1) Define a relation \sim on $\mathbb{Z} \times \mathbb{N}_{>0}$ by declaring

$$(x, y) \sim (x', y') \iff xy' = x'y.$$

Verify that \sim is an equivalence relation.

2) [Exercise 0.3.10] Let $f : A \to B$ and $g : B \to C$ be functions.

(a) Prove that if $g \circ f$ is injective, then f is injective.

(b) Prove that if $g \circ f$ is surjective, then g is surjective.

(c) Find an explicit example where $g \circ f$ is bijective, but neither f nor g is bijective.

3) Let A, B be finite sets, and suppose that there exist injective maps $f : A \to B$ and $g : B \to A$. Prove that f and g must be bijective.

4) [Exercise 0.3.21] Suppose $A \subset B$ and B is a finite set. Prove that A is finite, i.e. either $A = \emptyset$ or else there is a bijection $f : A \to \{1, \ldots, n\}$ for some $n \in \mathbb{N}_{>0}$.