Exercise 1. Prove that if $f : \mathbb{R}^n \to \mathbb{R}$ is locally integrable and if $\phi : \mathbb{R}^n \to \mathbb{R}$ is continuous, then $f\phi : \mathbb{R}^n \to \mathbb{R}$ is locally integrable.

Exercise 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous at all but perhaps finitely many points. Prove that f is locally integrable if and only if $\int_{\overline{B_R(\mathbf{0})}} |f| dV_n < \infty$ for every R > 0.

Exercise 3. Define $f : \mathbb{R}^n \to \mathbb{R}$ by

$$f(\boldsymbol{x}) = \begin{cases} 0 & \text{if } \boldsymbol{x} = \boldsymbol{0}, \\ \frac{1}{2}\ln(x_1^2 + \dots + x_n^2) & \text{if } \boldsymbol{x} \neq \boldsymbol{0}. \end{cases}$$

Prove that f is locally integrable on \mathbb{R}^n when n = 1, 2. (If you are familiar with spherical coordinates in \mathbb{R}^n for $n \ge 3$, then you should prove the result for these values of n as well.)

Exercise 4. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{1}{x}$ $(x \neq 0)$ and f(0) = 0. Prove that f is not locally integrable on \mathbb{R} .

Exercise 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally integrable and suppose that f is continuous at $a \in \mathbb{R}^n$. Prove that

$$\lim_{t\to 0+} \langle L_f, \eta_{\epsilon, \boldsymbol{a}} \rangle = \lim_{\epsilon \to 0+} \int_{\mathbb{R}^n} f(\boldsymbol{x}) \eta_{\epsilon, \boldsymbol{a}}(\boldsymbol{x}) dV_n(\boldsymbol{x}) = f(\boldsymbol{a}).$$

(Suggestion: It may be easier to show that $\lim_{\epsilon \to 0+} |\langle L_f, \eta_{\epsilon, a} \rangle - f(a)| = 0.$)

Exercise 6. Let $\phi \in \mathscr{D}(\mathbb{R}^n)$ and fix $i \in \{1, \ldots, n\}$. For $h \in [-1, 1]$ with $h \neq 0$ define $\phi_{h,i}(\boldsymbol{x}) = \frac{\phi(\boldsymbol{x}+h\boldsymbol{e}_i)-\phi(\boldsymbol{x})}{h}$. Prove that $\phi_{h,i} \to \frac{\partial \phi}{\partial x_i}$ in $\mathscr{D}(\mathbb{R}^n)$ as $h \to 0$.

Exercise 7. For $\psi \in C^{\infty}(\mathbb{R}^n)$ and $\phi \in \mathscr{D}(\mathbb{R}^n)$ we define the **convolution** of ψ and ϕ , $\psi * \phi$, by

$$\psi * \phi : \mathbb{R}^n \to \mathbb{R}, \quad (\psi * \phi)(\boldsymbol{x}) = \int_{\mathbb{R}^n} \psi(\boldsymbol{x} - \boldsymbol{y}) \phi(\boldsymbol{y}) dV_n(\boldsymbol{y})$$

- (a) Prove that $(\psi * \phi)(\boldsymbol{x}) = (\phi * \psi)(\boldsymbol{x})$.
- (b) Prove that $\operatorname{supp}(\psi * \phi) \subseteq \operatorname{supp}(\psi) + \operatorname{supp}(\phi)$.
- (c) Prove that $\psi * \phi \in C^{\infty}(\mathbb{R}^n)$ with $\partial^{\alpha}(\psi * \phi) = (\partial^{\alpha}\psi) * \phi = \psi * (\partial^{\alpha}\phi)$ for every multi-index α , and therefore $\psi * \phi \in C^{\infty}(\mathbb{R}^n)$. As a consequence, show that $\psi * \phi \in \mathscr{D}(\mathbb{R}^n)$ in the special case where $\operatorname{supp}(\psi)$ is compact.
- (d) For h > 0, consider the Riemann sum

$$S_h(oldsymbol{x}) = \sum_{oldsymbol{m} \in \mathbb{Z}^n} \psi(oldsymbol{x} - holdsymbol{m}) \phi(holdsymbol{m}) h^n.$$

- (i) Prove that for each h > 0 all but finitely many terms in the sum S_h are identially zero (and therefore the sum is finite).
- (ii) Now assume that $\psi \in \mathscr{D}(\mathbb{R}^n)$. Prove that $S_h \in \mathscr{D}(\mathbb{R}^n)$ for all h > 0 and that $S_h \to \psi * \phi$ in $\mathscr{D}(\mathbb{R}^n)$ as $h \to 0+$. (Suggestion: For $\boldsymbol{x} \in \mathbb{R}^n$, first write

$$(\psi * \phi)(\boldsymbol{x}) = \sum_{\boldsymbol{z} \in \mathbb{Z}^n} \int_{h \boldsymbol{m} + [0,h]^n} \psi(\boldsymbol{x} - \boldsymbol{y}) \phi(\boldsymbol{y}) dV_n(\boldsymbol{y}),$$

and then, for each multi-index α , estimate $|\partial^{\alpha}S_{h}(\boldsymbol{x}) - \partial^{\alpha}(\psi * \phi)(\boldsymbol{x})|$.)

Exercise 8. Prove that if $\phi \in \mathscr{D}(\mathbb{R}^n)$, then $\eta_{\epsilon,0} * \phi \to \phi$ in $\mathscr{D}(\mathbb{R}^n)$ as $\epsilon \to 0+$.