1) Let M be an n-manifold and $F : M \to M$ a diffeomorphism. The suspension of F is defined by taking $M \times [0,1]$ and identifying every point $(x,0), x \in M$ with $(F(x),1)$, and is denoted by M_F.

(a) Show that M_F is an $(n+1)$-manifold

(b) What is M_{Id}?

For the next problem we will use complex numbers \mathbb{C}. A complex number is of the form $z = x + iy$, with $x, y \in \mathbb{R}$ and i the imaginary unit. Multiplication of complex numbers is defined in the usual way together with the rule that $i^2 = -1$. Mapping z to $(x, y) \in \mathbb{R}^2$ we obtain thus an identification of \mathbb{C} and \mathbb{R}^2 as real vector spaces. The absolute value on \mathbb{C} is defined by $|z| = \sqrt{x^2 + y^2}$, which is the same as the usual norm in \mathbb{R}^2. Similarly, \mathbb{C}^n is the vector space of n-tuples of complex numbers $(z_1, \ldots, z_n), z_j \in \mathbb{C}$, which is identified with \mathbb{R}^{2n} as real vector spaces.

2) Given a vector $a = (a_1, \ldots, a_n) \in \mathbb{N}^n_{>0}$, let

$$V(a) = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid |z_1|^2 + \cdots + |z_n|^2 = 1, \ z_1^{a_1} + \cdots + z_n^{a_n} = 0\}.$$

Prove that $V(a)$ is a smooth manifold of (real) dimension $2n - 3$.
