket of any two and the further
Poisson bracket with the third are also parallel. It follows that the curvature is parallel.

2.7. Hω0 as a symmetric space. A locally symmetric space is a Riemannian manifold
(X, g) such that ∇R = 0. They have the form G/K where G is a Lie group and G is
endowed with a bi-invariant metric. In the non-compact case, K is the maximal subcompact
subgroup of G. The tangent space TgKX can mapped to the tangent space TKX at the
origin by the derivative dLg−1 , resp. dRg−1 of left or right translation. The curvature tensor
is

R(X, Y )Z =
1

4
[[X, Y ], Z].

If G is compact, its non-compact dual is GC/G. The infinite dimensional analogue is
to define G = SDiff(M,ω0) (or better, the Hamiltonian subgroup of exact symplectic
diffeomorphisms.

The tangent space Tω0Hω0 ' C∞(M) is a Lie algebra under Poisson bracket {f, g}0 and
also has an inner product. The inner product is invariant under SDiff(M,ω0) since the
volume form is invariant. The Mabuchi et al inner product is the analogue of the bi-invariant
metric. In this picture, a ‘point’ ofHω0 is thought of as a coset f ◦χ where χ ∈ SDiff(M,ω0)
and f ∈ GC. There is no genuine GC but one may think of it as as pairs (f, ωϕ) so that
f ∗ωϕ = ω0.

Moser’s theorem on equivalence of symplectic forms underlies this picture.
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Theorem 2.3. Let M be compact and let ω0, ω1 be two cohomologous symplectic forms,
[ω0] = [ω1]. Then (M,ω0) is symplectomorphic to (M,ω1: there exists f ∈ Diff(M) so that
f ∗ω1 = ω0. In fact, if ωt = tω1 + (1− t)ω0 then there exists a smooth family ft in Diff(M)
so taht f ∗t ωt = ω0.

One can interpret ft as the horizontal lift of ϕt to the principal SDiff(M,ω0) bundle
over Hω defined as follows: Let Υ ⊂ Hω × Diff(M) be the set of pairs (ϕ, f) such that
f ∗ωϕ = ω0. The map

(f, ωϕ) ∈ Υ→ ωϕ ∈ Hω

is surjective with fiber {f ∈ Diff(M) : f ∗ωϕ = ω0}. The fiber over ω0 is SDiff(M,ω0),
and this group acts on Υ on the right and the orbit of one f is the entire fiber. Moreover,
there is a connection-preserving bundle isomorphism,

THω ' Υ×SDiff C∞(M).

In other words, THω is the quotient of Υ × C∞(M) by the action of SDiff(M,ω0) acting
by

χ · ((ωϕ, f), ψ) = ((ωϕ, f ◦ χ, χ∗ψ).

Then, ft is the horizontal lift of ϕt to Υ.
The tangent bundle THω is trivial, i.e. ' H0×C∞(M), but might best be thought of as an

associated vector bundle to a principal bundle of frames. Recall that on a finite dimensional
Riemannian manifold (M, g), the principal frame bundle P (M, g)→M is the bundle whose
fiber at x consists of the orthonormal frames {e1, . . . , en} at x. Any tangent vector may be
expressed as v =

∑
j ajej in this frame. If we change the frame by g ∈ O(n) we must change

the representative vector (a1, . . . , an) by ρ(g)−1 where ρ is the standard action of O(n) on Rn.
Thus, TM = P ×ρRn consists of equivalence classes [~e, ~x] of pairs ({e1, . . . , en}, (a1, . . . , an)}
where [g~e, ρ(g)−1~a] = [~e,~a].

In the infinite dimensional setting, one analogue of the frame bundle is to choose an
orthonormal basis {ϕj} of L2(M,dV0) for the Riemannian metric at ω0. If we pull back
under χ ∈ SDiff(M,ω0) we get another orthonormal basis {χ∗ϕj}. So the orthornormal
bases may be thought of as corresponding to SDiff(M,ω0). We do not use vectors in `2 to
represent functions relative to the ONB, however. That is, rather than thinking of G as the
unitary group U(L2(M,dV0)) we think of it as SDiff0(M), which is a proper subgroup.

We then use Diff(M) to identity tangent spaces at different points ωϕ ∈ Hω. Let
f ∈ Diff(M) so that f ∗ωϕ = ω0. Then {ϕj ◦ f−1} is an orthonormal basis for TωϕHω.
We then represent a tangent vector at ωϕ by [f, u] with u ∈ Tω0Hω so that f ∗ωϕ = ω0. Then
f−1∗u is tangent vector at ωϕ. We have the equivalence relation that [f, u] = [fχ, χ−1∗u]
where χ ∈ SDiff(M,ω0) since (fχ)−1∗χ∗u = f ∗u.

2.8. Interpretation of the geodesic equation as an HCMA. This initial value problem
is a special case of the Cauchy problem for the homogeneous complex/real Monge–Ampère
equation (HCMA/HRMA). Let (M,J, ω) be a compact closed connected Kaehler manifold of
complex dimension n. The IVP for geodesics is equivalent to the following Cauchy problem
for the HCMA on ST ×M , the product of the manifold with a strip ST = [0, T ]× R,

(π?2ω +
√
−1∂∂̄ϕ)n+1 = 0, (ω + i∂M ∂̄Mϕ)n 6= 0, on ST ×M,

ϕ(0, t, · ) = ϕ0( · ), ∂sϕ(0, t, · ) = ϕ̇0( · ), on {0} × R×M.
(16)
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where π2 : ST×M →M is the projection, and where ϕ is is required to be π?2ω-plurisubharmonic
(psh) on ST ×M .

Repeat: 

(π?2ω +
√
−1∂∂̄ϕ)n+1 = 0 on ST ×M,

(π?2ω +
√
−1∂∂̄ϕ)n 6= 0 on ST ×M,

ϕ(0, t, · ) = ϕ0( · ) on {0} × R×M,

∂ϕ

∂s
(0, t, · ) = ϕ̇0( · ) on {0} × R×M.

(17)

Indeed, multiply the geodesic equation by det g′ where g′ is the metric in the z variables,
and use the Shur complementarity formula:

det

 g′ ∇ϕ̇t

∇tϕ̇t ϕ̈t

 = det g′
(
ϕ̈− |∇ϕ̇t|(g′)−1

)
.

2.9. Donaldson’s formal solution. Semmes and Donaldson [S, D1] give a formal solution
of the HCMA: ϕ̇0 be a smooth function on M , considered as a tangent vector in Tϕ0Hω.
Let X

ωϕ0
ϕ̇0
≡ Xϕ̇0 denote the Hamiltonian vector field associated to ϕ̇0 and (M,ωϕ0) and let

exp tXϕ̇0 denote the associated Hamiltonian flow. Then let exp−
√
−1sXϕ̇0 “be” its analytic

continuation in time to the Hamiltonian flow at “imaginary” time
√
−1s. Then “define” the

classical analytic continuation potential ϕs with initial data (ϕ0, ϕ̇0) by

((exp−
√
−1sXϕ̇0)

−1)?ω0 − ω0 =
√
−1∂∂̄ϕs. (18)

Then ϕs “is” the solution of the initial value problem. Note that this is equivalent to (10),
i.e.

ω0 = f ∗s (ω0 +
√
−1∂∂̄ϕs) = f ∗ωs. (19)

We use quotes since there is no obvious reason why exp tXϕ̇0 , a rather arbitrary smooth
Hamiltonian flow, should admit an analytic continuation in t for any length of time, nor
why exp−

√
−1sXϕ̇0 should be invertible in case such an analytic continuation exists. When

the analytic continuation does exist, e.g., if ωϕ0 and ϕ̇0 are real analytic, then ϕs solves the
initial value problem for the Monge–Ampère equation for s in some (usually) small time
interval [M, S, D1].

2.10. Null foliation. The Cauchy data (ωϕ0 , ϕ̇0) of the IVP determines a Hamiltonian flow
exp tX

ωϕ0
ϕ̇0

. Semmes and Donaldson observed that the leaves of the foliation are then analytic
continuations in time of the orbits

Γz(
√
−1t) := exp tX

ωϕ0
ϕ̇0

(z) (20)

of the Hamiltonian flow [D1, p. 23],[S, 536]. These complexified Hamiltonian flows give rise
to the imaginary time maps

fτ (z) := Γz(τ), (21)
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(that we call Moser maps) for each τ = s +
√
−1t ∈ ST with s ∈ [0, T ] and t ∈ R, that are

symplectic diffeomorphisms between the Hamiltonian system (M,ωϕ0 , ϕ̇0) and (M,ωϕs , ϕ̇s),
for each s = Re τ ∈ [0, T ], in particular,

(f−1
s )?ωϕ0 − ωϕ0 =

√
−1∂∂̄(ϕs − ϕ0), s ∈ [0, T ]. (22)

The kernel of a (1, 1) form is always a complex space at each point, and the condition
that ω0 + ddcϕ be Kaehler for all t implies that ddcΦ can only have a 1-dimensional complex
kernel transverse to the fixed t slices. This real 2-dimensional distribution is integrable since
ddcΦ is closed.

Lemma 2.4. ∂
∂τ
−Xτ ∈ ker ddcΦ. More preciseley,

∂

∂τ
−∇1,0

gϕs
ϕ̇s ∈ ker(π?2ω +

√
−1∂∂̄ϕ)

∣∣
(τ,Γz(τ))

.

Proof. We have,

dfτ
dt

= X
ωϕs
ϕ̇s
◦ fτ = −J∇gϕs ϕ̇s ◦ fτ ,

dfτ
ds

= −∇gϕs ϕ̇s ◦ fτ , f0 = id, (23)

and

ι ∂
∂τ

(π?2ω +
√
−1∂∂̄ϕ) =

√
−1∂̄

∂ϕ

∂τ
=
√
−1∂̄ϕ̇s,

and

ι∇gϕs ϕ̇s(π
?
2ω +

√
−1∂∂̄ϕ) = ι∇gϕs ϕ̇sωϕs = dcϕ̇s =

√
−1(∂̄ − ∂)ϕ̇s,

and we use the convention ∂
∂τ

= 1
2
∂
∂s
−
√
−1
2

∂
∂t

and Y 1,0 = 1
2
Y −

√
−1
2
JY .

�

It then follows that

fs+
√
−1t = hs+

√
−1t ◦ fs, (24)

with hs+
√
−1t a C1 symplectomorphism of (M,ωϕs). Also, from (24) and (23)

hs+
√
−1t = exp tX

ωϕs
ϕ̇s

. (25)

We conclude therefore from (24) and (23) that the maps fτ defined by (??) satisfy (21),
i.e., for each z ∈ M , induce analytic continuation to the strip of the Hamiltonian orbit
exp tX

ωϕ0
ϕ̇0

.z. Hence we have shown both that the Cauchy data is T -good and that the Moser

maps of (21) are C1 and admit C1 inverses for each s ∈ [0, T ]. This completes the proof of
the “potential down” part of Theorem 4.2.

Remark: We caution fs+
√
−1t does not satisfy a group law in the complex variable s+

√
−1t

except in the special case where the Hamiltonian flow is a holomorphic one. We do have

exp(t1 + t2)X
ωϕs
ϕ̇s

(z) = exp t1X
ωϕs
ϕ̇s

(exp t2X
ωϕs
ϕ̇s

z). (26)
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3. Donaldson Example

Let ϕ̇0 = h. Let Ur = h−1(r, 1]. Identify C with TqCP1 (south pole). Let αr : D→ Ur be
the unique Riemann map with αr(0) equal to the south pole. Rotation of the disc defines
a circle action on ∂Ur. Define ω0 so that the Hamiltonian flow of h on each level coincides
with the S1 action. Here, the coordinates (t, eiθ) on the cylinder [0,∞] × S1 correspond to
e−teiθ.

For each v ∈ S2 there exists a unique eis(v) ∈ S1 so that αh(v)(0, e
is(v)) = v. Put

ft(v) = αh(v)(t, e
is(v))

in polar coordinates. Thus,
Γv(t, s) = αh(v)(e

−teis(v)eis).

The leaf through v×{0} is the image of this map. For fixed t one rotates the circle of radius
e−t. For fixed s one has the image of a radial line. Hence ft(v) takes v up the radial line
through v.

Remark: The construction of ω0 makes the perfect Morse function h an action variable, i.e.
all of its orbits are 2π-periodic. Hence (ω0, J, h) is very similar to a toric Kahler manifold
of dimension one. Of course, ω0 is invariant under the S1 action defined by Xω0

h . The orbits
are linear in time and therefore have analytic continuations.

4. Necessary conditions for unique solvability (“potential down”).

Existence of a C3 solution gives rise to several necessary conditions on the initial data. The
most obvious one is that the Hamilton orbits need to possess unique analytic continuations
to a strip ST .

Definition 4.1. We say that the Cauchy problem (17) with smooth initial data (M,ωϕ0 , ϕ̇0)
is T -good if the C∞ map Γ : R ×M → M, (t, z) 7→ exp tXω0

ϕ̇0
(z) admits a (unique) C∞

extension Γ : ST ×M →M which is holomorphic on ST for each z ∈M .

In particular, lims→0 Γz(s +
√
−1t) = Γz(

√
−1t) in the C∞ sense. Note that the strip is

one-sided, i.e., the analytic continuation is only assumed to exist for s ≥ 0. A two-sided strip
would force the Hamilton orbit to be real analytic in t, and so is less general. For instance,
in several settings, such as C∞ torus-invariant Cauchy data on toric varieties, the Hamilton
orbits are known to possess analytic continuations. The uniqueness of Γ is automatic.

Theorem 4.2. ([RZ], based on Semmes-Donaldson) (Necessary conditions) If the Cauchy
problem (17) with ωϕ0 ∈ C1 and ϕ̇0 ∈ C3(M) has a solution in C3(ST ×M) ∩ PSH(ST ×
M,π?2ω) then the Cauchy data is T -good and the maps fs defined by (21) are C1 and admit a
C1 inverse for each s ∈ [0, T ]. The solution is unique in C3(ST ×M)∩PSH(ST ×M,π?2ω).

This result is important in clarifying the nature of the obstructions to solving the HCMA.
The T -goodness is a straightforward combination of the Semmes–Donaldson arguments [S,
D1]. The uniqueness proof requires a global conservation law type argument. The key
difference is that the stripwise equations vary from leaf to leaf, and one has to prove an a
priori estimate that ensures that the stripwise elliptic problems are not degenerating. The
uniqueness proof is also completely different from the corresponding proof for the Dirichlet
problem, where the maximum principle is available.
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The obstructions leads to the following ill-posedness:

Theorem 4.3. [RZ]
For each ωϕ0 ∈ Hω there exists a dense set of ϕ̇0 ∈ C3(M) for which the IVP for HCMA
admits no C3 solution for any T > 0.

Proof. (Sketch) The Cauchy data of solutions for each strip which live up to time T must
lie in the range of a certain Dirichlet-to-Neumann operator of the strip. This obstruction to
solving HCMA is the basis for the density of bad directions.

Invertibility of fs is a different type of obstruction related to intersections of characteristics
= leaves of the Monge–Ampère foliation. Even when the AC and strip-wise Cauchy prob-
lems can all be solved, there does not generally exist a solution of the global HCMA equation.

A further obstruction to solvability is (22) which can be split into two requirements.
First, the space-time complex Hamilton orbits need not intersect, i.e., fs should be smoothly
invertible for each s ∈ [0, T ]. Second, (f−1

s )∗ωϕ0 must be of type (1, 1).
�

A related result on the boundary problem is in [Dar, DL]. X. Chen [Ch] proved that if
the endpoint data is C∞ then the geodesic between them is C1,1̄ on R×M (i.e. mixed zi, z̄j
second derivatives are bounded).

Theorem 4.4. For any (M,ω), there exist pairs (ϕ1, ϕ2) in C3(M)×C3(M) for which the
solution of the HCMA with endpoints ϕ1, ϕ2 is not C3. The set of such pairs has non-empty
interior.
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