
SNAP 2017: Differentiating the Non-Differentiable
Northwestern University, Summer 2017

Aaron Peterson

Last updated: July 31, 2017

Contents

1 Motivation and Background 1

2 Test Functions 2

3 Distributions (Generalized Functions) 8

4 Limits of Distributions 11

5 Distributional Derivatives 12

6 Properties of Distributional Derivatives 14

7 Regularization 17

i



1 Motivation and Background

I turn away with fright and horror
from this dreadful plague of
continuous functions which do not
have derivatives.

Charles Hermite

Students of analysis sympathize with Hermite. Not only are there continuous functions
which do not have derivatives, but this phenomenon has lead to a proliferation of concepts
intended to describe exactly how regular (or ‘smooth’) a function is: continuity, absolute
continuity, Lipschitz continuity, Hölder continuity, differentiability, and so on. Indeed, this
web of labels is necessitated by our desire to evaluate functions at specific points.

In physics one sees a slightly different picture: many functions representing physical
quantities cannot be ‘evaluated’ in the traditional sense. Rather we may only observe the
average or aggregate behavior of a function. For example, even though one cannot measure
the velocity of a particle one can measure its average velocity over a small time interval.
These averages are a decent substitute for evaluation. In this minicourse we take our cue
from the physicists—treating functions as quantities that can only be measured in aggregate
(rather than pointwise).

In particular, we will measure the local aggregate behavior of f by multiplying f by an
appropriate smooth function φ and then integrating. By varying the function φ we will be
able to get a complete picture of the aggregate behavior of f . For this reason the functions
φ will be called test functions, since each one of them is used to test the behavior of f . We
will ultimately generalize this idea in a way that does not require any sort of integration.

The two major references for this course are the two excellent books by Rudin [3] and
Hörmander [2]. The book of Folland [1] offers a third treatment which is more focused on
problems and applications. Much of this material can be found in those texts, albeit at a
much higher level of generality.

The theory of generalized functions is most easily studied in the context of Lebesgue
integration. However, this minicourse assumes that you have no familiarity with Lebesgue
integration. Rather than begin our short course with an even shorter course on the Lebesgue
integral, we will work with a definition of integrability that is based on Riemann’s integral.
In everything that follows, we assume that the sets involved are sufficiently ‘nice’ for the
definitions to make sense. Everything we use in the course (both in theory and examples)
will cause no problems in this regard.

We first introduce a bit of notation. For a ∈ Rn and ε > 0, define

Boxnε (a) =
n∏
i=1

(ai − ε, ai + ε), so that Boxnε (a) =
n∏
i=1

[ai − ε, ai + ε].

We will use the standard notation Bn
R(a) = {x ∈ Rn : |x− a| < R} to denote the (metric)

ball of radius R centered at a.

Definition 1.1. We say that f : Rn → R is integrable on (reasonably nice set) A ⊆ Rn if

f is continuous on Rn except for possibly finitely many points, and if

ˆ
A

|f |dVn <∞ in the

sense of (perhaps improper) Riemann integration. We say that f is locally integrable if f
is integrable on K for every (reasonably nice) compact set K ⊆ Rn.
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Remark 1.2. If you are familiar with the Lebesgue integral, then you may replace the
definition of the statement ‘f is integrable on A’ with the notion ‘f ∈ L1(A). The statement
that ‘f is locally integrable on Rn’ can also be replaced by the statement that ‘f ∈ L1

loc(Rn)’.
If we use the Lebesgue integral, then we replace the loose condition that A be ‘reasonably
nice’ with the mere assumption that A is measurable, and we completely remove the condition
on the compact set K since such K are Borel.

Example 1.3. As an example, every continuous function f : Rn → R is locally integrable.
To see this, for each compact set K ⊆ Rn the Extreme Value Theorem implies that there
exists MK > 0 with |f(x)| ≤ MK for all x ∈ K. Moreover, since K is compact there exists
RK > 0 with K ⊆ BoxnRK (0). But thenˆ

K

|f(x)|dVn(x) ≤MKVol(BoxnRK (0)) = MK(2RK)n < +∞.

Exercise 1. Prove that if f : Rn → R is locally integrable and if φ : Rn → R is
continuous, then fφ : Rn → R is locally integrable.

Exercise 2. Let f : Rn → R be continuous at all but perhaps finitely many points.

Prove that f is locally integrable if and only if

ˆ
BnR(0)

|f |dVn < +∞ for all R > 0.

Exercise 3. Define f : Rn → R by

f(x) =

{
0 if x = 0,
1
2

ln(x21 + · · ·+ x2n) if x 6= 0.

Prove that f is locally integrable on Rn when n = 1, 2. (If you are familiar with spherical
coordinates in Rn for n ≥ 3, then you should prove the result for these values of n as
well.)

Exercise 4. Define f : R → R by f(x) = 1
x

(x 6= 0) and f(0) = 0. Prove that f is not
locally integrable on R.

2 Test Functions

To define the class of smooth functions that we will use to ‘test’ the aggregate behavior of
our generalized functions, we make the following definitions.
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Definition 2.1. The support of a function φ : Rn → R, supp(φ), is defined to be

supp(φ) = {x ∈ Rn : φ(x) 6= 0}.

If supp(φ) is compact, then we say that φ has compact support, or is compactly sup-
ported.

Remark 2.2. We can also think of supp(φ) as the complement of the largest open subset of
Rn on which φ = 0.

Definition 2.3. Define C0(Rn) := {φ : Rn → R : φ is continuous}. For k ∈ N, we
recursively define

Ck(Rn) := {φ : Rn → R : For each i = 1, . . . , n,
∂φ

∂xi
exists on Rn and

∂φ

∂xi
∈ Ck−1(Rn)}.

Finally, let C∞(Rn) :=
∞⋂
k=0

Ck(Rn).

From linearity of differentiation, and since linear combinations of continuous functions are
continuous, one easily checks that C∞(Rn) (and, for that matter, each Ck(Rn) for k ∈ Z≥0)
is a real vector space.

Definition 2.4. The space of test functions on Rn, D(Rn), is defined as

D(Rn) := {φ ∈ C∞(Rn) : supp(φ) is compact}.

Remark 2.5. Some authors use the notation C∞c (Rn) instead of D(Rn). (The ‘c’ denotes
that the functions have compact support.) This is fine notation, but is somewhat more
cumbersome.

Remark 2.6. Note that D(Rn) always contains the zero function (which we will denote by
0), since 0 is smooth and supp(0) = ∅ is compact.

In fact, D(Rn) is a real vector space. Since D(Rn) is a nonempty subset of the real vector
space C∞(Rn), to show that D(Rn) is a vector space it suffices to show that D(Rn) is closed
under function addition and scalar multiplication. Let φ, ψ ∈ D(Rn) and λ ∈ R. Then

supp(λφ) =

{
∅ if λ = 0,

supp(φ) if λ 6= 0,

and therefore supp(λφ) is compact since ∅ and supp(φ) are compact. For sums we note that

supp(φ+ ψ) ⊆ supp(φ) ∪ supp(ψ),

and therefore since supp(φ) and supp(ψ) are compact and the finite union of compact sets
is compact, supp(φ + ψ) is a closed subset of a compact set (and hence is compact). Since
aψ, ψ + φ ∈ C∞(Rn) as well, the proof is complete.
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Bump Functions

The space D(Rn) is very large. To demonstrate this we now construct a large class of test
functions on Rn with numerous theoretical applications: the so-called bump functions.

Proposition 2.7. For each a ∈ Rn there exists a family of functions {ηε,a}ε>0 ⊆ D(Rn)
satisfying

(i) supp(ηε,a) = Boxnε (a),

(ii) 0 < ηε,a(x) ≤ ηε,a(a) for all x ∈ Boxnε (a), and

(iii)

ˆ
Rn
ηε,adVn = 1.

Moreover, ηε,0 is even for all ε > 0.

Proof. Recall1 that

s : R→ R, s(x) =

{
0 if x ≤ 0,

e−1/x if x > 0

satisfies s ∈ C∞(R) and supp(s) = [0,+∞).
Now define t1 : R → R by t1(x) = cs(1 + x)s(1 − x), where c ∈ (0,∞) will be chosen

momentarily. Note immediately that t1 is even, and that

(i) t1 ∈ C∞(R),

(ii) supp(t1) = Box1
1(0), and

(iii) 0 < t1(x) ≤ t1(0) for x ∈ Box1
1(0).

Since x 7→ s(1 + x)s(1− x) is continuous, non-negative, and strictly positive when x = 0, we
have

0 <

ˆ
R
s(1 + x)s(1− x)dx =: c−1.

This choice of c yields

(iv)

ˆ
R
t1(x)dx = 1.

For n ∈ N define tn : Rn → R by tn(x1, . . . , xn) := t1(x1)t1(x2) · · · t1(xn). Then tn is even
and satisfies

(i) tn ∈ C∞(Rn),

(ii) supp(tn) = Boxn1 (0),

(iii) 0 < tn(x) ≤ tn(0) for x ∈ Boxn1 (0), and

(iv)

ˆ
Rn
tndVn = 1,

1This is a standard exercise in real analysis courses, so you may have already seen this. If not, then you
should treat this as an exercise!
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where (iv) holds by Fubini’s Theorem. Since Boxn1 (0) is compact for each n ∈ N, tn ∈ D(Rn)
for each n.

Finally, for ε ∈ (0,∞) and a ∈ Rn define

ηε,a : Rn → R, ηε,a(x) = ε−ntn(ε−1(x− a)).

Then for each ε and a,

(i) ηε,a ∈ C∞(Rn),

(ii) supp(ηε,a) = Boxnε (a),

(iii) 0 < ηε,a(x) ≤ ηε,a(a) for x ∈ Boxnε (a), and

(iv)

ˆ
Rn
ηε,a(x)dVn(x) =

ˆ
Rn
tn(y)dVn(y) = 1,

where in (iv) we made the change of variable x = εy + a, so that ε−1(x − a) = y and
dVn(x) = εndVn(y). Finally, the evenness of tn guarantees that ηε,0 is even for all ε > 0, and
the proof is complete.

The following example illustrates not only the utility of the class of test functions we’ve
constructed, but also the suitability of ‘testing’ as a substitute for pointwise evaluation.

Example 2.8. Let f : Rn → R be locally integrable, and define

Lf : D(Rn)→ R, 〈Lf , φ〉 = Lf (φ) :=

ˆ
Rn
f(x)φ(x)dVn(x).

By Exercise 1, fφ is locally integrable for all φ ∈ D(Rn), and since supp(fφ) ⊆ supp(φ) is
compact the integral 〈Lf , φ〉 converges. One easily verifies that Lf is a linear functional2 on
D(Rn).

The quantity 〈Lf , φ〉 can be considered a snapshot of the aggregate behavior of f as
measured using the function φ. The big question for us is the following: How is Lf related
to f?

By definition, the locally integrable function f completely determines the functional Lf .
Therefore, full knowledge of f leads directly to full knowledge about Lf . For the other
direction, full knowledge about Lf (i.e. knowing the value of 〈Lf , φ〉 for every φ ∈ D(Rn))
allows us to recover the (pointwise) values of f at every point at which f is continuous.

Exercise 5. Let f : Rn → R be locally integrable and suppose that f is continuous at
a ∈ Rn. Prove that

lim
ε→0+

〈Lf , ηε,a〉 = f(a).

(Suggestion: It may be easier to show that lim
ε→0+

| 〈Lf , ηε,a〉 − f(a)| = 0.)

2If V is a vector space over a field F, then a linear transformation L : V → F is called a linear functional
on V . To facilitate computations, we will write 〈L, v〉 instead of L(v). The branch of mathematics known as
Functional Analysis is largely concerned with the study of functionals (both linear and nonlinear).
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In other words, if f is locally integrable then the linear functional Lf : D(Rn) → R
allows us to recover the values of f at all but perhaps finitely many points. From a physical
standpoint this amounts to complete knowledge about f , for if g : Rn → R is locally integrable
and if f = g at all but finitely many points, then f − g = 0 at all but finitely many points,
so that

´
Rn(f − g)φdVn = 0 for all φ ∈ D(Rn) and therefore

´
Rn fφdVn =

´
Rn gφdVn for all

test functions φ. That is, under every possible ‘test’ of aggregate behavior the functions f
and g give exactly the same result, and therefore are physically indistinguishable.

Remark 2.9. The phenomenon described at the end of the previous example is exactly why
we do not study individual functions in the theory of Lebesgue integration. Instead we study
equivalence classes of functions, where two functions are equivalent if they agree except for
on a set of measure zero.

Example 2.8 suggests that linear functionals on D(Rn) might be used to generalize func-
tions on Rn. The only additional detail we need in order to make this theory workable is an
appropriate notion of continuity for these linear functionals. Our story becomes rather tech-
nical here because the vector space D(Rn) is infinite dimensional, and therefore the notion
of continuity for a linear map L : D(Rn) → R is not an automatic consequence of linearity
(as in the finite dimensional case). We establish some notation before stating the relevant
topological facts.

Notation 2.10. A multi-index is a tuple α = (α1, . . . , αn) ∈ Zn≥0. If α is a multi-index,
then we define |α| = α1+· · ·+αn. If α, β ∈ Zn≥0, then we define α+β = (α1+β1, . . . , αn+βn).

Notation 2.11. Let α ∈ Zn≥0 be a multi-index. We define the partial differential operator
∂α to be

∂α =
∂|α|

∂xα1
1 · · · ∂xαnn

.

Remark 2.12. Recall that for k ∈ {2, 3, . . . , } and φ ∈ Ck(Rn), Clairaut’s Theorem implies
that all mixed partial derivatives of φ of order no more than k commute. For example, if
φ ∈ C2(Rn) then ∂2φ

∂xi∂xj
(x) = ∂2φ

∂xj∂xi
(x) for all i, j ∈ {1, . . . , n} and all x ∈ Rn. This property

is sometimes called symmetry of mixed partial derivatives (up to order k).
For an arbitrary mixed partial derivative of a smooth (C∞) function we therefore need

only track how many derivatives were taken in each variable (and not in what order these
derivatives were taken). Multi-indices are perfect for this task, since an order |α| = α1 +
· · ·+ αn mixed partial derivative of φ ∈ C∞(Rn) consisting of αj derivatives with respect to
xj (for j = 1, . . . , n), regardless of the order in which these derivatives were computed, can

be expressed as ∂αφ = ∂|α|φ
∂
α1
x1
···∂αnxn

.

The topology on D(Rn) is closely tied to a family of norms, each of which tracks of a
different level of smoothness.

Notation 2.13. Let φ ∈ D(Rn). Then for each N ∈ Z≥0 we define

‖φ‖N =
∑
|α|≤N

sup
x∈Rn

|∂αφ(x)|.

Note that for φ ∈ D(Rn) the Extreme Value Theorem and the compactness of supp(φ)
guarantee that ‖φ‖N <∞ for every N ∈ Z≥0.

Convergence with respect to one of the norms ‖•‖N is equivalent to uniform convergence
of partial derivatives up to order N , in the following sense.
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Proposition 2.14. Let (φj) be a sequence in D(Rn) and N ∈ Z≥0. Then ‖φj‖N → 0 as
j → ∞ if and only if for every multi-index α with |α| ≤ N , ∂αφj → 0 uniformly on Rn as
j →∞.

We are now ready to describe the topological structure of D(Rn). The construction of
this topology and the proof that it is the ‘natural’ one for our purposes are highly technical
and would take us far afield; for all of the gory (but aestecially satisfying) details, see [3].
Henceforth we assume that D(Rn) has this special topology, the relevant properties of which
are summarized in the following theorem.

Theorem 2.15. There exists a topology on D(Rn) with the following properties.

(a) For every sequence (φj) in D(Rn) and every function φ ∈ D(Rn), φj → φ in D(Rn) if
and only if the following two conditions hold:

(i) There exists a compact set K ⊂ Rn with supp(φj) ⊆ K for all j ∈ N, and

(ii) For each N ∈ Z≥0 we have ‖φj − φ‖N → 0 as j →∞.

(b) Let L : D(Rn)→ R be linear. Then the following are equivalent:

(i) L is continuous (i.e. L−1(U) is open in D(Rn) if U ⊆ R is open).

(ii) For all φj, φ ∈ D(Rn) (j ∈ N) with φj → φ in D(Rn), lim
j→∞
〈L, φj〉 = 〈L, φ〉.

(iii) For all φj ∈ D(Rn) (j ∈ N) with φj → 0 in D(Rn), lim
j→∞
〈L, φj〉 = 0.

(iv) For every compact set K ⊂ Rn there exists C > 0 and N ∈ Z≥0 such that for all
φ ∈ D(Rn) with supp(φ) ⊆ K, it follows that | 〈L, φ〉 | ≤ C‖φ‖N .

Example 2.16. Let (φj) be a sequence in D(Rn) with φj → 0 in D(Rn). Then for every
multi-index α, ∂αφj → 0 in D(Rn) as well.

To see why, note that if β is any multi-index, then ∂β(∂αφj) = ∂β+αφj → 0 uniformly
on Rn since φj → 0 in D(Rn). Note also that there exists a compact set K ⊂ Rn with
supp(φj) ⊆ K, and hence supp(∂αφj) ⊆ K for all j. This completes the proof.

Example 2.17. For a more involved example, fix φ ∈ D(Rn) and z ∈ Bn
1 (0) ⊂ Rn. Then

φ(x− z)→ φ(x) in D(Rn) as z → 0.
To see why, note first that since supp(φ) is compact there exists R > 0 with supp(φ) ⊆

Bn
R(0). But then since |z| ≤ 1 for all z ∈ Bn

1 (0) we have supp(φ(• − z)) ⊆ Bn
R+1(0) for all

z ∈ Bn
1 (0).

It remains to show that for each multi-index α, ∂αφ(•−z)→ ∂αφ(•) uniformly as z → 0.
But we merely note that for x ∈ Rn the Mean Value Theorem implies that there exists c
between x and x− z with

|∂αφ(x− z)− ∂αφ(x)| = |∇(∂αφ)(c) • (x− z − x)| ≤ |∇(∂αφ)(c)||z| ≤
√
n‖φ‖|α|+1|z| → 0

as z → 0, uniformly in x. This completes the proof.

Exercise 6. Let φ ∈ D(Rn) and fix i ∈ {1, . . . , n}. For h ∈ [−1, 1] with h 6= 0 define

φh,i(x) = φ(x+hei)−φ(x)
h

. Prove that φh,i → ∂φ
∂xi

in D(Rn) as h→ 0.
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For the next exercise, recall that if A,B ⊆ Rn, then A+B := {x+y : x ∈ A and y ∈ B}.

Exercise 7. For ψ ∈ C∞(Rn) and φ ∈ D(Rn) we define the convolution of ψ and φ,
ψ ∗ φ, by

ψ ∗ φ : Rn → R, (ψ ∗ φ)(x) =

ˆ
Rn
ψ(x− y)φ(y)dVn(y).

(a) Prove that (ψ ∗ φ)(x) = (φ ∗ ψ)(x).

(b) Prove that supp(ψ ∗ φ) ⊆ supp(ψ) + supp(φ).

(c) Prove that ψ ∗φ ∈ C∞(Rn) with ∂α(ψ ∗φ) = (∂αψ) ∗φ = ψ ∗ (∂αφ) for every multi-
index α, and therefore ψ∗φ ∈ C∞(Rn). As a consequence, show that ψ∗φ ∈ D(Rn)
in the special case where supp(ψ) is compact.

(d) For h > 0, consider the Riemann sum

Sh(x) =
∑
m∈Zn

ψ(x− hm)φ(hm)hn.

(i) Prove that for each h > 0 all but finitely many terms in the sum Sh are
identially zero (and therefore the sum is finite).

(ii) Now assume that ψ ∈ D(Rn). Prove that Sh ∈ D(Rn) for all h > 0 and that
Sh → ψ ∗ φ in D(Rn) as h→ 0+.
(Suggestion: For x ∈ Rn, first write

(ψ ∗ φ)(x) =
∑
z∈Zn

ˆ
hm+[0,h]n

ψ(x− y)φ(y)dVn(y),

and then, for each multi-index α, estimate |∂αSh(x)− ∂α(ψ ∗ φ)(x)|.)

Exercise 8. Prove that if φ ∈ D(Rn), then ηε,0 ∗ φ→ φ in D(Rn) as ε→ 0+.

3 Distributions (Generalized Functions)

In light of Theorem 2.15 we now give our definition of generalized functions on Rn.

Definition 3.1. A distribution (or generalized function) on Rn is a continuous linear
functional L : D(Rn)→ R. The space of all distributions on Rn is denoted by D ′(Rn).

Remark 3.2. The ‘prime’ notation D ′(Rn) is standard, and signifies that D ′(Rn) is the
continuous dual space of D(Rn).

Remark 3.3. D ′(Rn) is a real vector space, with sums and scalar multiplication of real-
valued functions defined in the usual way. To see this, note that it is trivial to show that
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linear combinations of linear functions are linear. For continuity, let L, S ∈ D ′(Rn) and
a ∈ R, and assume that (φj) is a sequence in D(Rn) with φj → 0 in D(Rn) as j →∞. But
then since L and S are continuous, Theorem 2.15 implies that 〈L, φj〉 → 0 and 〈S, φj〉 → 0
as j →∞, and therefore

〈aL, φj〉 = a 〈L, φj〉 → 0 and 〈L+ S, φj〉 = 〈L, φj〉+ 〈S, φj〉 → 0

as j →∞. By Theorem 2.15, aL and L+ S are also continuous.

Example 3.4. If f is locally integrable on Rn, then

Lf : D(Rn)→ R, 〈Lf , φ〉 =

ˆ
Rn
f(x)φ(x)dVn(x)

is a distribution on Rn.
Linearity is immediate from linearity of function multiplication and integration. For

continuity, let K ⊂ Rn be compact and let CK =
´
K
|f(x)|dVn(x). Then we have

| 〈Lf , φ〉 | ≤
ˆ
Rn
|f(x)||φ(x)|dVn(x) =

ˆ
K

|f(x)||φ(x)|dVn(x) ≤ ‖φ‖0
ˆ
K

|f(x)|dVn(x) = CK‖φ‖0

for all φ ∈ D(Rn) with supp(φ) ⊆ K. By part (b) of Theorem 2.15, Lf is continuous, and
therefore Lf ∈ D ′(Rn).

Definition 3.5. If L ∈ D ′(Rn) and if there exists a locally integrable function f : Rn → R
such that 〈L, φ〉 =

´
Rn f(x)φ(x)dVn(x) for all φ ∈ D(Rn), then L is called a regular

distribution. If L is not regular, then L is called singular.

Remark 3.6. When a distribution L is regular (say 〈L, φ〉 =
´
fφdVn for some locally

integrable f : Rn → R), then it is customary to write f in place of L (i.e. 〈f, φ〉 instead
of 〈L, φ〉). When we perform some operation on f which only makes sense to perform on
the distribution L, then we say that we are performing the operation on f in the sense of
distributions.

Exercise 9. For L ∈ D ′(Rn) and g ∈ C∞(Rn), define

gL : D(Rn)→ R, 〈gL, φ〉 := 〈L, gφ〉 .

Prove that gL ∈ D ′(Rn).

Exercise 10. Find all L ∈ D ′(R) that satisfy xL = 0 in the sense of distributions.
(Suggestion: First produce a fixed ψ ∈ D(R) with ψ(x) = 1 for x ∈ [−1, 1]. For
φ ∈ D(R), write φ = ψφ + (1 − ψ)φ. Show that 〈L, (1− ψ)φ〉 = 0, and then use an
appropriate Taylor expansion (with remainder) on φ to compute 〈L, ψφ〉.)
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Exercise 11. For g ∈ C0(Rn) and x0 ∈ Rn define τx0g(x) := g(x− x0).

(a) Prove that for f ∈ C0(Rn), φ ∈ D(Rn), and x0 ∈ Rn we have

ˆ
Rn

(τx0f)(x)φ(x)dVn(x) =

ˆ
Rn
f(x)(τ−x0φ)(x)dVn(x).

(b) To generalize (a), let L ∈ D ′(Rn) and x0 ∈ Rn. Prove that the map

τx0L : D(Rn)→ R, 〈τx0L, φ〉 := 〈L, τ−x0φ〉

is a distribution on Rn.

The next natural question, of course, is whether or not there exist singular distributions.
We answer this question positively by introducing a distribution with widespread applications
throughout physics, partial differential equations, and mathematical analysis.

Example 3.7. Define
δ : D(Rn)→ R, 〈δ, φ〉 = φ(0).

Linearity of δ is immediate from the definition of function addition and scalar multiplication,
and continuity follows easily since 〈δ, φj〉 = φj(0)→ 0 for every sequence (φj) in D(Rn) with
φj → 0 in D(Rn). For historical reasons, we call δ ∈ D ′(Rn) the Dirac delta function.
We say ‘historical’ because there is no locally integrable function f : Rn → R with 〈δ, φ〉 =´
Rn f(x)φ(x)dVn(x) for all φ ∈ D(Rn) (and therefore the word ‘function’ is inappropriate

here).
To see why, suppose to the contrary that such a function f exists. Define3

φj(x) =
1

η1/j,0(0)
η1/j,0(x) ∈ D(Rn), j ∈ N.

Then
supp(φj) = Boxn1/j(0) ⊆ Boxn1 (0) and 0 < φj(x) ≤ φj(0) = 1

for every j ∈ N and x ∈ Rn. Since supp(φj) = Boxn1/j(0) we have

φj(x)→

{
1 if x = 0,

0 if x 6= 0,
and therefore (fφj)(x)→

{
f(0) if x = 0,

0 if x 6= 0.

Since

ˆ
Boxn1 (0)

|f |dVn < ∞ and since |f(x)φj(x)| ≤ |f(x)| for all x ∈ Rn, Lebesgue’s

Dominated Convergence Theorem implies that
ˆ
Rn
f(x)φj(x)dVn(x) =

ˆ
Boxn1 (0)

f(x)φj(x)dVn(x)→ 0 as j →∞.

But
´
Rn f(x)φj(x)dVn(x) = 〈δ, φj〉 = φj(0) = 1 for all j, a contradiction.

3Here we need the fact that tn(0) > 0.
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Exercise 12. For each ε > 0, define Lε : D(R)→ R by

〈Lε, φ〉 =

ˆ
|x|≥ε

φ(x)

x
dx =

ˆ −ε
−∞

φ(x)

x
dx+

ˆ ∞
ε

φ(x)

x
dx.

(a) Prove that for each R > 0 and for every φ ∈ D(Rn) with supp(φ) ⊆ [−R,R],

〈Lε, φ〉 =

ˆ
ε≤|x|≤R

φ(x)− φ(0)

x
dx.

(b) Produce C = C(R), independent of ε, so that for every φ ∈ D(R) with supp(φ) ⊆
[−R,R],

| 〈Lε, φ〉 | ≤ C‖φ‖1.

(c) For each φ ∈ D(R), prove that 〈L, φ〉 := lim
ε→0+

〈Lε, φ〉 exists. Prove that L : D(R)→
R is linear and satisfies | 〈L, φ〉 | ≤ C‖φ‖1 for all φ ∈ D(R) with supp(φ) ⊆ [−R,R],
where C = C(R) is the constant from (b), and conclude that L ∈ D ′(R).

L is the closest thing we have to a regular distribution corresponding to the (not locally
integrable) function 1

x
. The distribution L is called the principal value of 1

x
, and is

denoted L = p.v.
(
1
x

)
.

4 Limits of Distributions

Now that we have defined distributions, the next step is to analyze their properties. Our
goal here is to extend many of the standard calculus operations on functions into our general
setting. We already know that D ′(Rn) is a real vector space, and we know how to multiply
a distribution L by a smooth function g (i.e. 〈gL, φ〉 = 〈L, gφ〉). We next consider the
surprisingly easy operation of computing limits of sequences of distributions.

Theorem 4.1. Let (Lj) be a sequence in D ′(Rn). Assume for each φ ∈ D(Rn) the sequence
(〈Lj, φ〉) converges (in R), and define

L : D(Rn)→ R, 〈L, φ〉 = lim
j→∞
〈L, φj〉 .

Then L ∈ D ′(Rn).

Proof. Linearity of L follows immediately from the linearity of the Lj. Continuity of L is not
so easy and relies on a fundamental result from functional analysis: the Uniform Boundedness
Principle (also known as the Banach-Steinhaus Theorem); see [2] or [3] for the details.

Therefore, sequences of distributions which converge ‘pointwise’ on D(Rn) (where the
‘points’ here are test functions) converge to distributional limits!

Example 4.2. In the previous exercise we showed by hand that p.v.
(
1
x

)
is a distribution on

R. In light of this last theorem, we could also have noted that since p.v.
(
1
x

)
= lim

ε→0+
Lε in the

sense of distributions, it is also a distribution.

11



Exercise 13. For k ∈ N, let fk : R → R be fk(x) = cos(kx). Prove that lim
k→∞

fk = 0 in

the sense of distributions.

Exercise 14. Show that lim
ε→0+

ηε,0 = δ in the sense of distributions.

5 Distributional Derivatives

We now come to differentiation. To motivate the definition of distributional derivatives, we
consider the following (regular) example.

Example 5.1. Let f ∈ C1(Rn) and fix i ∈ {1, . . . , n}. Let φ ∈ D(Rn). Since f ∈ C1(Rn)
we have ∂f

∂xi
∈ C0(Rn) and therefore ∂f

∂xi
φ ∈ C0(Rn). Then〈

∂f

∂xi
, φ

〉
=

ˆ
Rn

∂f

∂xi
(x)φ(x)dVn.

Moreover, supp( ∂f
∂xi
φ) ⊆ supp(φ) ⊆ BoxnR(0) for some large R > 0. But then we apply

Fubini’s Theorem and integrate by parts to see thatˆ
Rn

∂f

∂xi
(x)φ(x)dVn(x)

=

ˆ
BoxR(0)

( ∂f
∂xi

φ
)

(x)dVn(x)

=

ˆ
[−R,R]n−1

[ˆ R

−R

( ∂f
∂xi

φ
)

(x1, . . . , xn)dxi

]
dVn−1(x1, . . . , xi−1, xi+1, . . . , xn)

=

ˆ
[−R,R]n−1

[
(fφ)(x1, . . . , R, . . . , xn)− (fφ)(x1, . . . ,−R, . . . , xn)

−
ˆ R

−R

(
f
∂φ

∂xi

)
(x1, . . . , xn)dxi

]
dVn−1(x1, . . . , xi−1, xi+1, . . . , xn)

=

ˆ
[−R,R]n−1

[
0− 0−

ˆ R

−R

(
f
∂φ

∂xi

)
(x1, . . . , xn)dxi

]
dVn−1(x1, . . . , xi−1, xi+1, . . . , xn)

= −
ˆ
BoxR(0)

f(x)
∂φ

∂xi
(x)dVn(x)

= −
ˆ
Rn
f(x)

∂φ

∂xi
(x)dVn(x),

where in the first, fourth, and final steps we used supp(fφ) ⊆ BoxnR(0). Therefore
〈
∂f
∂xi
, φ
〉

=

−
〈
f, ∂φ

∂xi

〉
.
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For L ∈ D ′(Rn), the ‘integration by parts’ formula〈
∂L

∂xi
, φ

〉
= −

〈
L,

∂φ

∂xi

〉
, φ ∈ D(Rn)

could therefore be a reasonable definition for ∂L
∂xi

. We should first check, though, that this
definition is always meaningful.

Proposition 5.2. Let L ∈ D ′(Rn) and i ∈ {1, . . . , n}. Then

S : D(Rn)→ R, 〈S, φ〉 := −
〈
L,

∂φ

∂xi

〉
is a distribution on Rn.

Proof. Linearity of S follows by noting that for every φ, ψ ∈ D(Rn) and all a ∈ R we have

〈S, aφ+ ψ〉 = −
〈
L,
∂(aφ+ ψ)

∂xi

〉
= −

〈
L, a

∂φ

∂xi
+
∂ψ

∂xi

〉
= −a

〈
L,

∂φ

∂xi

〉
−
〈
L,

∂ψ

∂xi

〉
= a 〈S, φ〉+ 〈S, ψ〉 .

For continuity, note that if (φj) is a sequence of test functions with φj → 0 in D(Rn), then

by Example 2.16 we have
∂φj
∂xi
→ 0 in D(Rn). Since L ∈ D ′(Rn), Theorem 2.15 implies〈

L,
∂φj
∂xi

〉
→ 0 (in R), and therefore 〈S, φj〉 = −

〈
L,

∂φj
∂xi

〉
→ 0 (in R). Another application of

Theorem 2.15 concludes the result.

We therefore give the following definition for distributional derivatives.

Definition 5.3. Let L ∈ D ′(Rn). For i ∈ {1, . . . , n} we define the distributional deriva-
tive of L with respect to xi to be

∂L

∂xi
: D(Rn)→ R,

〈
∂L

∂xi
, φ

〉
:= −

〈
L,

∂φ

∂xi

〉
.

Proposition 5.2 guarantees that ∂L
∂xi
∈ D ′(Rn).

Notation 5.4. Partial derivatives only make sense when n ≥ 2. As in calculus, we use the
standard notation dL

dx
or L′ for the distributional derivative of L ∈ D ′(R).

Exercise 15. Here’s another motivation for our definition of distributional derivatives,
this time via the definition of partial derivatives from multivariable calculus. Recall the
operator τx from Exercise 11. Fix i ∈ {1, . . . , n}, and for L ∈ D ′(Rn) and h ∈ R\{0}
define

∆hL =
1

h
(τ−heiL− L) ∈ D ′(Rn).

Prove that lim
h→0

∆hL = ∂L
∂xi

in the sense of distributions.
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6 Properties of Distributional Derivatives

The theory of differentiation for distributions is much cleaner than that for ordinary functions.
The next few remarks point out some of the highlights in this regard.

Remark 6.1. By Proposition 5.2 and the definition of distributional derivatives, a short
induction argument implies that if L ∈ D ′(Rn), then L has distributional derivatives of all
orders. This is quite different from the case of ordinary functions, where the number of
derivatives one can take is usually limited. (This is, after all, the reason why we even define
the spaces C0(Rn), C1(Rn), C2(Rn), etc.)

Remark 6.2. Not only do distributions have derivatives of all orders, but we also have
symmetry of mixed partial derivatives! To see this, note that if L ∈ D ′(Rn) and if i, j ∈
{1, . . . , n}, then for all φ ∈ D(Rn) we have〈

∂2L

∂xi∂xj
, φ

〉
= −

〈
∂L

∂xj
,
∂φ

∂xi

〉
=

〈
L,

∂2φ

∂xj∂xi

〉
=

〈
L,

∂2φ

∂xi∂xj

〉
= −

〈
∂L

∂xi
,
∂φ

∂xj

〉
=

〈
∂2L

∂xj∂xi
, φ

〉
.

Thus, as distributions, ∂2L
∂xi∂xj

= ∂2L
∂xj∂xi

. An induction argument establishes the analogous

result for iterated derivatives of arbitrary order.

Example 6.3. In your real analysis or multivariable calculus course you undoubtedly en-
countered a function similar to

f : R2 → R, f(x, y) =

{
0 if (x, y) = (0, 0),

xy
(
x2−y2
x2+y2

)
if (x, y) 6= (0, 0).

It is a standard exercise to show that f ∈ C1(R2), that f ∈ C2(R2\{(0, 0)}), and that
∂2f
∂x∂y

(0, 0) and ∂2f
∂y∂x

(0, 0) exist but do not have the same value.

On the other hand, ∂2f
∂x∂y

= ∂2f
∂y∂x

in the sense of distributions. This is entirely consistent

with the pointwise discrepancy above since ∂2f
∂x∂y

(x, y) = ∂2f
∂y∂x

(x, y) agree for all (x, y) 6= (0, 0),
and two locally integrable functions which agree at all but a finite number of points are
indistinguishable as distributions.

The preceeding remarks and an induction argument yield the following corollary.

Corollary 6.4. Let L ∈ D ′(Rn). Then L has distributional derivatives of all orders and we
have symmetry of mixed partial derivatives of all orders. Moreover, for every multi-index α
we have

〈∂αL, φ〉 = (−1)|α| 〈L, ∂αφ〉 for all φ ∈ D(Rn).

Example 6.5. If f ∈ Ck(Rn) for some k ∈ N, then the integration by parts argument from
Example 5.1 shows that for all multi-indices α with |α| ≤ k, the distibutional derivative ∂αf
is exactly the regular distribution corresponding to the function ∂αf .

Example 6.6. For every multi-index α we have 〈∂αδ, φ〉 = (−1)|α|(∂αφ)(0).
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Exercise 16. (Product Rule) Prove that if g ∈ C∞(Rn), L ∈ D ′(Rn), and i ∈ {1, . . . , n},
then ∂

∂xi
(gL) = ∂g

∂xi
L+ g ∂L

∂xi
.

Exercise 17. The Heaviside function is defined as

H : R→ R, H(x) =

{
0 if x ≤ 0,

1 if x > 0.

Prove that H ′ = δ in the sense of distributions on R.

Exercise 18. Prove that d
dx

ln |x| = p.v. 1
x

in the sense of distributions on R.

Exercise 19. Prove the following result using the outline provided.

Theorem 6.7 (Antiderivatives). Let L ∈ D ′(R). There exists L(−1) ∈ D ′(R) such that
dL(−1)

dx
= L. Moreover, if S ∈ D ′(R) satisfies dS

dx
= L, then there exists a constant C ∈ R

with S = L(−1) +C (as distributions). In particular, if L ∈ D ′(R) with dL
dx

= 0, then L is
given by integration against a constant function.

Fix ω ∈ D(R) with
´
R ω(x)dx = 1. For φ ∈ D(R) define

Φ(x) =

ˆ x

−∞

[
φ(t)− ω(t)

ˆ
R
φ(s)ds

]
dt.

(a) Prove that Φ ∈ D(R) whenever φ ∈ D(R).

(b) Define
L(−1) : D(R)→ R,

〈
L(−1), φ

〉
:= −〈L,Φ〉 .

Prove that L(−1) ∈ D ′(R) and dL(−1)

dx
= L.

(c) Finish the proof.

The previous exercise has many applications, one of which proves that the distributional
solutions of linear first-order ODEs with smooth coefficients must be regular. This result can
be extended to ODEs of arbitrary order.
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Exercise 20. Suppose that L ∈ D ′(R) and that g ∈ C∞(R). If L′ + gL = f ∈ C0(R) in
the sense of distributions, then there exists u ∈ C1(R) such that L = Lu and u′+gu = f .

The next example is fundamental (one might say) to the theory of harmonic functions.

Example 6.8. Let N : R2 → R be defined by N(x, y) = 1
4π

ln(x2 + y2) when (x, y) 6= 0,

and define N(0, 0) = 0. Then ∆N = δ in the sense of distributions, where ∆ = ∂2

∂x2
+ ∂2

∂y2
is

Laplace’s operator.

You proved that N is locally integrable on R2 in Exercise 3. For φ ∈ D(R2), fix R > 0
so large that supp(φ) ⊆ Bn

R(0). We first compute that

〈∆N, φ〉 = 〈N,∆φ〉 =

ˆ
R2

N(x, y)∆φ(x, y)dV2 = lim
ε→0+

ˆ
R≥|(x,y)|≥ε

N(x, y)∆φ(x, y)dV2.

But note that on R2\{(0, 0)} we have

N∆φ = N∇ • (∇φ) = ∇ • (N∇φ)−∇N • ∇φ = ∇ • (N∇φ)−∇ • (φ∇N) + φ∆N.

A routine computation shows that for (x, y) 6= (0, 0) we have ∆N(x, y) = 0, and therefore

〈∆N, φ〉 = lim
ε→0+

[ ˆ
R≥|(x,y)|≥ε

∇ • (N∇φ)(x, y)dV2 −
ˆ
R≥|(x,y)|≥ε

∇ • (φ∇N)(x, y)dV2

]
.

We start with the first term. Since N and φ are each smooth away from (0, 0), for each
ε ∈ (0,min(1, R)) we apply Green’s Theorem to see that

ˆ
R≥|(x,y)|≥ε

∇• (N∇φ)(x, y)dV2 =

ˆ
|(x,y)|=R

(N∇φ)(x, y)•ndσR+

ˆ
|(x,y)|=ε

(N∇φ)(x, y)•ndσε,

where dσt is the standard arclength measure on the circle |(x, y)| = t, and n = n(x, y)
denotes the outward-pointing (relative to the annulus) unit vector normal to the circle at the
point (x, y). Since ∇φ(x, y) = 0 for |(x, y)| ≥ R,

ˆ
|(x,y)|=R

(N∇φ)(x, y) • ndσR = 0.

On the other hand, we estimate the second integral as∣∣∣ˆ
|(x,y)|=ε

(N∇φ) • ndσε
∣∣∣ ≤ ˆ

|(x,y)|=ε
|(N∇φ) • n|dσε

≤
ˆ
|(x,y)|=ε

|N(x, y)||∇φ(x, y)|dσε

≤ −‖φ‖1 ln(ε)ε

→ 0 as ε→ 0 + .
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This proves that

〈∆N, φ〉 = lim
ε→0+

−
ˆ
R≥|(x,y)|≥ε

∇ • (φ∇N)(x, y)dV2.

We again apply Green’s Theorem and use the fact that supp(φ) ⊆ Bn
R(0) to see that

−
ˆ
R≥|(x,y)|≥ε

∇ • (φ∇N)(x, y)dV2 = −
ˆ
|(x,y)|=ε

φ(x, y)∇N(x, y) • n(x, y)dσε.

Since n(x, y) = − 1
|(x,y)| [

x
y ] and since ∇N(x, y) = 1

2π|(x,y)|2 [ xy ] , this last integral simplifies to

ˆ
|(x,y)|=ε

φ(x, y)
1

2π|(x, y)|
dσε =

1

2πε

ˆ
|(x,y)|=ε

φ(x, y)dσε.

But since 1
2πε

´
|(x,y)|=ε 1dσε = 1, we have∣∣∣ 1

2πε

ˆ
|(x,y)|=ε

φ(x, y)dσε − φ(0, 0)
∣∣∣ =

∣∣∣ 1

2πε

ˆ
|(x,y)|=ε

(φ(x, y)− φ(0, 0))dσε

∣∣∣
≤ 1

2πε

ˆ
|(x,y)|=ε

|φ(x, y)− φ(0, 0)|dσε

≤
(

sup
|(x,y)|=ε

|φ(x, y)− φ(0, 0)|
) 1

2πε

ˆ
|(x,y)|=ε

1dσε

= sup
|(x,y)|=ε

|φ(x, y)− φ(0, 0)| → 0

as ε→ 0+ by continuity of φ. We conclude that

〈∆N, φ〉 = lim
ε→0+

−
ˆ
R≥|(x,y)|≥ε

∇ • (φ∇N)(x, y)dV2 = φ(0, 0) = 〈δ, φ〉 .

Since φ ∈ D(R2) was arbitrary, ∆N = δ in the sense of distributions.

Since ∆N = δ, N is called a fundamental solution of the linear partial differential
operator ∆. Later we’ll see how to use a fundamental solution of ∆ to solve the problem
∆u = f for f ∈ D(R2).

Exercise 21. Produce a fundamental solution for Laplace’s operator ∆ = d2

dx2
on R.

That is, produce a locally integrable function N : R→ R such that d2N
dx2

= N ′′ = δ.

7 Regularization

We have seen examples of regular distributions and examples of singular distributions. One
might wonder how ‘wild’ singular distributions really are. For example, the singular distri-
bution δ is not too pathological since we can write lim

ε→0+
ηε,0 = δ in the sense of distributions,
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and therefore δ can be approximated (in the sense of distributions) by smooth functions.
This is—perhaps surprisingly—a standard feature of distributions: every distribution is the
(distributional) limit of a sequence of smooth functions. This is proved by regularizing or
mollifying the distribution—both fancy words that mean ‘smoothing out’. In this section
we show how convolution allows us to do this.

Recall that the convolution of ψ ∈ C∞(Rn) and φ ∈ D(Rn) is given by

ψ ∗ φ : Rn → Rn, (ψ ∗ φ)(x) =

ˆ
Rn
ψ(x− y)φ(y)dVn(y) =

ˆ
Rn
ψ(y)φ(x− y)dVn(y). (1)

The elementary properties of the convolution are found in Exercises 7 and 8.
We desire a notion of convolution between a distribution and a test function. To this

end, for ψ ∈ D(Rn) we define ψ̃(y) = ψ(−y). One can check that ψ̃ ∈ D(Rn) whenever
ψ ∈ D(Rn). Recall (from Exercise 15) that for ψ ∈ D(Rn) and x0 ∈ Rn we define the
translation τx0ψ(y) = ψ(y − x0). To generalize (1) to distributions, we make the following
definition.

Definition 7.1. Let L ∈ D ′(Rn) and ψ ∈ D(Rn). Define

L ∗ ψ : Rn → R, (L ∗ ψ)(x) =
〈
L, τxψ̃

〉
.

Example 7.2. As a quick example, we show that δ ∗ ψ = ψ for all ψ ∈ D(Rn). To see this,
we merely note that for x ∈ Rn,

(δ ∗ ψ)(x) =
〈
δ, τxψ̃

〉
= τxψ̃(0) = ψ̃(−x) = ψ(x).

Analogously to Exercise 7 we have the following result.

Proposition 7.3. Let L ∈ D ′(Rn) and ψ ∈ D(Rn). Then L ∗ ψ ∈ C∞(Rn) and for every
multi-index α we have

∂α(L ∗ ψ) = (∂αL) ∗ ψ = L ∗ (∂αψ).

Proof. By induction, it suffices to show that L ∗ ψ is continuous and that ∂
∂xi

(L ∗ ψ) exists
at each point and is given by the desired formulas.

For continuity, fix x ∈ Rn and choose a compact subset K containing

supp(τxψ̃) +Bn
1 (0) = x− supp(ψ) +Bn

1 (0),

and choose N ∈ N and C > 0 such that | 〈L, φ〉 | ≤ C‖φ‖N for all φ ∈ D(Rn) with supp(φ) ⊆
K. Note that for all z ∈ Bn

1 (0), τx+zψ̃(•) ∈ D(Rn) and supp(τx+zψ̃(•)) ⊆ K. Then the
Mean Value Theorem implies that

|(L ∗ψ)(x+z)− (L ∗ψ)(x)| = |
〈
L, τx+zψ̃ − τxψ̃

〉
| ≤ C‖τx+zψ̃− τxψ̃‖N ≤ C

√
n‖ψ‖N+1|z|,

and therefore lim
z→0

(L ∗ ψ)(x+ z) = (L ∗ ψ)(x), proving continuity.

For differentiability we start by noting that for i ∈ {1, . . . , n}, x ∈ Rn, and h 6= 0,

(L ∗ ψ)(x+ hei)− (L ∗ ψ)(x)

h
=

〈
L,
ψ̃(• − (x+ hei))− ψ̃(• − x)

h

〉

=

〈
L,
ψ̃(• − hei − x)− ψ̃(• − x)

h

〉
.
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But by Exercise 6 we have

ψ̃(• − hei − x)− ψ̃(• − x)

h
→ −∂(τxψ̃)

∂yi
(•) = −τx

∂ψ̃

∂yi
(•) = τx

∂̃ψ

∂yi
(•) in D(Rn) as h→ 0.

It follows that, as h→ 0,

(L ∗ ψ)(x+ hei)− (L ∗ ψ)(x)

h
→

〈
L, τx

∂̃ψ

∂yi

〉
= −

〈
L,
∂(τxψ̃)

∂yi

〉
=

〈
∂L

∂yi
, τxψ̃

〉
.

This shows that L ∗ ψ is differentiable with respect to xi at each x ∈ Rn, and

∂

∂xi
(L ∗ ψ)(x) =

(∂L
∂yi
∗ ψ
)

(x) =
(
L ∗ ∂ψ

∂yi

)
(x).

We need one additional lemma.

Lemma 7.4. Let L ∈ D ′(Rn) and fix ψ, φ ∈ D(Rn). Then

(L ∗ ψ) ∗ φ = L ∗ (ψ ∗ φ).

Remark 7.5. We’ve already shown that, under the hypotheses of the lemma, ψ ∗φ ∈ D(Rn)
and (L ∗ ψ) ∈ C∞(Rn), and therefore all of the convolutions in the conclusion are defined.

Proof. Fix x ∈ Rn. By Exercise 7(d), the sequence of Riemann sums∑
m∈Zn

ψ(• − hm)φ(hm)hn → (ψ ∗ φ)(•) in D(Rn) as h→ 0.

It follows that∑
m∈Zn

ψ(x− • − hm)φ(hm)hn → (ψ ∗ φ)(x− •) in D(Rn) as h→ 0.

But then, using the fact that for each h > 0 the sum
∑

m∈Zn ψ(x−•−hm)φ(hm)hn consists
of only finitely many nonzero terms,

(L ∗ (ψ ∗ φ))(x) =
〈
L, τx(̃ψ ∗ φ)

〉
= 〈L, (ψ ∗ φ)(x− •)〉

= lim
h→0

〈
L,
∑
m∈Zn

ψ(x− • − hm)φ(hm)hn

〉
= lim

h→0

∑
m∈Zn

〈L, ψ(x− • − hm)φ(hm)hn〉

= lim
h→0

∑
m∈Zn

〈L, ψ(x− • − hm)〉φ(hm)hn

= lim
h→0

∑
m∈Zn

〈
L, τx−hmψ̃(•)

〉
φ(hm)hn

= lim
h→0

∑
m∈Zn

(L ∗ ψ)(x− hm)φ(hm)hn

=

ˆ
Rn

(L ∗ ψ)(x− y)φ(y)dVn(y)

= ((L ∗ ψ) ∗ φ)(x).
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Lemma 7.4 and several previous results can now be used to quickly prove that every
L ∈ D ′(Rn) is the distributional limit of a sequence of smooth functions (in the sense of
distributions).

Corollary 7.6. Let L ∈ D ′(Rn). Then there exists a sequence (fj) in C∞(Rn) with fj → L
in the sense of distributions.

Proof. For each j ∈ N, let fj = L ∗ η1/j,0. Since η1/j,0 ∈ D(Rn), fj ∈ C∞(Rn). For fixed
φ ∈ D(Rn), we have η1/j,0 ∗ φ→ φ in D(Rn) as j →∞. It follows that

〈fj, φ〉 =
〈
L ∗ η1/j,0, φ

〉
= ((L ∗ η1/j,0) ∗ φ̃)(0) = (L ∗ (η1/j,0 ∗ φ̃))(0) =

〈
L, ˜η1/j,0 ∗ φ̃

〉
.

But
˜η1/j,0 ∗ φ̃ = η̃1/j,0 ∗ ˜̃φ = η̃1/j,0 ∗ φ = η1/j,0 ∗ φ,

where the last equality follows from the fact that η1/j,0 is even. We therefore apply Exercise
8 to see that η1/j,0 ∗ φ→ φ in D(Rn) as j →∞, and therefore we have

lim
j→∞
〈fj, φ〉 = lim

j→∞

〈
L, η1/j,0 ∗ φ

〉
= 〈L, φ〉 ,

which completes the proof of the corollary.

Exercise 22. Regularization gives us yet another way to motivate distributional deriva-
tives. Let L ∈ D ′(Rn), and fix i ∈ {1, . . . , n}. Choose functions fj ∈ C∞(Rn) with

fj → L in the sense of distributions. Prove that
∂fj
∂xi
→ ∂L

∂xi
in the sense of distributions

as well.

Our final exercise shows how to use distributions (in particular, fundamental solutions)
in order to solve PDE.

Exercise 23. Let f ∈ D(R2). Prove that there exists u ∈ C∞(R2) satisfying ∆u = f .
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