PN R W=

—_— == = O
WO

14.
15.

THE GEOMETRY OF MAXIMAL DEVELOPMENT FOR THE EULER EQUATIONS

STEVE SHKOLLER AND VLAD VICOL

ABSTRACT. We establish the maximal hyperbolic development of Cauchy data for the multi-dimensional compressible
Euler equations. For an open set of compressive and generic H” initial data, we construct unique 7 solutions to the Euler
equations in the maximal spacetime region such that at any point in this spacetime, the solution can be smoothly and uniquely
computed by tracing both the fast and slow acoustic characteristic surfaces backward-in-time, until reaching the Cauchy data
prescribed along the initial time-slice. The future temporal boundary of this spacetime region is a singular hypersurface,
consisting of the union of three sets: first, a co-dimension-2 surface of “first singularities” called the pre-shock; second, a
downstream hypersurface emanating from the pre-shock, on which the Euler solution experiences a continuum of gradient
catastrophes; third, an upstream hypersurface consisting of a Cauchy horizon emanating from the pre-shock, which the Euler
solution cannot reach. We develop a new geometric framework for the description of the acoustic characteristic surfaces
which is based on the Arbitrary Lagrangian Eulerian (ALE) framework, and combine this with a new type of differentiated
Riemann-type variables which are linear combinations of gradients of velocity and sound speed and the curvature of the fast
acoustic characteristic surfaces. With these new variables, we establish uniform H7 Sobolev bounds for solutions to the Euler
equations without derivative loss and with optimal regularity. This is the first result on the maximal hyperbolic development
of compressive Cauchy data in all regions of spacetime. October 12, 2023.
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We establish the maximal hyperbolic development of Cauchy data, during the shock formation process, for solutions
of the Euler equations

O(pu) + div(pu @ u) + Vp =0,
Op + div(pu) =0,
O F + div(u(E 4+ p)) =0,

1

(1.1a)
(1.1b)
(1.1c)
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where p = (v — 1) (E — $p|ul?) is the scalar pressure function, y > 1 is the adiabatic exponent, u : T% x R — R?
denotes the d-component velocity vector field, p : T¢ x R — R, denotes the strictly positive density function, and
E : T? x R — R is the total energy. In particular, we develop a new geometric and analytic framework that allows
us to obtain uniform Sobolev estimates for the Euler solution, evolving past the time of the first gradient singularity,
and in fact uniformly evolving through a spacetime hypersurface of gradient catastrophes. In turn, we are able to give
a complete description of the largest possible spacetime region on which (an open set of) compressive Cauchy data
can be smoothly and uniquely evolved. This resolves the first step in a two-tier program to establish the existence of
unique shock wave solutions for the Euler equations in multiple space dimensions.

An abbreviated form of our main result can be found in Theorem 1.2 below, while the detailed statements can be
found in Section 4.3, Theorems 4.6, 4.7, and 4.8.

1.1. Shock formation and shock development. The system (1.1) is the quintessential system of nonlinear hyperbolic
conservation laws. Such systems exhibit shock waves; these are spacetime hypersurfaces of discontinuity which
emerge in finite time from smooth initial data, and dynamically evolve according to the Rankine-Hugoniot (RH) jump
conditions (see, for example, [22]). In addition to the physical variable unknowns in (1.1) — velocity, density, and
energy — the location of the shock surface is also an unknown. A weak solution to the Euler equations requires that the
physical variables satisfy the Euler equations pointwise on either side of the shock surface, and that the shock surface
propagates with the correct normal speed. Moreover, certain physical “entropy” conditions must be satisfied to ensure
that the solution is physically meaningful.

While the theory of shock waves and weak solutions to the compressible Euler equations (and more general systems
of conservation laws) is fairly complete in one space dimension (see [48], [30, 31, 32], [25], [26], [34], [24], [41],
[33], [10], [55], [3] as well as the fairly complete bibliography in [22]), the problem of obtaining and propagating
unique shock solutions in more than one space dimension without symmetry assumptions remains open. Detailed
shock formation under azimuthal symmetry with the functional description of the solution at the first shock singularity
has been extensively studied in [5], [46] and [45].

The methods of one-dimensional conservation laws have not proven to be easily extendable to multiple space
dimensions (see, for example [47]). Moreover, the convex-integration based results originating in [12] and refined
in [11], have shown that entropy inequalities cannot be used as a uniqueness selection criterion. As a result, there is
yet no general existence theorem, describing the evolution of smooth data towards the creation and unique propagation
of discontinuous shock surfaces for the Euler equations in multiple space dimensions.

Christodoulou [14, 15] introduced a novel two-stage program for the construction of unique shock wave solutions
to the Euler equations. Starting from smooth initial data, the first step is called shock formation, in which smooth
compressive initial data is evolved up to a cusp-like Eulerian spacetime co-dimension-2 hypersurface of “first singu-
laries” — these first singularities are where the gradient of velocity, density, and energy first become infinite. We term
this co-dimension-2 hypersurface of “first singularies” the pre-shock set, because along this set, the solution remains
continuous but forms a C'3 cusp. The term pre-shock is used, because on this set, the gradient of the solution has
become infinite, but the actual shock discontinuity is yet to develop. The second step of the program is called shock
development. Here, one uses the analytical description of the C' 3 solution along the pre-shock as Cauchy data, from
which the shock surface of discontinuity instantaneously develops. To date, this program remains unresolved in the
absence of symmetry assumptions; for the Euler equations, see Christodoulou [15] for the so-called restricted shock
development problem, Yin [55] and Christodoulou & Lisibach [16] for shock development in spherical symmetry,
and [5] for shock development together with the emergence of the weak characteristic discontinuities conjectured by
Landau & Lifshitz [29]. It is important to note that Majda’s shock stability result [40, 39] is neither a shock formation
result nor a shock development result, but rather a short-time existence theorem on the propagation of shock front
initial data by the shock speed imposed by the Rankine-Hugoniot jump conditions. Specifically, Majda assumes the
existence of a surface of discontinuity in the data, while the objective of shock development is to dynamically create
this surface of discontinuity from the C' 3 cusp-solution at the pre-shock.

To summarize, the first step of this two-tiered program necessitates the analysis of the maximal development of
smooth compressive Cauchy data. The second step of the program uses the Euler solution along the pre-shock as
Cauchy data, together with the existence of the unique Euler solution downstream of the pre-shock, to produce a
unique shock-wave solution to the Euler equations as the discontinuous shock front dynamically and instantaneously
emerges from the pre-shock.

The main objective of this paper is the resolution of the first step of this program, giving the complete maximal
hyperbolic development for solutions of the Euler equations throughout the entire shock formation process.



THE GEOMETRY OF MAXIMAL DEVELOPMENT FOR THE EULER EQUATIONS 3

1.2. The evolution of the Euler solution past the time of first blowup. With the exception of the recent result of
Abbrescia & Speck [1] which we shall describe below, the analysis of the multi-dimensional shock formation process
for the Euler equations considered solutions only up to the time of the very first singularity, the earliest time ¢, at
which the solution gradient becomes infinite. Prior results on shock formation have analyzed the solution only up to
this time ¢, (see [50], [14], [17], [35], [36], [6, 7, 8]). Such an analysis is insufficient to proceed with the problem
of shock development. It is essential to describe the full shock formation process, past the time of first singularity,
and to capture the entire set of “first singularities” which successively emerges. Indeed, it is the description of the
solution about this full spacetime set of first singularities (see the black curve on both the left and right images in
Figure 1) that is used as Cauchy data for the development of discontinuous shock waves. The objective is therefore
to create a novel geometric and analytical framework that can provide uniform energy estimates for solutions that
are experiencing successive gradient catastrophes along a hypersurface of spacetime. Thus, we are not simply trying
to extend the solution past a single first singularity, but rather we are evolving the solution through a continuum of
gradient blow-ups in appropriately chosen coordinates that allow for uniform bounds to be maintained.

We note that while our focus in this work is on the shock-type gradient singularity, solutions to the Euler equations
can form finite-time implosions from smooth initial conditions. Such unstable imploding solutions, which form a
finite-time amplitude blow-up, have been proven to exist in [42, 43, 4, 9].

FIGURE 1. Left. Spacetime in traditional Eulerian coordinates. The characteristic surfaces are
shown to impinge on the cuspoidal surface of first singularities, which consists of the pre-shock set
(shown as the black curve) together with the singular hypersurface which emanates from the pre-
shock in the downstream direction, which consists of a continuum of gradient catastrophes (shown as
the red surface). The slow acoustic characteristic which emanates from the pre-shock in the upstream
direction (shown in green) is a Cauchy horizon which the Euler solution can never reach. Right.
The spacetime in Arbitrary Lagrangian Eulerian (ALE) coordinates. The spacetime of maximal
hyperbolic development denotes the region below the union of the downstream ALE paraboloid of
“gradient catastrophes” (in red), the set of pre-shocks (in black), and the slow acoustic characteristic
surface which emanates from the pre-shock (in green). In ALE coordinates, each fast acoustic
characteristic surface has been flattened. The hypersurface shown in the magenta color denotes the
fast acoustic characteristic surface that passes through the pre-shock.

1.3. Maximal hyperbolic development. In the traditional Cauchy problem in fluid dynamics, initial data is pre-
scribed on the initial data manifold {¢ = 0} and the evolution of this data is considered up to some time slice, given by
the manifold {¢ = ¢, }. Given the localized nature of hyperbolic PDE with finite speed of propagation, localized sets
of initial data can be propagated up to space-like submanifolds of spacetime which do not necessarily coincide with
time-slices. For example, as shown on the left side of Figure 1, which displays an example of an Eulerian spacetime,
the fast acoustic characteristic surfaces (that emanate from the initial time-slice) are impinging upon each other; the
black curve represents the location in spacetime where the first gradient catastrophes occur, while the union of the red
and green surfaces indicate the future temporal boundary of the collection of points that can be smoothly and uniquely
reached by the Cauchy data. The right panel in Figure 1 displays the analogous spacetime set, but in Arbitrary La-
grangian Eulerian (ALE) coordinates adapted to the fast acoustic characteristic surfaces. These ALE coordinates,
which will be defined in Section 2.1, provide a smooth geometric framework for our analysis.
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There is a notion of the maximal hyperbolic development of a data set, which originated in the study of general
relativity and can be traced back to the fundamental paper of Choquet-Bruhat & Geroch [13]. For a hyperbolic PDE,
an initial data set is defined as a spacelike manifold Sy on which initial data Uy is prescribed. A development of such
initial data consists of a spacetime M, solutions of the hyperbolic PDE, together with a diffeomorphism of Sj onto a
spacelike submanifold S of spacetime M such that the solution restricted to S coincides with the data on Sy. In other
words, each point on the manifold S can be reached by a unique and smooth characteristic emanating from Sy. There
exists a precise notion of maximal development. It is known that every initial data set has a development, and that any
two developments of Sy are extensions of a common development. Moreover, for any initial data set Sy, there exists a
development M of Sy which is an extension of every other development of Sy, and this development is unique.

In the context of shock formation for Euler in the traditional Eulerian spacetime, there exists a cuspoidal surface
(see the union of the red surface, the black curve, and the green surface on the left side of Figure 1) which acts as
a temporal boundary to the spacetime set on which the Cauchy data can be evolved in a smooth and unique fashion.
As noted above, the black curve, which we will refer to as the pre-shock, denotes the set of “first singularites” where
characteristic surfaces first impinge. This pre-shock set is a collection of spacetime points where the gradient of the
solution (velocity, density, pressure, etc.) experience the first gradient blowup. The red surface shown on the left of
Figure 1 denotes the spacetime hypersurface on which the fast characteristic surfaces impinge, and the green surface
on the left of of Figure 1 denotes the slow acoustic characteristic surface emanating from the pre-shock set. The
maximal development of Sy = {¢ = t;,} consists of the solution in the spacetime set lying “below” this cuspoidal
surface (consisting of the union of the red, black and green sets in Figure 1).

For a self-contained introduction to the maximal hyperbolic development of Cauchy data in gas dynamics, we refer
the reader to Appendix A for a brief yet detailed description of maximal development for the Euler equations in 1D.

1.4. Preparing the Euler equations for shock formation analysis.

1.4.1. A symmetric form of the Euler equations. While the Euler solution stays smooth, the energy equation 9; F +
div(u(E 4 p)) = 0 can be replaced by the transport equation for the specific entropy S

0:S+u-VS=0,
in which case the pressure law can be equivalently written as
D= %esp'y, v>1.
When the initial entropy function is a constant, the entropy remains a constant during the shock formation process and

the dynamics are termed isentropic; for isentropic dynamics, the pressure law is given by p = %p”’ fory > 1.
It is convenient to rewrite the Euler equations in the symmetric form

du+u-Vu+aocVo =0, (1.2a)
Oo+u-Vo+aocdivu =0, (1.2b)

where a = %_1 > 0 is the adiabatic exponent, and o = éc is the rescaled sound speed. The sound speed ¢ = p®.

1.4.2. Acoustic form of the Euler equations. A key feature in the analysis of the Euler equations, and general systems
of nonlinear hyperbolic equations, is the concept of characteristic surfaces and the geometry describing their evolution
(see Courant & Hilbert [19]). Characteristic surfaces in spacetime can be viewed as propagating wave fronts, and for
the Euler equations, these represent either sound waves or vorticity waves.

We shall focus our presentation on isentropic dynamics in space dimension d = 2.!

Let (n(-,t),7(-,t)) denote an orthonormal basis for T? for each time ¢. The Euler equations (1.2) have three distinct
waves speeds

A =u-n—ao, A=u-n, A3s=u-n+ao. (1.3)

Here A3 is the fast acoustic wave speed and it is along the transport velocity u + aon that sound waves steepen to
form shocks. The normal vector n will be made explicit below as the normal to dynamically evolving and steepening
fast acoustic characteristic surfaces. The wave speed A1 denotes the slow acoustic wave speed, and plays a prominent
role in defining the future temporal boundary for maximal development.

IFor both simplicity and concision, we present our method of analysis of the maximal development of Cauchy data for the case of d = 2, in
which there are three independent variables (x1, z2, t), each characteristic surface is a 2-dimensional hypersurface of spacetime that possesses one
unit normal vector n and one unit tangent vector 7 at each point. The modifications of our theory to the case that d = 3, merely require the use
of two linearly independent tangent vectors 71 and 72 to each fast acoustic characteristic hypersurface of spacetime, which turns out to be a fairly
trivial generalization.
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When spacetime is foliated by the fast acoustic characteristic surfaces, and if n and 7 denote the normal and tangent
vectors, respectively, to the intersection of these surfaces with each time-slice, then the propagation of acoustic waves
(and shock formation) can be studied by rewriting (1.2) as

Ou+ (u+ aon) - Vu+ ac(Vo —n - Vu) =0, (1.4a)
0o + (u+ aon) - Vo + ac(divu —n-Vo) =0. (1.4b)

The system (1.4) can be thought of as the acoustic Euler equations with fast acoustic transport velocity u+ aon, along
which the fast characteristic surfaces propagate.

1.4.3. Classical Riemann variables. The description and dynamics of these characteristic surfaces greatly simplify
when there is only one space dimension present. In the 1d case, the characteristic surfaces are curves in two-
dimensional spacetime that can propagate in only two directions; namely, the positive or the negative spatial direction.
Along these characteristic directions, the solutions to the 1d Euler equations possess certain invariant functions which
are called the Riemann invariants [48], which (in the case of constant entropy) are exactly transported along the fast
and slow acoustic wave speeds.

In multiple space dimensions, complete invariance is generally not preserved, but Riemann variables can never-
theless be defined to both capture the dominant sound wave motion and to maintain small deviation of the dominant
variable when transported along the fast characteristic surfaces. The classical Riemann variables are defined as’

w=u-n+o, z=u-n—o, a=u-T. (1.5)

1.4.4. Generic and compressive initial data for shock formation. We consider an open set of data (ug,00) € H’
which satisfy certain generic and compressive properties that are made precise in Section 4.2 below. We define the
dominant Riemann variable at initial time ¢ = ti, by wq(z) := w(z, tin) = u$(z,tin) + o (2, tin), where n(z, tin) = e1.
We set the maximal negative slope of wy to occur in the z; direction. We suppose that for 0 < ¢ < 1, the derivative
01wy takes its minimum value at the origin and is given by 91w (0,0) = fé. We further suppose that the initial
conditions zo(z) = z(z,tin) and ag(z) = a(z,tix) are small, and have O(1) derivatives. Such data is called non-
degenerate or generic if V20;w (0, 0) is positive definite.

Remark 1.1 (Compressive data for which 0,,w blow-up). For generic and compressive initial data (described above)
which yield sound waves that steepen in the primary direction of propagation x1, and evolve with relatively small
changes in the transverse coordinate xs, w is the dominant Riemann variable and z is the subdominant Riemann
variable. During the shock formation process, it is the normal derivative O, w that blows-up, while 0, z, O, a, as well
as 0-w, O-z, and O-a all remain bounded.

1.5. The geometry and regularity of the fast acoustic characteristic surfaces. The explicit presence of the unit
normal vector n (to the steepening fast characteristic surfaces) in the system of equations (1.4) shows the geometric
nature of these equations, when written in the form suitable for shock formation. Together with u and o, the normal
vector n is one of the fundamental unknowns in the dynamics of shock formation. The physical unknowns » and
o are directly coupled to the evolution of the geometry of the fast acoustic characteristic surface, and as such, the
dynamics of shock formation can be thought of as a highly nonlinear example of a free boundary problem in fluid
dynamics.®> Traditional free boundary problems have the location (or shape) of the fluid boundary as one of the basic
unknowns, and the dynamics of this free boundary must be coupled to the evolution of the physical flow fields. For
both incompressible [20] and compressible [21] free boundary problems, the dynamics of the geometry are governed
by the fluid velocity u, corresponding to the wave speed A5 in (1.3), while for the shock formation problem it is the
location and shape of the sound wave which is the geometric unknown, and this wave pattern is carried by the fast
wave speed 3. This creates a new level difficulty for the analysis.

To place this difficulty in perspective, we shall consider the Lagrangian parameterization of the geometry. For
traditional free boundary problems in fluid dynamics, one considers the Lagrangian flow 7(z, t) associated to the fluid
velocity; namely,

on(z,t) = u(n(x,t),t) for t > ti, n(x, tin) =, (1.6)

2For the case that d = 3, w and z are defined in the identical fashion, while the tangential velocity is given by the vector a = (a1,a2) :=
(w - 71,u - 72) where the triad (n, 71, 72) form a basis at each tangent space of the fast acoustic characteristic hypersurface.

3We shall review the classical approach to the study of characteristic surfaces in Section 1.10.1. Our analysis of characteristic surfaces and their
underlying geometry is quite different from the traditional viewpoint of solving the Eikonal equation to determine the bicharacteristic cone. Instead,
we place the geometry of characteristic surfaces in the context of free boundary problems in fluid dynamics.
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where t;, denotes the initial time for the flow. A key observation is that (1.6) defines an ordinary differential equation,
and Picard iteration shows that for (at least Lipschitz) velocity fields u, the flow map 7 inherits (at least) the regularity
of the velocity field, and can often be shown to gain regularity such that the associated normal vector n possesses the
same regularity as the velocity field. This is indeed the case for the classical incompressible and compressible Euler
free boundary problem. We now contrast this scenario with the geometric dynamics of shock formation.
Observe from (1.4) that the transport velocity associated with the fast wave speed A3 is given by
Vs =u+aon=An+ (u-7)7. 1.7)

We can foliate spacetime with acoustic characteristic surfaces associated to the “fast” wave speed A3. One way of
doing so is by studying the Lagrangian flow map of the transport velocity Vs:

on(x1, x2,t) = Va(n(xy, x2,t),t), n(x,tn) = . (1.8)
In terms of the standard Cartesian basis, we have that*
(@1, w2, t) = (' (21,22, 1), 7 (21, 22, 1)) ,
and that
(1, xo,tin) = 21 and 02 (1, 20, tin) = T2
Using the flow map 7 we can give a geometric description of the fast acoustic characteristics surfaces.

FIGURE 2. For T > tj, which is strictly less than the very first blowup time, we display the charac-
teristic surfaces I, (T") defined in (1.10) emanating from five different values of 2y € T. Att = t;,,
the curves {vz, (tin)}2, et are lines which foliate T2. The distance between the characteristic sur-
faces I';, (T) is decreasing as T increases, leading to shock formation when this distance vanishes.

At initial time ¢ = t;,, we foliate T? by lines parallel to e; = (1,0), and denote these lines by 7., (tin) = {21} x T.
For each z; € T and ¢ € [t;,, T'], we define the characteristic curve (at a fixed time-slice) by

Yar (8) = 1Y, (tin), 1) (1.9)
and the characteristic surfaces up to time 7" > t;, (which are parameterized of x;) by
L., (T) = Ute[t;",T] Yo (1) . (1.10)

Figure 2 displays a few such characteristic surfaces I';;, for five different values of z; € T.
The unit tangent vector to ., (¢) is given by

T(n(x,t),t) := [Oan| 7' 0am = |02n| " (Dan*, 021p®) (1.11a)
and by a rotation, the unit normal vector ~,, () is given by
n(n(x,t),t) = |0en| ™ Oant = |02n| ™ (02”, —02n"). (1.11b)
Substituting this identity into the flow equation (1.8), shows that n(z, t) is a solution to
L
On(xy, xa,t) = u(n(xy, x2,t),t) + aa(n(ml,xg,t),t)% ) n(z,tn) = . (1.12)

We identity vector fields and 1-forms in Euclidean space; in particular, raised indices for components F' of a vector field are obtained as
Fi =64 F;, where F; denotes the components of the 1-form 6% denotes the Kronecker-§.
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Observe that (1.12) is a PDE for 7(x, t), while the traditional Lagrangian flow map (1.6) solves an ODE. As a conse-
quence of the structure of the PDE (1.12), it is not a priori clear if  maintains the Sobolev regularity of the velocity u
and sound speed o. What is clear, however, is that the normal vector n loses one derivative of smoothness relative to
the physical variables u and o.

This mismatch in regularity between n and (u, o) necessitates studying a differentiated form of the Euler equations,
in which the fundamental unknowns have the same regularity as the normal vector n. Rather than analyzing the system
(1.4), we return to the system (1.2). We first compute the evolution of the partial (space) derivatives of v and 0. We
differentiate (1.2), and then reexpress the resulting equation using the fast acoustic transport velocity V3. We find that

out +(u-n+ acr)ui,kj nl + (u- T)ui,kj 7+ o (o,k; —dpul )+ Qo 0, +ud ), ui,j =0, (1.13a)
0o, +(u - n+ ao)o,k; n? + (u- T)0,kj 7+ ao (U’ —Onor ) + aop ul,; +ud 0,;=0. (1.13b)

The system (1.13) constitutes the differentiated (fast) acoustic Euler equations. It is imperative to study this differenti-
ated form of the Euler equations in order to avoid derivative loss in the geometry. We are using the following derivative
notation: for a differentiable function f, we write

foe =0 f for ke {1,2}.

We are also employing the Einstein summation convention in which repeated indices are summed from 1 to 2; e.g.
o 2 P
wput, = E - Opu’ Oju’ .
j=

Therefore, the equation (1.13a) is a matrix equation with indices (¢, k), with ¢, k € {1, 2}, and the equation (1.13b) is
a vector equation with indices k, where k € {1, 2}.

1.6. An Arbitrary Lagrangian Eulerian (ALE) parameterization of the fast characteristic surfaces. The differ-
entiated equation set (1.13) will indeed be the foundation for our analysis, but we will not use the Lagrangian flow n
of V3 to parameterize the fast acoustic characteristic surfaces. Instead, we shall use a novel parameterization based on
the Arbitrary Lagrangian Eulerian description of fluid flow which we shall detail in Section 2.1.

The use of the natural map 7 provides control of the second fundamental form along fast characteristic surfaces,
but due to a mild degeneracy created by the tangential re-parameterization symmetry, control of the first fundamental
form necessitates a cumbersome analysis. We avoid this problem: a tangential re-parameterization of 7 is introduced
in the form of the so-called Arbitrary-Lagrangian-Eulerian (ALE) coordinates. This tangential re-parameterization,
via the ALE maps, provides a simple identity to control both the curvature and the metric tensors associated to the fast
characteristic surfaces, and is reminiscent of DeTurck’s simplification [23] of Hamilton’s [27] Ricci flow local exis-
tence theorem, in which the infinite-dimensional kernel of the linearized Ricci flow operator (caused by the tangential
re-parameterization symmetry) lead to derivative loss and Hamilton’s application of Nash-Moser iteration.

Our ALE re-parameterization works in the following manner. Because each curve ., (t) is a graph over the set
{z2 € T}, we introduce the height function h(x1, z2,t) such that v, (t) = (h(x1,22,t),22). The induced metric
on v, (t) is given by g(x1,x2,t) = 1 + |h,2 (21, 22,t)|* and the unit tangent vectors 7 and normal vectors A" to the
curves 7., (t) are

T(z1,22,t) = g~ % (hya, 1) and Nz, 20,8) =g 2(1,—hys), (1.14)

respectively. We define the ALE family of maps ¢ by ¥(x1,x2,t) = h(z1,22,t)e; + x2e2, with initial condition
h(z1,x2,tin) = x1. Note that det(Ve)) = h,;. In order to preserve the shape of the characteristic surfaces I';,, the
family of diffeomorphisms (-, t) must satisfy the constraint that 9;¢) - N = V3 09 - &. As we shall explain in Section
2.1, the dynamics of the ALE family of diffeomorphisms (-, t) are governed by

Oy = ((uop) N+aco)N+ (uot)) N+acoh)haT.

With this definition, the fast acoustic characteristics (see Figure 2) are parameterized by (z2,t) — ¥ (x1, xo,t).
Shock formation is measured by the metric-rescaled Jacobian determinant of the deformation tensor Vi). In
particular, we define

J,(.t) = gl 0) "2 Vi (a,1) = gla,t)" = VOLh(z,1). (1.15)
As can be seen in Figure 1, the fast acoustic characteristic surfaces impinge on one another due to compression, and
gradient blow-up occurs exactly when

J,(e.t) = 0.
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The pre-shock, denoted by the black curve in Figure 1, denotes the spacetime co-dimension-2 surface of first singu-
larities, and is defined to be the set of points (z, t) such that the following two conditions simultaneously hold

J(z,t) =0 and O J,(z,t) =0.

This set of pre-shocks indicates the location and time of the first gradient blow-up in the primary direction of wave
steepening (the x;-direction), parameterized by the transverse coordinates (s, ..., zq). The condition &4 J,(z,t) = 0
together with the non-degeneracy condition

Hess(J,) > 0,

indicate that points in the pre-shock set are local minima for J,(x,t).

The red surface in Figure 1 corresponds to the level set {.J,(z,t) = 0} downstream of the pre-shock set. The
red surface indicates the location in spacetime of subsequent gradient catastrophes, and again designates the location
of characteristic-surface-impingement caused by the steepening sound waves during compression. This red surface
{J,(z,t) = 0}, together with the pre-shock set {.J,(x,t) = 0} N {01J,(x,t) = 0}, form a portion of the future
temporal boundary of the maximal development of the Cauchy data.

The green surface shown in Figure 1, upstream of the pre-shock, displays the distinguished slow acoustic charac-
teristic surface which passes through the pre-shock set. This green surface forms the remaining portion of the future
temporal boundary of the maximal development of the Cauchy data. In effect, this distinguished slow acoustic char-
acteristic surface (passing through the pre-shock) plays the role of the event horizon. These notions are discussed in
further detail in Section A in the simplified setting of the Euler equations in one space dimension.

1.7. A new set of Riemann-type variables that prevent derivative loss. We can now map the physical variables
(u, 0), as well as the classical Riemann variables (w, z, a) defined in (1.5), into our ALE coordinate system. We define

Ul=uop, E=ooy,
W=UnN+Y, Z=Un~N-%, A=U-T.

Since it is the differentiated form of the Euler equations (1.13) that will be our starting point, the non-differentiated
variables (U, X)) and (W, Z, A) will play only a secondary role in our analysis.

Our main idea is the introduction of specially constructed differentiated Riemann-type variables that remove any
derivative loss from the resulting analysis. First, for i, k = 1, 2, we define

Up =u'wotp,  Sp=o0p.
The variable U}C(a:, t) denotes the (i, k)-component of the matrix Vu(v)(z, t), ), and the variable 3, (z, t) denotes the
k-component of the vector Vo (¢(z,t),t). Second, we introduce the differentiated Riemann variables as the vector
fields (with components)

Wy =AUL+ 5, Ze=a'UL -3,  Ag=7UL, k=1,2. (1.16)

Again, Wk, ZC, Ak denote the k-component of the vectors W = A~TU + i y AR | 2, and A = TTLOJ,
respectively. The vector field W is the dominant differentiated Riemann variable, the vector field Z is the subdominant
differentiated Riemann variable, and the vector field A is the tangential gradient of the fluid velocity vector. These
three vector fields are then further projected unto their normal and tangential components. We define

Wy=Wwx, 2Zy=2Zn, Ay=Anx, W,=W7, Z,=27, A =AT7T.

The generic and compressive initial data that we employ are designed to create steepening sound waves whose domi-
nant direction of propagation is along the z; coordinate. By design, it is the function W « that encodes the steepening
of the sound wave, and which blows-up when the slope of this steepening sound wave becomes infinite. Meanwhile,
the other five functions Z A A N \iVT, iT, AT remain uniformly bounded throughout the entire shock formation pro-
cess. As noted in Remark 1.1, it is the Eulerian quantity 0,,w that blows-up during the shock formation process, and
it is therefore tempting to believe that the normal component of the dominant differentiated Riemann variable W N
should be defined to be d,,wo1). This is, in actuality, not the case. In fact, our new Riemann variables are chosen to
satisfy the following important identities:

W, = (Onw — adpn - 7)o, Zy = (Onz — adpn - T)o1, A, = (Ona — %(w + 2)0nT - n)ot, (1.17a)
W, = (Orw — adyn - T)o, Z,= (0rz —ad-m - 7)o, A = (8Ta — %(w +2)0;7 - n) o). (1.17b)
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This unique linear combination of differentiated classical Riemann variables together with the curvature of the fast
acoustic characteristic surfaces creates the good variables that prevent derivative loss.

Let us note the importance of using these differentiated Riemann variables for our analysis. In addition to preventing
derivative loss in energy estimates, these differentiated Riemann variables are created so that modulo very small errors

J,W () ~ dywo (), (1.18)
where wq () is the initial condition for the classical dominant Riemann variable defined in (3.9), and in particular,
wo(x) = w(z, tin) = v (z,tin) + oz, tin) -

The approximate identity (1.18) indicates that JgW « 18 almost frozen into the flow of the fast acoustic characteristic,
i.e., it is almost exactly transported by the fast characteristics, and this fact is fundamental to all of the pointwise
bounds that are used in our work.

We shall describe these variables in greater detail in Section 3, and we shall explain how (1.18) is used in our energy
method next.

1.8. The leading order dynamics. Our objective is to establish uniform Sobolev-type bounds for the solution of the
Euler equations in a spacetime that contains the maximal hyperbolic development of the Cauchy data. We work with
the following collection of fundamental variables:

(JQWN7 JgZNv JgAN? WTa ZTa AT)
whose evolution is coupled to the following basic geometric variables
(J 9) h ’2 )
as well as as the undifferentiated sound speed .
While the exact evolution equations are given in Section 3 below, it is instructive at this point to write down

the approximate dynamical systems in which only leading order terms are displayed. It is convenient to define the
directional derivative operators

0, =g %0, (1.192)
On =01 —J,g 2h0y. (1.19b)

We note that since h,5 is proven to maintain O(e) size for the duration of the maximal development of the Cauchy
data, to leading order, 0, ~ 0;. For the same reason, g ~ 1 so that 9 ~ 0. Thus, with no danger of arriving at an
erroneous conclusion, the reader is safe to make these derivative replacements in the discussion that now follows.

To leading order we have the following system of equations for the normal component variables:

L0, (L, W) + adr(J,Ax) — @B, J, — P10;7 - N =Lo.t., (1.20a)
L0(J,Zx) — adr (J,AN) — 200, Oy (J,Z5) + @B O J, + P107T - N

— PoJ YO T - N+ 202, T 00, = Lot (1.20b)
L0:(J,AN) + ad - (J,2x) — ad, O (JAy) — aSy 07 d, + adrT - NE,

+ P oNT N+ ad Yoy JAy =lo.t., (1.20c)

where Py = § (J W +J,Z—2J,A), Py = 20(J,A\+.J,Z,), and 1. 0. t. denotes a polynomial of the fundamental
variables. We additionally have the following system of evolution equations for the tangential-component variables:

LW, + ad A, — P30, 7 N =Lo.t., (1.21a)
10,27 — ad,Ar — 200 OyZy + P30T - N — Py, 0T - N = Lot (1.21b)
LOBAT 4+ 0,3 — aJ; tOAL — a0 ST N+ P3Oy N = Lot (1.21¢)

where P3 = a(Q 4+ W, + Z,) and P, = 2a(A, — Z,;). We couple the above systems of equations with the
leading-order evolution equations for J,, h,o, and X:

O J, = ST Wy +Lo.t., (1.22a)
Oth,o = AW, + Lo.t., (1.22b)
Y =—aYZy +1o.t., (1.22¢)
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together with the identity
Sa=3J,Wy +Lo.t. . (1.22d)

1.9. An overview of our energy method. Energy estimates are performed simultaneously for the normal-component
variables (Jg\iV NS Jgi N JgAN) in (1.20) and for the tangential-component variables (\iVT, Z,, AT) in (1.21), and
then separately for J, and h,3 in (1.22). The actual energy estimates will be done in three different coordinate systems
in which the time coordinate ¢ is transformed in three different ways, but in order to describe the main difficulties that
must be overcome, for pedagogical reasons, our discussion will be in terms of the independent variables (1, z2,t),
and we shall use the derivative notation D = (¢, 01, 02). Our energy method will be performed at the level of the
sixth-order differentiated system.

We begin with the normal-component system (1.20). The rough idea is that we first multiply the equations (1.20b)
and (1.20c) by J, (thereby eliminating the presence of the inverse power Jg_l), we then let DS act on each equation in
(1.20), and then test this differentiated equation set with © =291 (] 2 DO (J, W), 0> DS(J,Z,), 20> D8 (J,A L)),
where ¢ is a weight function that degenerates to zero at the future temporal boundary. The presence of the additional
J, weight for D6(.J,W,) is needed to match the natural weight that will appear for D(.J,Z,) and D®(.J,A ) (since
we multiplied those equations by .J, prior to differentiation). The weight function ¢ will be chosen in three different
ways, corresponding to three different spacetime regions that we shall employ for the analysis. The values of 8 and r
will be chosen below.

At this stage, we simply wish to explain why a weight function is necessary for the energy estimates, and why
its choice is determined by the region of spacetime that is being analyzed. We shall consider the energy estimates
term-by-term, and we shall begin with the first term in (1.20) containing the time-derivative 9.

For demonstration purposes only, let us drastically simplify the domain of integration so that we can explain a few
of the fundamental ideas (in actuality, our spacetimes require certain changes of coordinates and are somewhat more
complicated). Let us suppose that our energy method employs the spacetime [tin, trop] X T2 with spacetime integral

ftitn Jf2 for tin <t < teop.

1.9.1. Energy estimates for the first term in (1.20). The first term in all three equations in eqrefnn-approx yields both
the standard energy norm, and also a compression-induced damping norm. The standard energy norm is an L>°-
in-time and L2-in-space norm, while the so-called damping norm is an L>-in-time and L2-in-space norm, but with
a smaller power of the weight function ¢ (and hence better regularity). In order to explain this, let us set ¢ = J,
and let us suppose (again for demonstration purposes only) that J, (z, tyop) = 0. With this assumption, the weight
function J; degenerates to zero at ¢ = top and indicates a gradient catastrophe. While this spacetime is artificially
constructed for demonstration purposes only, it allows us to use the function .J, as our example-weight; .J, possesses
the compression-property that all of the actual weight functions ¢ must possess.
To explain this, we will make crucial use of the following three properties:

(a) The initial condition wyg, for the dominant classical Riemann variable w, satisfies —% < Qywp(z) < —2—16 ina
local open neighborhood of z; = 0.

(b) Observe that the evolution equation for Jg\iV ~ 1n (1.20a) does not have any normal-derivative terms (whereas the
Jgi A~ equation and the JQA A~ €quation both do). By applying the fundamental theorem of calculus (in time) to
equation (1.20a), and using that the time-integral of all of the tangential-derivative terms are small relative to 0y wy,
we prove that

JW . (2,t) = dywo(z) + Oe) ase — 0.

(c) Using (a), (b), and the approximate identity (1.22a), we see that

—Jg\iV N2 4—16 in a local open neighborhood of z; = 0, (1.23a)
=0, (x,t) > 4% -2 in alocal open neighborhood of 1 = 0. (1.23b)

The inequality (1.23b) indicates that the fluid is in compression®, and is responsible for the emergence of the damping
norm using the following argument (with the weight ¢ set to be J,) for our energy method applied to the first term in

SRecall that J, is the metric-scaled Jacobian determinant of the deformation tensor V) associated to the flow of the fast acoustic transport
9 P
velocity. When 0;¢J; < 0, this indicates that infinitesimal volume elements are shrinking along the fast characteristic flow, which is the natural
geometric description of a compressed gas.
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all three equations of (1.20):

t
/// 228 72719, (D8(J,W ), D8(J,Z,), D (J,Ay)) - (D°(J,W,),Db(J,Z), 2D (J,A))dzdt’ (1.24)
T2

t
= [ g JLE T A W 8220+ 2L A |
T2

in

t
+ (r+ %)/ //T n28 (- a,fJg)(HD6(Jy\i'vN)H2 + ||D6(Jg2,\,)||2 + 2|\D6(JgZ\N)y|2)dxdt’

t
+ﬁ/ // S2719,5.0,0% (|| DS (L, W) |* + [|D6(J,Z0)||* + 2|| D6 (J,AN)||*)dadt’ . (1.25)
) T2

Now, the ALE sound speed X satisfies %0 < 3 < Ko for a fixed constant kg > 1, and hence the first integral on
the right side of the equality is sign-definite and positive, and therefore produces the L*>°-in-time and L>-in-space
energy norm. The second integral on the right side of the equality produces the damping norm; in particular, to avoid
obfuscation, we shall assume that the compression inequality (1.23b) holds globally in our spacetime set (this is, of
course, not the case but it is a technical, rather than fundamental, matter to contend with). In this case, the second
integral is is again sign-definite and positive, and bounded from below by

t
o) [0 ] w2 (|00 ) | + 100,200 |+ 20 A et 126

and this is the L?-in-time and L>-in-space damping norm that arises from compression. Notice that the pre-factor in
front of this integral is proportional to % and that ¢ > 0 is a parameter which is taken to be very small. This means that
other integrals that arise from our energy method that have the same type of integrand, bur whose pre-factor is O(1) as
€ — 0 can be viewed as small errors that our damping integral can easily absorb. In particular, the third integral on the
r1ght s1de of (1.25) is an example of such a small error 1ntegral From (1.22¢), we have that 0, is approximately equal
= O(1) and J, < &; therefore, one simply requires that

p— 5 b
205 .
is larger than ea3 —SM and by choosmg e < %ﬁ)&w this is indeed achieved.

2r+1)(14a) -
16

To summarize, the first term in all three equations in (1.20) have produced two types of regularity via an energy
norm and a damping norm. Reverting to the notation ¢ for the weight function, we record these norms here as follows:

5 n(t) = HSD“J DO(J, W, J,Zx, J,A)( (1.27a)

DIz

D (1) /||¢4J2D6(JWN,JZN,JAN) HLQ (1.27b)

The purpose of our energy method is to obtain uniform bounds on the norms &7 (t) and Dg (t) for tin <t < trop.
The energy estimates for the tangential-component equations (1.21) will produce analogous energy and damping
norms 5627T(t) and ng(t) which we will define below, and we also obtain uniform bounds for these tangential norms
for tin <1t < teop.

1.9.2. Energy estimates for the second term in (1.20). Recall that for the purposes of this pedagogical overview, we
are setting the weight function ¢ to equal J,, we multiplying (1.20b) and (1.20c) by .J,, we then let D act on each
equation in (1.20), and test the resulting equations with (.J, J2DO(J W), J2D8(J,Z,), 2J% DO (JgAN)) . We now
focus on the second term in (1.20). The second terms in all three equations must be grouped together to form an exact
derivative which can then be moved off of the highest-derivative term by use of integration-by-parts. Note that for us
to be able to group all three terms together to form an exact derivative, it is essential that the weights are identical in
all three equations. Our energy method yields the following combination of highest-order integrals:

t
a/ // Jg@T“)(aTD6(JgAN)(D6(Jg\ivN)—D6(J92N))+2aTD6(Jg§°:N)DG(JgAN))dxdt’.
’]I‘Z

By definition, we have that DS(.J,W ) — DS(.J,Z,,) = 2D5(.J, ), and hence the above integrand contains the exact
derivative 20, (D°(J,3,)D%(J,A)) and upon integrating-by-parts with respect to 9, we obtain at highest-order,
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the resulting integral
t
—(2r + 1)a/ / Ord, J2"(DO(J,W,) — DS(J,Z,)) DS (J,A)dzdt’.
T2

We prove in Section 9 that 0,-J, = O(1) and hence, the above integral is an error integral which is easily controlled
by our damping norm Dg (t) via an application of the Cauchy-Young inequality.

1.9.3. Energy estimates for the third term in (1.20b) and (1.20c). We now focus on the energy estimates for the
third term in (1.20b) and (1.20c). As can be seen in (1.20a), this type of normal derivative term does not exist
in the equation for J, W ~» but the presence of such terms in the evolution equations for J, y4 ~ and J, A A Create
the fundamental difficulty in the analysis of the maximal development of Cauchy data, and are the terms which are
primarily responsible for our use of three different spacetime regions with three different weight functions ¢.

Our energy method applied to the third term in (1.20b) and (1.20c) produces the following integral:

t
—a/ // 2*2ﬁ+1g02raN(}D6(Jq2N)|2+|DG(JHAN)|2)dmC1t’. (1.28)
T2

Observe that we have written the weigh function in this integral as ©?". While for the purposes of this simplified
overview, we have set ¢ equal to .J,, for the integral arising from this third term, we use the more general ¢ for the
weight function, and we will explain the reason for this notational choice below.

Upon integrating-by-parts with respect to 9, in (1.28), using (1.19b) and the fact that h,, = O(e), we have that
(1.28), to leading order, is given by

t
—a(26 - 1)/t_ //T 2720070, % (|D8(J,Z4) |7 + |D6(J,AL)|*)dadt

t
+ 2ar/ //2 S22 19,6 (IDS(, Z,)|* + [DO(J,AN)[*) dadt . (1.29)
T

The first integral in (1.29) produces another (arbitrarily large) type of damping term thanks to the use of the function
Y726+ a5 part of the weighting. We use the approximate identity (1.22d) and we again assume (only for this demon-
stration) that the compression lower-bound (1.23a) holds globally (rather than locally as stated). In this case, we see
that the first integral in (1.29) has the positive lower bound

t
a(ZSﬁgfl) / //T2 2725719021‘ (‘DG(JgiNHQ + ’DG(JL;AN)F)dIdt
tin

whose size can be adjusted with the choice of 5 > %

FIGURE 3. Four fundamental hypersurfaces are displayed. The “nearly vertical” surface z; =
x}(x2,t) := argmin, o J, (21, 22,1) is shown in magenta. This surface passes through the set of
pre-shocks, displayed as the black curve. In red, the downstream surface {J,(x,t) = 0} is displayed,
and in green, the upstream slow acoustic characteristic surface that passes through the pre-shock set
is shown. In orange, the cylindrical surface ¢ = t*(x2) is displayed, where ¢*(x2) denotes the time
coordinate along the set of pre-shocks.
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1.9.4. Analysis is split into three regions of spacetime. The second integral in (1.29) is a highly problematic error
integral. The difficulty in bounding this error integral is twofold: first, the damping integral has > as the weight,
while the problematic error integral has only ©?"~! as a weight and hence, this integral cannot be naively absorbed
by our damping norm; second, the function 0; ¢ is not a signed function, and therein lies a fundamental difficulty for
our analysis. Specifically, we consider the hypersurface, shown as the (almost vertical) magenta surface in Figure 3,
defined by

x](w2,t) := argmin, o J, (21, 72,t).

We can now define the upstream and the downstream regions of spacetime. The upstream region consists of all triples
(21, x2,t) such that {x; < 27 (x2,t)} and time ¢ is less than the times corresponding to the green slow characteristic
surface in the right panel in Figure 4. Similarly, the downstream region consists of all triples (x1,x2,t) such that
{x1 > x7(x2,t)} and time ¢ is less than the times corresponding to the red surface in the center panel in Figure 4
where J, vanishes. The magenta surface 21 = 25 (x2,t) passes through the pre-shock, denoted by the black curve in
Figure 3 (see also Figure 4).

Clearly, the sign of 0; ¢ is of basic importance in estimating the second integral in (1.29). Since we have set ¢ to
equal J, for this overview, we have that 01 = 0;J,. As 01J, = 0 on the surface z; = z](z2,t), it must change
sign from the upstream region to the downstream region. In fact, we have that 01J, < 0 in the upstream region,
and 9,.J, > 0 in the downstream region.’ Returning to the second integral in (1.29), we see that this error integral
acquires a “good” sign in the downstream region and can be viewed as an additional damping integral with a reduced
power in the weight function Jf"_l. Meanwhile, in the upstream region in which 0;J, < 0, this error integral has
the “bad” sign and cannot be properly bounded with this choice of weight function. To be precise, we cannot set the
weight function @ equal to J, in the upstream region; instead, we must devise a weight function ¢ that obeys good
properties with respect 01 ¢ in the upstream region; we will use a weight function which is essentially transported by
the slow acoustic characteristics. This type of transport structure produces a cancellation that entirely eliminates the
problematic error integral in (1.29) in the upstream region.

Clearly, different weights must be used in the upstream and downstream regions of spacetime so as to bound the
error integral in (1.29). To that end, we consider a third region of spacetime, whose closure contains the pre-shock set
as well as large subsets of both the upstream and downstream regions. See the left panel of Figure 4, which displays
this third region, consisting of the triples (1, z2,t) such that time ¢ is less than the times corresponding to the set
of pre-shocks. Because the set of pre-shocks depends only upon the transverse coordinate x5 and time ¢, in order to
bound the error integral in (1.29) in this third spacetime region, we can set the weight function ¢ to be a function that
degenerates to zero along this cylindrical surface and which is independent of the x; coordinate. This can be done by
setting (z2,t) = J, (2} (22,t), 2o, 1), in which case the problematic error integral in (1.29) vanishes.’

1.9.5. Energy estimates for the remaining terms in (1.20). It remains for us to explain how our energy method bounds
the fourth term in (1.20a) and the fourth, fifth, sixth, and seventh terms in (1.20b) and (1.20c). The common feature
which these terms share is over-differentiated geometry; however, instead of producing derivative-loss, all of these
terms (by design) have exact derivative structure, and some of the over-differentiated terms produce new types of
damping norms, as well as anti-damping norms, the latter requiring the choice of sufficiently large exponent 7.

Perhaps the most interesting of the over-differentiated terms is the fourth term in (1.20c¢), —a¥ ~OrJ,. Recalling
that the procedure for our energy method requires first multiplying by .J,, then applying D®, and then testing with
25728412 D6 (], A ~), we find that the leading order integral obtained from this term is given by

t
—204/ // N2 2 () $5,,)0,D0J, DO (J,A ) dzdt . (1.30)
tin T2

This integral explains the over-differentiated geometry nomenclature: it appears that there is one too many derivatives
in 8TD6J9. We can have six derivatives on J, but not seven, and as we shall see, there is indeed an exact derivative
structure here. Let us explain why six derivatives on .J, is in agreement with the norms (1.27) of our energy method.

OThis is only true in a local open neighborhood of the surface 1 = x7 (x2,t). For x1 > 7 (x2,t) sufficiently large, 01 J, becomes negative,
but this technical difficulty can be ignored at this stage of the presentation.
"The actual weight function for this region of spacetime uses a modification of J; which is defined in (5.4).
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We return to the approximate dynamics for .J, given by (1.22a) and perform a sixth-order energy estimate on this
relation. The resulting differential inequality yields, via the Gronwall inequality, the bound

sup._ e[|t B, (a2, + /||g0 EBOU, (o, )2, 0 S DR (1), (131)
t/ € [tin, t]

Because ¢ is equal go J, and because Jg_ > % which is proven in Section 9, we see from (1.31) that the unweighted
function D.J, is bounded in the spacetime L2-norm by 57.7%7 (1), showing not only that six derivatives of .J, are
bounded, but that the upper bound of the spacetime L2-norm is extremely small.

To estimate the integral (1.30), we integrate-by-parts with respect to 9. Using that .J, Sy = %(JQVOV N — qu N)s
that J,W ,, = O(—1), and that J, Z, = O(1), integration-by-parts in (1.30) produces the highest order integral:

t
Jerror — / // N2 () W, )DO T, ad, DO (J, A )dadt’ . (1.32)
T2
At this stage, we use the evolution equation (1.20a) to make the substitution
ad,D%(J,Ay) = —£9,D%(J,W ) + aA,0,;D°J, + P10, D57 - » + Lo.t.
To leading order, the integral 7°°" in (1.32) is written as

Ierror — Ifrror + IerrOI‘ + I?()%I‘I‘Or ,
forror — _ / // S (WD, D (W )dad
tin T
t
= [ S ALDR, 0,00 e
’]I‘Q

t
Ig”or:/ // 20412 (] W, )P1g ™2 DO, 8,057 - mdadt . (1.33)
T2

Let us first explain how we bound the integrals I57"°" and I$™°". The integral I57"°" has the obvious exact-derivative
structure, which together with an integration-by-parts with respect to 9, produces the following:

t t
It =g / // NG (J W) A0, DO, [P dadt = —5 / // Or (57210 (J W, )A ) D8, *dndt
tin T2 tin T2

This integral is now easily bounded using (1.31) together with our established pointwise bounds for the coefficient
function which are proven to hold in Section 9.

In the same way that we obtained the bound (1.31) for .J,, we can obtain the analogous bound for h,;. We perform
a sixth-order energy estimate on (1.22b) and find that

sup 5Hg04D6 2 (z,t) ||L2 /Hgo 4D6h72 z,t") HLth < KeDg (1), (1.34)
' €[tin, t]

where Dg () is the damping norm that arises from the tangential-component energy estimates for the system (1.21)
and K is a constant used in the bounds for those tangential-component energy estimates. From (1.14) and (1.15), to
leading order, we have that

DS.J, = g 2D%,; and 8:D%7 - & = g 'DOh,9 .

Therefore, to leading order, the integral I5™°" in (1.33) can be written as
t
157" = / // 2_25+1@2T(J9WN)P1g_2 DSh,1 DSh,oq dzdt’.
'[[‘2

. . o ~ 2
We integrate-by-parts with respect to Jz, form the exact derivative 0; | DSh,o |7,
01. We obtain that to leading order,

t
Igrror _ %[ /]1;2 81 —28+1 ZT(J WN Pig~ )’DG 2 | da:dt

and this integral is easily bounded using (1.34).

and integrate-by-parts with respect to
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We now explain how to estimate the integral I7"°" in (1.33). We first integrate-by-parts with respect to 0, use
(1.22a), and find that to leading order with ¢ set equal to .J,, we have that

t
7T = / //T ] Z‘QﬂJfT(ath)]DG(JQWN)\dedt’
tin

Comparing this integral with the second integral on the right side of (1.25), we see that the sign on J,.J, is now positive
while it is negative in (1.25). In (1.25), the second integral on the right side is a damping integral, while the integral
I777°" produces an anti-damping integral, meaning a sign-definite integral but with the wrong sign. Consequently, this
anti-damping integral I7™°" must be combined with the damping integral on the right side of (1.25). The sum of these
two integrals yields the same type of integral as in (1.26) for the function D6(JgV°\I ~); more precisely, we have the
lower bound for this sum of integral given by

t
gt [7 ] s 08 P (135)
tin T2

itis is therefore clear that in order to obtain our damping norm, we must choose r > % For our analysis, we set r = %
We have now given an overview of our energy method for the normal-component system (1.20). Similar energy
estimates are performed for the tangential-component system, leading us to bound the following norms

3 1 e o o 2
£ +(t) = ||t JFDOW 1, 2 Ar) ()]s (1.36)
t
D%,T(t)Z/ | JEDS (W, Z Ay (-, )5, dt (1.36b)
O x

Defining the fotal norms by
E5(t) = &8 v (t) + (Ke) 728 (1),
Di(t) = Dg (1) + (Ke) ™D (1) ,

our combined energy estimates prove that £g(t) and Dg(t) remain uniformly bounded for tin <t < tiop.

As we stated above, this overview used a highly simplified spacetime to explain some of the key ideas for our
energy method. The actual scheme uses three different spacetime regions: (1) the spacetime region bounded from
above by the pre-shock cylindrical surface shown in the left panel of Figure 4, (2) the downstream region bounded
from above by the level set {.J,(x,t) = 0}, shown in red in the center panel of Figure 4; and (3) the upstream region
bounded from above by the distinguished slow acoustic characteristic surface passing through the pre-shock, shown in
green in the right panel of Figure 4.

1.10. Prior results on the maximal development of Cauchy data for the Euler equations.

1.10.1. The classical approach to characteristic surfaces. In multiple space dimensions, characteristic surfaces are
co-dimension-1 submanifolds of spacetime. In the classical framework, which can be traced back to Courant &
Friedrichs [18], such manifolds are locally generated by special vector fields, whose directions are termed bicharac-
teristic directions. These vector fields are generators of a cone, the so-called bicharacteristic cone, which is tangent to
the characteristic surfaces.’

1.10.2. Christodoulou’s method [14]. The velocity potential ¢ of an irrotational compressible fluid satisfies the wave
equation Ly = 0 (see, for example, [53] and [54]); that is, the irrotational Euler equations solve the d’Alembertian
associated to the Lorentz (acoustic) metric g, where the components of g—! are given by ¢%° = —1, ¢% — o7,
g0 = —ul, g = 26 — u'u, where i,j = 1,...d, and the index 0 denotes the temporal component. It is quite
remarkable that even though the underlying fluid dynamics are Newtonian, non-relativistic, and occur in flat spacetime,
the fluctuations (sound waves) are governed by a curved Lorentzian (pseudo-Riemannian) spacetime geometry. With
such a construct, sound rays play the role of photons and follow the null geodesics of the acoustic metric. As a result,
the analysis of the irrotational compressible Euler equations can be entirely relegated to the study of the second-order
nonlinear wave equation [, = 0, and thereby placed in the framework of analysis in General Relativity.

This is indeed the starting point for Christodoulou’s method [14] for the analysis of shock formation in fluids. The
null geodesics and hence the bicharacteristic directions are obtained as solutions to the eikonal equation

§""0,90,q =10, v,u=01,...,d.

8This traditional description of characteristic surfaces is very different than the approach that we have taken and described above in Section 1.5.
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By definition, the gradient of ¢ then determines the tangent and normal directions to the acoustic characteristic sur-
faces. With the geometric variables defined, certain Riemann-type variables are used in geometric coordinates, and
the resulting closure of weighted Sobolev-class energy estimates provides the uniform bounds necessary to describe
shock formation. The use of the gradient of the eikonal function ¢ to define the normal and tangential directions to
the fast characteristic surfaces in conjunction with the Riemann-type variables employed leads to a type of derivative
loss in the energy estimates of this scheme. To overcome this derivative loss, time-integration of derivatives can be
successively implemented, with each time integral gaining back a portion of the original loss, and this is referred to as
a descent scheme.

Christodoulou’s method has been used as the framework for the study of shock formation (and singularity forma-
tion) for a large class of Lorentzian wave equations; see, for example, [51, 52], [28], [44], [35, 36], [37, 38].

1.10.3. The recent result of Abbrescia & Speck [1]. Employing the geometric framework of Christodoulou’s method,
Abbrescia & Speck [1] have established the maximal development of Cauchy data for the Euler equations in a localized
downstream region of spacetime. Their result is easiest to explain using the left panel in Figure 1. The black curve,
we which have termed the pre-shock, they refer to as the crease in [1]. As we have explained above, the surface
1 = xj(x2,t) (shown as the magenta surface in Figure 1) separates spacetime into the upstream region (bounded
from above in time by the green surface in Figure 1) and the downstream region (bounded from above in time by the
red surface in Figure 1).

In [1], the authors establish the maximal development of Cauchy data in a localized (3+1)-dimensional region,
just downstream of the surface 1 = (-, t), with z3(-,¢) < 1 < M and M taken sufficiently small so that
O1J,(z,t) > 0 for x; in this region (this is a local region to the right of the magenta surface and under the red surface
in Figure 1). Upstream maximal development was not considered. The authors of [1] employed an optimized descent
scheme, requiring a minimum of 25 such “descents”, which in turn, determines the minimum number of 25 derivatives
that must be used for their energy method. It is important to emphasize that their method allows for non-trivial vorticity
and non-constant entropy, requiring substantially new analysis with respect to the original scheme in [14].

1.11. A rough statement of the main theorem. The main results of this paper are Theorem 4.6, Theorem 4.7,
and Theorem 4.8, corresponding to the three panes in Figure 4. For convenience, we summarize in Theorem 1.2 a
significantly abbreviated version of our main results.

Theorem 1.2 (Maximal development). Consider the 2D Euler equations (1.2) for arbitrary v > 1, with H 7(']1‘2)—
smooth isentropic initial data (ug, 0¢), bounded away from vacuum. Assume that the data is compressive in the x,
direction and generic.” For 0 < & < 1, we assume that the initial dominant Riemann variable wo = u} + oo = O(1)
is assumed to have a point at which 0wy attains its global (non-degenerate) minimum, this maximally negative
slope in the w1 direction is O(—1), while in the x direction the slope of wo is O(1). Assume that the initial sub-
dominant Riemann variable zy := u} — o and the initial tangential velocity ag = u% are O(g) in amplitude and
that their derivatives satisfy (0120, 01a0) = O(1) and (0220, 02a0) = O(g). The initial condition for the geometry is
(W, T, J,) = (e1, ez, 1). Then, assuming that ¢ is sufficiently small, the following hold:
(i) There exists a spacetime Mgierian, the maximal hyperbolic development of the Cauchy data (ug, 0o) prescribed
at the initial time slice, and a unique solution (u, o) of (1.2) in this spacetime, which propagates the regularity
of the initial data; in particular, (u,0) € C)H) N C{ L.

(ii) There exists a family of Arbitrary-Lagrangian-Eulerian (ALE) diffeomorphisms 1 (-, t), indexed by time and de-
fined in Section 1.6, which flattens all fast acoustic characteristic surfaces. Under the action of 1, the spacetime
of maximal hyperbolic development of the Cauchy data gets mapped into its ALE counterpart, the spacetime
MaLE. oL

(iii) The Euler evolution (1.2) is equivalent to the evolution of the differentiated ALE Riemann variables (W, Z, A),
of the geometry (N, T, J,) and of the (rescaled) sound speed %, cf. (1.20), (1.21), and (1.22). These new
geometric unknowns propagate the regularity of their initial data throughout the spacetime Mg, for instance,
gy h,a, JgV-\IN, 2/«» AN, \iVT, 2T, AT are bounded in CY HS, whereas 1) and ¥ remain bounded in CYH.

(iv) The spacetime Mg is the maximal hyperbolic development of the Cauchy data for the ALE dynamics (1.20),
(1.21), and (1.22). The future temporal boundary ( “top boundary”) of MaLg consists of: a co-dimension-2 set
of “first gradient singularities”, which is the set of pre-shocks = = {J, = 0} N {J,,1 = 0}, a co-dimension-
1 singular surface which emerges from the pre-shock set in the downstream region, the set {J, = 0}, which

9The precise assumptions on the Cauchy data are given in Section 4.2, items ((i))—((viii)). The set of such initial conditions forms an open set
in the H” topology, as discussed in Remark 4.4.
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parametrizes a continuum of gradient catastrophes for the density and the normal velocity; the distinguished
slow acoustic characteristic co-dimension-1 surface emanating from the pre-shock set in the upstream direction,
which serves as a Cauchy horizon for the ALE Euler evolution. See Figures 3 and 4 below for a pictorial
representation of the future temporal boundary of M.

————— | C——

FIGURE 4. Left. The spacetime region with the future temporal boundary consisting of the or-
ange pre-shock cylindrical surface passing through the co-dimension-2 pre-shock set, shown as the
black curve. Center. The spacetime region used for the analysis of the downstream maximal devel-
opment of Cauchy data. The red surface displays the singular hypersurface consisting of the level
set {J, = 0}, which emanates from the pre-shock (the black curve) in the downstream direction.
In orange we represent the pre-shock cylindrical surface which also emanates from the pre-shock,
but in the upstream direction. Right. The spacetime region used for the analysis of the upstream
maximal development of Cauchy data. The green surface denotes the distinguished slow acoustic
characteristic surface emanating from the pre-shock set (in black), which connects to the initial time
slice in the downstream direction, and which characterizes the maximal hyperbolic development in
the upstream direction.

1.12. Organization of the paper. In Section 2, we introduce the Arbitrary Lagrangian Eulerian (ALE) coordinate
system, adapted to the fast acoustic characteristic surfaces. In Section 3, we introduce a new type of differentiated
Riemann-type variable which is a linear combination of the gradient of velocity and sound speed and the curvature of
the fast acoustic characteristic surfaces (see the identities (1.17)). Our analysis will make use of these new differenti-
ated Riemann variables in the ALE coordinate system.

In Section 4, we give a detailed description of the open set of compressive and generic initial conditions used for
our analysis. We then state the three main theorems of this work. Theorem 4.6 produces the unique Euler solution
up the pre-shock. Theorem 4.7 establishes downstream maximal development of the Cauchy data, and Theorem 4.8
establishes upstream maximal development of the Cauchy data.

In Section 5, we explain the geometry of the spacetime region lying below the cylindrical-type surface correspond-
ing to the set of pre-shocks. Specifically, we smooth the corner formed at the intersection of the set of pre-shocks with
our final time-slice, and create a new smooth cylindrical-type surface using a modification of the metric-scaled deter-
minant .J,. We then remap time, ¢ — s, so as to flatten this surface, and redefine all of our variables to now be functions
of (z,s). We define the Sobolev norms used for energy estimates and state the pointwise bootstrap assumptions on
low-order derivatives and the Sobolev bootstrap assumptions on high-order derivatives. Section 6 provides some of
the basic consequences of the pointwise bootstrap assumptions, including the fact that J,W . (-, t) ~ dywo(z), which
is used on numerous occasions throughout our proof.

Section 7 establishes the sixth-order Sobolev bounds for the geometric quantities J,, 02h, N, T, the sound speed
3, and the tangential reparameterization velocity V. In Section 8, we prove sixth-order energy estimates for the
vorticity. The resultlng vortlclty bound allows us to produce improved L? bounds for both the fifth-order and sixth-
order derivatives of .J, A N Iy y4 > and J, W ~- In Section 9, we close all of the bootstrap bounds.

Sections 10—12 contain the complete set of energy estimates used to obtain uniform Sobolev bounds for Euler solu-
tions in the spacetime bounded from above by the pre-shock cylindrical surface. Using the (x,s) coordinates defined
in (5.18), and the spacetime gradient operator D defined in (5.23), sixth-order energy estimates on the tangential-
component equation set (10.1) are performed in Section 10, providing uniform bounds for the tangential norms 55’7(5),
56,7—(5), 5577—(5), and 25677(5) defined in (5.36). In Section 12, energy estimates for the normal-component equation
set (12.1) are given, with uniform bounds for the norms 55,N(s), g(;’N(S), ﬁ&N(s), and 256,,\,(5) defined in (5.36).
The closure of these normal-component energy estimates relies upon improved bounds for the case of six pure time-
derivatives, and these improved bounds are proven in Section 11.
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In Section 13, we prove downstream maximal development of the Cauchy data. With the modified determi-
nant function J, defined in (5.7), we consider the spacetime with future temporal boundary given by the level-set
{J,(x,t) = 0} in the downstream region, and the pre-shock cylinder in the upstream region. A new coordinate
transformation (13.8) is introduced which maps (z,¢) — (z,s) and flattens this future temporal boundary. Again,
sixth-order energy estimates are closed for the normal-component equations, improved normal-component estimates
are obtained for the case of six pure time derivatives, and tangential-component estimates are closed. The resulting
sixth-derivative uniform bounds establishes the existence of the unique Euler solution for all times up to the singular
boundary where the metric-scale determinant .J, vanishes and thus where gradient blow-up occurs.

Upstream maximal development of the Cauchy data is established in Section 14. A large portion of the upstream
spacetime region is foliated by (what are essentially) slow acoustic characteristic surfaces. The natural time evolution
of the slow characteristic surfaces is somewhat singular when written in our ALE coordinates, adapted to the fast
acoustic characteristic surfaces. In particular, the temporal rate of change of each slow characteristic surface is propor-
tional to J;1 which blows-up at the pre-shock. As such, we introduce a reparameterization of these slow characteristic
surfaces but employing the x; coordinate as the evolutionary independent variable. The resulting description of the ge-
ometry of the slow characteristic surfaces becomes smooth. We define the weight function J used in upstream energy
method via transport along these slow surfaces of the value of .J, along the fast characteristic surface passing through
the pre-shock. With this weight function, we once again close sixth-order energy estimates for the normal-component
equations, improved normal-component estimates are once again obtained for the case of six pure time derivatives,
and tangential-component estimates are again closed. Uniform bounds are therefore established in the entire upstream
spacetime region, lying below the slow characteristic surface that emanates from the pre-shock.

Section 15 is devoted to establishing the optimal regularity of the velocity, sound speed, and the ALE family of
diffeomorphism ). We prove that H” Sobolev regularity is maintained for the entire maximal development of the
Cauchy data.

In Appendix A, we provide the reader a self-contained introduction to the notion of maximal development of
Cauchy data for the Euler equations in the simplified setting of one space dimension. A complete description of the
maximal spacetime set is provided in both the traditional Eulerian setting, as well as the more geometric Lagrangian
framework.

Appendix B is devoted to the basic functional analysis lemmas in the three different spacetime regions that we
employ for our analysis. We prove a number of technical lemmas which are spacetime variants of the classical Sobolev
and Poincaré inequalities, the Gagliardo-Nirenberg inequalities, Moser inequalities, and a number of commutator
lemmas.

Finally, in Appendix C, we establish L*° bounds for solutions to certain transport equations, by obtaining p-
independent bounds for L energy estimates and passing to the limit as p — oco. Keeping in mind that our ALE
coordinate system is adapted to the fast characteristics associated to the A3 wave speed, the lemmas in this section
allow us to obtain pointwise bounds for quantities which are naturally associated with either the A; or A, wave speeds.

2. ACOUSTIC CHARACTERISTIC SURFACES ASSOCIATED TO SHOCK FORMATION

In this section, we develop the geometry for shock formation. We shall study the problem on the spacetime T? x
[tin, T'], where the initial time t;, shall be made precise below, and T' € (tin, tfin] is arbitrary. The times t;, and tg, are
defined in (4.1), respectively in (4.4).

2.1. Characteristic surfaces. We denote the 3-transport velocity by
Vs =u+aon = A3n+ (u-7)7. 2.1

We shall foliate spacetime with acoustic characteristic surfaces associated to the “fast” wave speed A\3. One way of
doing so is by studying the Lagrangian flow map of the 3-transport velocity Vs:

on(z1, 2,t) = Va(n(w1, 72, 1), 1) , n(@,tn) = . (2.2)
In terms of the standard Cartesian basis, we have that
n(x1, 20, t) = (0 (1, 22, 1), 0% (21, 22, 1)),
and that
nt(x1, xo,tin) = 21 and 02 (1, 20, tin) = T2

Using the flow map 7 we can give a geometric description of the fast acoustic characteristics surfaces.
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At initial time ¢ = t;,, we foliate T? by lines parallel to e; = (1,0), and denote these lines by v, (tin) = {21} x T.
For each x; € T and t € [ti,, T, we define the characteristic curve (at a fixed time-slice) by

Ve, (1) = 1(Var (tin), 1) (2.3)
and the characteristic surfaces up to time 7" > t;j, (which are parameterized of =) by
Lot (1) = U,y 100 @) 2.4)

Figure 5 below displays a few such characteristic surfaces I';, for five different values of x; € T.

FIGURE 5. For T > t;, which is strictly less than the very first blowup time, we display the charac-
teristic surfaces I';,, (T') defined in (2.4) emanating from five different values of z1 € T. Att = tj,,
the curves {7z, (tin) }, eT are lines which foliate T2. The distance between the characteristic sur-
faces 'y, (T) is decreasing as T increases, leading to shock formation when this distance vanishes.

FIGURE 6. For T' > tj, which is strictly less than the very first blowup time, and for five different
values of 1 € T, we display both the fast acoustic characteristic surfaces I';, (T') (in orange), and
the corresponding slow acoustic characteristic surfaces emanating from the same values of x; (in
olive-green). While the orange fast acoustic characteristic surfaces are close-to-impinging on each
other, the olive-green slow acoustic surfaces smoothly foliate spacetime.

2.2. An Arbitrary-Lagrangian-Eulerian (ALE) description of the geometry. While the Lagrangian flow 7 is a
natural parameterization for the fast acoustic characteristic surfaces I'y,, it is convenient to introduce a tangential
re-parameterization in the form of the so-called Arbitrary-Lagrangian-Eulerian (ALE) coordinates.

Because each curve -y, (¢) is a graph over the set T > x5, we introduce a height function h(z1, x2,t) such that

Yo, (8) = {(h(21, 22,1),22): xo € T}, t € [tin, T] .
The induced metric on ., (¢) is given by
g(z1,9,t) = 1+ |hy2 (21,72, 8)|?, (2.5)
and the unit tangent vectors 7 and normal vectors A to the curves ,, (¢) are then given by

T(21,20,8) =g 2(hy,1), and  A(zy,29,8) =g 2(1,—hys). (2.6)
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We define the ALE family of maps ¥(z1, x2,t) = (¢! (21, 22, 1), 9% (21, T2,1)) , by’
Y(xy, w2,t) = h(x1, T2, t)e1 + 1262, 2.7
where
h(.’L‘h.’lﬁg,tin) =2x7. (28)

In order to preserve the shape of the characteristic surfaces I', (T'), the family of diffeomorphisms (-, t) must satisfy
the constraint

Y- N=Vz0¢) - N=(u+aon)o)-N. (2.9)
Time-differentiating (2.7), we have that
Ot - N = Dyhler - N) = g 205,
and from (2.9), we have that
Oh = g2 (uov) - N+ ac o) . (2.10)
Similarly,
6,51/) T = 8th(61 . T) = gi%ha 8th .
It follows that
O = (O - NN + (O - T)T
=((uo) NH+acop)N+ ((uoy) - N+acoh)hsT. (2.11)
2.3. The deformation matrix Vi) and its determinant and inverse. The diffeomorphisms ) are fundamental in
our analysis, since the definition of the paraboloid of first singularities, which describes the downstream maximal

development, is determined by the vanishing of the Jacobian determinant of v (see Figure 7).
From (2.7) we have that

hy h,
W:[Ol 12},

so that the Jacobian determinant is given by
J=detVy =h, .
We introduce the metric-normalized Jacobian determinant as
J,o=g =g %h, . (2.12)

The paraboloid of first singularities on the right side of Figure 7 will be shown to be the level set {.J, = 0}.
The cofactor matrix of V1 is denoted by
|1 —hya
b= [o hoy ] ’

and the inverse matrix B(z,t) = [V (z,t)] ! is defined by
B=J"b.

The components of b are denoted by b’, the upper index for the row, and the lower index for the column. It is important
to observe that

L 1 P
1 5 2
by =v5 =g2N7, and b = (0,h,1) = Jey, (2.13)
so that
1_ =1, 2 _ 52

Bj=J;'~7, and  B?=67. (2.14)

As usual, the columns of b are divergence-free.
10The tangent and normal vectors to 7z, (t) can be equivalently defined via the map . In particular, we have that 7 = g_%ng =

1 o1 1 . e 2
g 2(h2,1),N=g 24,5 =g 2(1,—h,2), and the induced metric g = 1,2 9,2 = 1 + |h,2 |%.
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FIGURE 7. Left: in Eulerian coordinates, we represent the 2D analogue of the 1D image from Fig-
ure 18 (below). For T € [tin, tan] We display in orange the fast acoustic characteristic surfaces
I';, (T) for various values of z7. The black curve, parametrized by zo represents the set of pre-
shocks in Eulerian coordinates (see Definition 6.6 below). The green surface is the slow acoustic
characterstic surface emanating from the pre-shock set in the upstream direction. The cuspoidal red
surface, which also emanates from the curve of pre-shocks, is the surface of “first singularities”,
the envelope (or “top” boundary) of the spacetime region in which the fast acoustic characteristic
surfaces remain in one-to-one correspondence with the initial foliation of spacetime. The Eulerian
Cauchy maximal hyperbolic development of the initial data is the spacetime which lies in the “tem-
poral past” of the union of the green and red surfaces (and the time slice {¢ = tg, }). This spacetime
has a boundary which is not smooth; meaning, not differentiable, it has limited Holder regularity.
Right: in ALE coordinates, we represent the 2D analogue of the 1D image from Figure 19 (below).
We represent the same surfaces as in the left figure, except that we are composing with the ALE
diffeomorphism ). In these ALE coordinates, the fast acoustic characteristics are flat planes which
foliate spacetime, parametrized by z;. The spacetime of Cauchy maximal hyperbolic development
of the initial data in ALE coordinates is the spacetime which lies “below” the union of the green and
red surfaces (and the time slice {¢ = tgi, }). In turn, the red surface is the portion of the paraboloid of
“first singularities” {.J, = 0} which lies downstream of the curve of pre-shocks, whereas the green
surface represents the upstream part of the slow acoustic characteristic surface emanating from the
pre-shock, composed with the flow 1. The boundary of the ALE spacetime is 2> smooth.

2.4. The relationship between ALE and Eulerian derivatives. The associated Eulerian unit tangent and normal
vectors are given by

T=Topt, n=~NoypL. (2.15)
Suppose that f denotes a differentiable Eulerian function, and that let F' = f o 1) be the associated ALE function.
Using (2.14) together with the chain-rule, we have that

frioh=F. B = J7'F N+ Foeh.
Since es - N = —g_%h,g andey - 7 = g_%, it follows that
Onfoth=J Fu—g FhoFo (2.162)
d-foty =g 3F, . (2.16b)

The identities in (2.16) show that the ALE coordinate system characterizes the “tame” tangential derivatives of f
simply as derivatives with respect to x5 for f o). The “singular” nature of the normal derivatives of f is characterized



22 STEVE SHKOLLER AND VLAD VICOL

not as much by the fact that these are derivatives with respect to the z; or x5 direction; it is the presence of the Jg_1
term (which blows up as J;, — 0) in front of F; which fully characterizes the singular nature of normal derivatives.
3. A NEW SET OF VARIABLES FOR EULER SHOCK FORMATION

Having introduced a new system of ALE coordinates, we now introduce a new set of variables that are essential for
the analysis of the shock formation process and of the hyperbolic maximal development of the Cauchy data.

3.1. Euler equations in geometric ALE coordinates.

3.1.1. The differentiated acoustic Euler equations. We first compute the evolution of partial (space) derivatives of u
and 0. We differentiate (1.4) and find that

Out e +(u-n + aa)ui,kj nd + (u- T)ui,;gj 4 ao (0, —Opu' ) + aoy oy Ul ui,j =0, (3.1a)
0o, +(u - n+ ao)o,k; nl 4 (u- T)Ouk;j 74 aa(ui,ki —Ono1 ) + aouly; +ul 0,;=0. (3.1b)

The system (3.1) constitutes the differentiated acoustic Euler equations. It is imperative to study this differentiated
form to avoid derivative loss in the geometry.

3.1.2. ALE variables. Using our family of ALE mappings 1 defined in (2.7), we define a new set of ALE variables
representing velocity, sound speed, and their gradients along the acoustic characteristic surfaces by

Ul=uloqp, Y =001, (3.2a)
Ui =ui o, S =o,00. (3.2b)

Additionally, we define the ALE wave-speed
As3=X309p=U -N+aX, (3.2¢)

With respect to the variables (3.2), the system (3.1) takes the form
9U + 97 (U-T = Ashiz) Ujo
+ oS (S v = Ul ) + aZ(Sho el + 975 UL by ) + a¥y X + ViU = 0, (3.3a)
Xk +g7% (U-T — Ashy) Spoz
+ a3 UL M = Sk ) + aXg 2 (=Uk o M hys 4509 hg +ULo 7)) + a2, Ul + 3,07 = 0. (3.3b)
3.1.3. ALE Riemann variables. We define the ALE Riemann variables

W=U-~+%, Z=U-N—-%, A=U-T, (34
and a new set of Riemann-type variables (which are of fundamental importance to our analysis) by
Vo\lk :Nioij—kik, 2k :Nioij—ik, Ak:TZLOij (35)

We note that W, Z, and A are scalar functions, while Wk, 2k, and /&k are the k™ components of vector functions. The
use of the ALE mappings ¢ to parameterize the acoustic characteristic surfaces introduces a tangential reparameteri-
zation with the following transport velocity

V=g 2(A—Azhg) =g 2(A—hy (2w + 1527)). (3.6)

In order to obtain the evolution equations for \in, ik, and /&k, we must first compute the dynamics of the normal and
tangential components of (3.3a). We find that

T, (500 + VO U + (00 + V)5 + B9 0L

T, (HEWy, + 507 Wn + LAWY+ 2T, (W — Z)AT =0, (3.72)
T (VO + VIR U — (01 + V)5 ) - ad, g 7 U

— 2 (/\/’202,1 72]6,1 ) + 20[2(]_(7‘(]7%}7,,2 (Nloz,g 7203,1“2)

+ Jg(kTa\i\/k + ”To‘fk)ii/\/i + Jg/&]fiﬂ'i — %JQ(VO\/],C — 2k)AZT7 =0, (3.7b)
JyTi(at + VaQ)OZ + azg_%‘]gikﬂ _aZTilaJ?I;ml +azg_%’]yh’ﬂ2 Tio’licﬂ
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+ J, (%(Vo\/k + 2k)A1N1 + AkAﬂ'i + %(chk - 2k)(\/VZ - 21)7’l) =0, (3.7¢)
which is coupled with the transport-type equation for h given by
Bih=g*(U-~N+aZ) = g2 (W + 1527), (3.8)
and the evolution equations for (W, Z, A), which are given in (3.21) below.

3.1.4. Tensor notation. We use bold notation for tensors, and write (3.5) as
lj:Vuozp, S=Vooy, W=paxU+3, Z=20-3, A=70.
By ~ U we mean the contraction of the vector A" with the tensor U so that AU is a 1-form, which we identify with a
vector field, with components defined by
(WU) = N"Uj .
Similarly, the vector 7 U has components (7T lj) k=T ’U?c
We next introduce the following component notation

° ° °

W,=W-nN, W, =W-7, Zy=2-N, Z,=2-7, Ay, =A-~, A, =A.T,
and this shall henceforth be used.
3.1.5. Geometric significance of the variables W, Z, and A. The variables W, Z, and A have been designed to both
encode certain components of the characteristic surface curvature tensor and avoid geometric derivative loss. The

significance of these variables is demonstrated using classical Eulerian Riemann variables. Following our definition
of the ALE Riemann variables in (3.4), we define the Eulerian Riemann variables by

w=u-n+o, Zz=u-n—o, a=u-T. 3.9)
Then, the identities (2.16), (3.4), (3.5), and (3.9) provide the following:

W, = J7 Wy —hio g~ 2 Wia+g " A(J Y hia —hys g 2 ha ) = (Opw — adyn - T)ot) (3.10a)
2y =J7 20 —hog 2 20 4+9 YA thys —hia g Thias ) = (Opz — adpn - 7)o, (3.10b)
Ay =J A0 —hog 2 A0 g7 (W + Z2)(J;  hya —hi g7 2hyss ) = (Bpa — 2 (w + 2)8,7 - n)otp, (3.10c)
W, = g 3 W,y +Ag~ 2h99 = (8w — adyn - T)ot) (3.10d)
Z, = g*%Z,z —l—Ag*%h,gg = (0rz —al;n - T)ot, (3.10e)
Ar=g 340 3(W+2)g 3 hoa= (0ra— S(w + 2)0,7 -n)or). (3.10f)

3.1.6. Dynamics of geometry. We will use the identities
DN=-g 'DhyoT, DT=g 'Dhaon,  Dg=2hsDh,, (3.11)
which hold for any differential operator D. From (3.5), we see that
~NU + a3 = HoW + 1597, (3.12)
Differentiating (3.8) and using the identity (3.12), we obtain that
(0 + Va)hyy = by (EOW 4+ 1592) - (W + hye 7)), in T2 X [tin, T1, (3.13a)
(O + Vo) ho = (W, + 152Z,) in T2 X [tin, T, (3.13b)
h,y=1 and h,,=0, on T? x {t =tj,}. (3.13¢c)
From (2.6) and (3.13), we then have that
(B + VI)N + (W, + 1592 )7 =0, in T? x [tin, T], (3.14a)
(0 + V)T — (W, + 1522 ) v =0, in T? x [tin, T], (3.14b)
N=e1 and T = es, on T? x {t =t,}. (3.14¢)
The definition of J, in (2.12), together with the dynamics (3.13), shows that
(s + Vo) J, = J,(A5W, + 352Z,) ,in T? x [tin, T], (3.15a)

J, =1, on T? x {t =ty}. (3.15b)
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Similarly, with (2.5), we compute that

(9 + Vda)g? = g% (H2W, + 1522 ) hyy ,in T2 X [tin, T] (3.16a)

1, on T2 x {t =tin}. (3.16b)

=

g
Thanks to (2.12) and (3.11), we have that
g2 = 9 2 ha2—g Fhy hyy by =g~ 3 (P12 —Jq97%h72 h.oz). (3.17)
and therefore

Ta-N =g Yhio=g 2J,0+9 2 Jhohos= —N,1 T (3.18)

3.1.7. Dynamics of the Riemann variables. With (3.2) and (3.5), the un-differentiated Euler system (1.4) is written in
ALE variables as

(s + VO)U' — aST' Ay — SXN (W + Zy) + SD(W; — Z;) = 0, in T? x [tin, 7], (3.192)
(O, + V) +aX(Zy+A,) =0, in T2 x [tin, 7], (3.19b)
U=} and ¥ = 0y, on T? x {t =t} . (3.19¢)

Using the chain-rule and (2.14), we also record that
Sa=J,(Ex+he2r) =30 (Wy —Zy) + L b (W, —2,), (3.20a)
Sp=gi%, = Lg3(W, - Z,). (3.20b)

From (3.4), (3.19), and (3.14) , we have that

(0 + Vo)W + A(H2W, + 152Z,) + oA, =0, (3:21a)
O+ V) Z+ AW, + 1527, ) — aX(A, +22,) =0, (3.21b)
(O + VO)A+ SB(W, — 2, —2A,) — (W + Z) (42 W, + 152Z,) =0, (3:21c)

in T? X [tin, T, with initial datum
W:wozzu(l)—i—aa, Z:zozzu(l)—oza, A:aozzug, (3.21d)
on T? x {t = t;,}. Similarly, from (3.5), (3.7), and (3.14), we deduce
J, (0, + Vo)W + a,5g~ 270 5
+ I, W (oW + 1527) + JACREeW, + 1597 ) + 9 (W - 2)A, =0, (3.22a)
J(0 +V3)Z — 59 270, —2a% (W0, —3,1) + 202 0,9 2 hy (WU, —3,0)
+ J,(350W + Ee2yz, - J AW, + 3597) - 9 (W~ Z2)A, =0, (3.22b)
J, 00+ VO)A+aSg 21,5, —aS7U,1 +aSg 2T,y 70,
+J,(3(W+2Z)(Ay — EoW, — 1527 ) + AA, + (W - 2)(W, —Z,)) =0, (3.22¢)

&
2

in T? x [ti,, T'], with initial datum

W = Vg := Vu(l) +aVoy, Z=Vz:= Vu(l) —aVoy, A=Vay:= Vu% , (3.22d)
onT? x {t = tin }.
3.2. Dynamics of V. From (3.6), (3.13b), (3.16a), and (3.21), we have that

(O + V)V = —a%g~} (HeW, - §2, — Ay — ha (0hs — (1 - a)Zy)) . (3.23)
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FIGURE 8. We revisit Figure 7, emphasizing the top boundary of the spacetime of maximal hyper-
bolic development of the data, in which the evolution equations (3.14), (3.15), (3.19), and (3.22)
will be studied. On the left, we use traditional Eulerian coordinates, while on the right we use
ALE coordinates. In addition to the curve of pre-shocks (in black), the slow acoustic characteristic
surface emanating from the pre-shock (in green), and the downstream part of the cuspoidal sur-
face/paraboloid of “first singularities” (in red), we display two more surfaces (in both figures). In
magenta, we display the fast acoustic characteristic surface which contains the curve of pre-shocks.
In orange, we display the cylinder obtained by translating the curve of pre-shocks with respect to z;.
The Euler evolution in the spacetime which lies below the orange cylinder is analyzed in Sections 5—
12. The Euler evolution on the downstream side of the pre-shock, i.e., in between the orange and the
red surfaces, is analyzed in Section 13. The Euler evolution on the upstream side of the pre-shock,
i.e., in between the orange and the green surfaces, is analyzed in Section 14.

3.3. Dynamics of normal components W, Z,, and A .. From (3.5), (3.11), (3.14a) and (3.22a) we deduce that
(0 + VO )Wy = —W, (H2W,, + 1527, + A, - %29_%]1722) —aXg tAy +2 (A + 29 2 has )2y
— (3eW, + 527, )A, — (MW, + 527 )W, — aXg 2hg0 A, (3.24a)
Furthermore, using (3.15a) we obtain that
O+ V) (W) = —(J, W) (2R, — 259 3 hy90 ) — a%g 2 J,Av 0+ 2 (Ar + X9 3y ) J, 2
—(3teW, + 1227 ) g Ay — (W, + 1522 ) W, — aXg 2he J,AL . (3.24b)
From (3.5), (3.11), (3.14a) and (3.22b) we have that

(O + V) Zy = —Z, (A58 W,y + 1227 4 SR, 4 59 2Ry ) — 2089 3hia Zy o + 205, 12,0,
+ aZg_%AN,g + QaZg_%(iT + AN)Jg_ng,g +%(AT — Eg_%h,gg )WN
— (HaW, + 3527, A, — (HeW, 4+ 1522,)Z, + aXg 2hpo A, (3.252)
Furthermore, using (3.15a) we obtain that
(O + V) (J,Zu) = —(J,Z5) (~aWy + aZy + SA; + S5g 390 ) — 2059 Thya (J,2) 0 +205 21
+aXg Ay 420507 2 (ho Zy + 27 + A)J, 0 + 2 (A — B9 2 Dy ) J, W,y
— (MW, +3522,) LA, — (B32W, + 1522,) 0,2, + aXg Shae A, . (3.25b)
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We will later make use of the fact that we can write the Z,, evolution in terms of a transport velocity based on the \;
wave speed as follows:
(9 + (V + 2059 2 hy2 )0z — 2050 101) 2y
= 7, (550W, + 227, L 9 4 229—%,22) +2a%(g 22, + /i’\N)J—lJ o +aXg TAy.,
+(A; =BG T )Wy — (H2W, + 3207 YA, — (HeW, 4 1507.)Z, 1+ a%g 2has Ay (3.250)
From (3.5), (3.11), (3.14a) and (3.22c) we have that
(i +VI)Ay = A (AW + 12, + A;) +aXJ Ay —aXg 2ho Ay
- %297%(\;\//« —Zy),2 JF%(VQVN +Zy - 2'&7)(1%‘\;\/7 + I_Taif)
— Wy — Zy + 259 3 hypy ) (W — Z,) — 259737, (W, + 2, — 2A,), (3.26a)
and by using (3.15a) we find that
(i + V) (JAy) = —(LAG)(—SWy + 22, + A,) + aZA, 1 —aXg 2hy (J,AL)

~ 5§39 *E(J Wy = J,Zy)2 +5(J, W + J, 2, — 27, A, ) (H52W, + 1527,
— (I Wy — J,Zy + 259 2 Jhyoo )Wy — Z,) + aXg 30,0 (ho Ay + A — Z,).
(3.26b)
We shall also make use of the A A evolution with a transport velocity that encodes the Ao wave speed as
(&g +(V+ Ong_%h,g VDo — aEJg_lal)AN
= AWy + 120+ Ay) = 859 3 M0 (W + 2y — 2R,) — 85973 (W, — 2y )0
AWy + 2, —2A,)(M2W, + 1597,) — 9(Wy — 2, 4259 2hyg ) (W, — Z,). (3.26¢)

3.4. Dynamics of tangential components V-VT, 27, and AT. Using (3.5), (3.11), (3.14b) and (3.22a), we have that

(O + V)W, = — (B229W, 4 12207 VA, 4+ 9% 3 hyy (W, +2,) —aXg 2R, 7
= —aSg AL, 1959 2hey (W, + 2, +2A,) — (3E29W, + 12227 A, (3.27)
In a similar way, from (3.5), (3.11), (3.14b) and (3.22b), we deduce that

(O + VO)Zy = 2059 2hyo 2y +2a%J 271 —2a%g7 7 (2 — A2)J, M 0 +aSg AL
— §%g  Fhoy (Wr + 2, + 2A4) + aZy(W, — Z;) — A (3W, + 32,). (3.282)
Just as we did for Z ~» WE can write the 27 evolution using the transport velocity based on the A\; wave speed as
(8 + (V + 2059 2 hys )0y — 2030101 2,
=2a%g 50 0 (Ar — Zy) + aXg EAr s —2SXg 2hy (W + 2, + 2A)
+aZ (W, —-2,;)-A (AW, +3Z,). (3.28b)
Lastly, from (3.5), (3.11), (3.14b) and (3.22c), we compute that
0+ VI)A; = aSJ  Ary —aSg ho Ary 259 2 (W — 21,0
— 2% (W, + 2, + 2R,) ;M0 495972 (W — Zy — o Ay)hyno
+SAC(W, —Z7) — (Ar)? — (W — Z7)% — (Wo + Z5) (oW, + 152Z,), (3.29)
and along the transport velocity using the A, wave speed, we also have that
(0 + (V + a¥g % h, )0 — aXJ; 101) A,
= 9N I (W — Z,) 0 — 989 (W + Zy + 2R,) 7, 0 + 95975 (Wi — Zyy — g Ay oo
+SAC(W, —Z7) — (Ar)2 = S(Wy — Z,) — S(Wo + Z,) (Mo W, + 1597, . (3.29b)
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3.5. Dynamics of vorticity. The Eulerian vorticity w := V+ - u = —0,u - n + O,u - 7 is a solution of
Ow + (u+ aon) - Vw +w(dive —n - Vw) =
We define the ALE vorticity ) i i
Q=wop=Ay —L(W,+2Z;). (3.30)
We next define the Eulerian specific vorticity by w = (ao)_éw and a simple computation verifies that
ow+u-Vw=0.
Defining the ALE specific vorticity

Q=wotp=(aX) =Q, (3.31)
an application of the chain-rule, (2.14), and (3.5) shows that
L0, +V3)Q — aQ,1 +ag Thy J,Q=10. (3.32)

3.6. Identity for the divergence. The Eulerian divergence of the fluid velocity is given as divu := d,u-n+0-u- .
We show here that the ALE version of the divergence of the fluid velocny, namely (div u) o1, may be written as a

linear combination of the differentiated ALE Riemann variables W, Z, and A. More precisely, by appealing to (3.4)
and (3.10) we have

(divu)oy) = (Opu-n+ Oru- 7)ot
= Op(u-n)—u-7On -7+ 0 (u-7) —u-nd;7T-n)or
= (30, (w+2) —adyn -7+ 0ra — L(w+2)0.7 - n)oy
%(WN +2Z.)+A,. (3.33)

The above identity is in direct analogy to how the ALE vorticity was written in (3.30) as a linear combination of
components of W, Z, and A.

3.7. Identities for JgV.V, ng, Jg,&. It is important to first rewrite the system of equations (3.22) by commuting .J,
with the operator 0; 4+ V 05 as follows

(8, + V) (J W) + aSg 2,70, = Ry, (3.34a)
(0, + V)(J,Z) — aXg 2,70, —2a5(n0, —3, ) + 205, 2hy (W0 —35) = F, (3.34b)
(8, + V&) (J,A) + aXg~ 2,3, —aXS70,1 +aXJ,g 2hs 70U s = Fy | (3.34¢)
(0 + VOo)h,o = (%WT + %ZT) , (3.34d)
(s + Vo), = (2 Wy + 527,2,), (3.34¢)
where
R = =152, (WoZr — W, Z0)7 — J,(354W, + 1522,)A — §J,(W - 2)A,

o

F=alJ, (WN —~Z,)ZyN — J,(150W, 2 — BOWLZ, +aZ,yZ))T
— J,(HeW, + 352Z A+ £, (W - 2)A,,
Fi= %JQ(WN' —Z AN+, (A (e LW, + 17TOZ2N) - %AN(WT + iT))T
—J,(AA; + (W - Z)(W, — Z,)) + 1 J,(W + Z)(2W, + 1527,).
In order to close highest-order energy estimates, it is essential to re-weight the equations (3.34b) and (3.34c) in a

manner specific to the normal and tangential components. By computing the normal components of (3.34) and the
tangential components of (3.22), we arrive at the following system of equations:

L0+ V) (W) + ag™2 (AN )2 —ag 2 AT, 297370 N(JWy + J,Z — 2J,A) = F), (3.35a)
F(0+ V) (],2y) = (I Wy = J,2)(,Zi) — ag 2 J,(J,Ag) 2 +ag 2 Ay, ], 0
+ 297570 N, (LW + J, 2, — 20,A0) — 20(J,2,0)1 —2071 N, (B + Z7) + 20,1 2y
20,97 2 hiy (J,20) 2 +20T 2 NJ2g 3 hs (R + Z7) — 20,0 0,9 2 hy Zye = FY (3.35b)
F(0+ V) (AN) = 35 (T Wa = L,Zo)(A) + g™ 2 J,(J, 5 )2 —ag~ 2 (1, 5) ;2
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tag 2 2T NS — a(LAY) L +2T0 NIWy + 1,2 —20,A0) + ad, 1 Ay
+ O[Jggiéhﬂ (‘JQAN)72 7%7—72 'Nqu7%h72 (Jg\iv/\/ + ‘]92-’\[ - 2‘]9AT) - O‘quiéhﬂ ‘].q72 A/\/ = F/:V ) (335C)

and
(0, + Vo)W, +ag 2Ar 5 —ag 2T, N(Q+Wy+2,) =F], (3.35d)
LD+ V)L — adyg  2Arptad,g 2T N(Q+ Wy + 2,) — 202, —2a7, N(A, — Z,)
209" 2hy 20 +209 2he J, T N(Ar — 20) = F] (3.35¢)
%(8,5 +V8y)A, + ag_%JgiT,g —ag_%JgXolNT,g N =B +aTy NQ+W, +2Z,)
+ag Tha J,Ars —ag Fhe J, T N(Q+Wr +Z2,) = F (3.350)
where
RV = — 2o ((3teW, + 15972 A, + 2(W,, — ZN)AT + (W, 4 1597 )W), (3.36a)
B = % (e, + 35272 A, — 2R, (W, — Z,) + (BeW, + 1522,)Z,) (3.36b)
FY = — L (AGA, — W, (W, +Z,) — Z(M200y, — 1=207 ) L A (5eW, 1 1527)) . (3.360)
F7 = — LA (320W, 4 15207 ) (3.36d)
= —2A (AW, +3Z,)+2JZ, (W, -2Z,), (3.36¢)
Fl = 2(2QW, — Z,) + LW, + Z,)(MH20W, 4 1207 ) - A2 - LW, —Z,)%). (3.36f)
4. INITIAL DATA AND MAIN RESULTS
We consider the Euler system posed on the spatial torus T? = [—, 7] with periodic boundary conditions in space.

4.1. The time interval. The initial data is prescribed at the initial time
€. 4.1

The above choice of initial time is made so that the very first time at which is .J, vanishes, which corresponds to the
very first gradient singularity in Eulerian variables, is given by

04+ 0(?). 4.2)
That is, the very first singularity is expected to arise at a time which is O(g) past t;,. Our goal is to analyze the Euler

dynamics for an additional O(e) amount of time past this very first blowup time, so that there is ample room (in time)
to observe the geometry of maximal hyperbolic development. For this purpose, we define

tin 1= — 1+a

2 1
tmed = mE " 100 * (43)

We aim to study the Euler evolution on T? X [tin, tmed], i.€., for an O (&) amount of time past the very first singularity.
In practice, it is convenient to smoothly cutoff the spacetime of maximal development with respect to time, while
leaving the dynamics unaltered on [tin, tmed]. For this purpose we introduce a final time

2 1
tﬁn = m&— "E0 - (44)

We leave the Euler dynamics unaltered on [ti,, tmed], and employ a smooth cutoff procedure in time (see the definition
of the function J, below in (5.7)) on the time interval (tmed, tsin]. We establish bounds which are valid on T? X [tin, tfin],
but the Euler geometry is only captured on the subset T2 x [t;, tmed]. Throughout the paper, we restrict the time variable
to satisfy ¢ < tgp, so that in particular 0 < ¢t —t;, < 11—8& . % forall ¢ € [tin, tsin]. We note that the precise definitions of
0 < tmed < tfin given above are not relevant; these choices are only made here for convenience, and the only features
that matter are that 0 < tmed = O(€) and that 0 < tfin — tmed = O(e).

Remark 4.1 (Notation: rescaled derivatives). Since the evolution occurs on an O(e) time interval, we expect that
each time derivatives to “cost” a factor of e~ L. It turns out that the analysis in the paper is performed on O(g) x O(1)
sub-domain of T?, and thus we expect Oy derivatives to “cost” a factor of €=, while 0, derivatives to not bring in
powers of €. Keeping this in mind, throughout the paper, we will use the rescaled spacetime gradient operator D, given
in (x,t) coordinates, by

D= (Dt7D17D2) = (68t,€al,82). (45)
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When D acts on a function of space alone, we implicitly identify D with (D1, Ds) = (€01, 02). We will use the following
notation when discussing these derivatives:

o The symbol D™ is used to denote any partial derivative DY with v € N§, where DY = (£0;)7°(£01)7105? with
|v| = m. In particular, throughout this section there is no need to keep track of the specific multi-index ~, just of
the total order |y| = m of the tangential derivative.

e Naturally, the symbol |D™ f||2, denotes > 1 [[(€81) 20 (£01)™ 032 f|3 2. Whenever the aforementioned sum

over all pairs v € N3 with |y| = m is implicit, it will be dropped, so that we do not further clutter the notation.
e For any scalar function f, with the notation for D introduced in (4.5), we shall denote commutators as

Y -5 5
D7]g := fD7g — D" = — DY D%.
[/;D]g:= D79 =D"(fo)==>_ | (5) /D%
Lastly, we shall use the notation
(D7, f,9) =D7(fg) - fD7g—gD"f =

to denote “double-commutators”.

=m

Y y—0 é
§<7,1<[8]<]y] -1 (6)D /D,

4.2. Theinitial data. Ttis convenient to state the initial data assumptions in terms of (wy, 29, ag) defined cf. (2.6), (2.8),
and (3.4) via
wo = Ug - €1 + 0o, 20 = Ug - €1 — 0y, ap = ug - es, 4.6)
rather the velocity and rescaled sound speed (ug, ). The initial data is taken to satisfy the following properties:
(i) There exists a constant!! ko > 20, which is independent of ¢, such that

supp (wo — ko) Usupp (zo) Usupp (ag) C Xip := [—137e,13me] x T'. 4.7

Naturally, ¢ is assumed small enough to ensure that 13¢ < 1, so that Xj, C T2.
(i) At the level of no derivatives, we assume that

lwo —rollpe <5, laollie <emo,  llaolle < ero-
Therefore, the initial rescaled sound speed o satisfies
%Iio < og(x) < %HLQ, for all zeT?. 4.8)

(iii) Assume that (wo, 20, ag) € H"(T?), and that there exists a constant C > 1, which is independent of ¢, with'?

S (0ol + e D Gonanllye) ¢ X (e HID ]+ D o)) ST @9)
1<[4]<5 : Y 6T ’ ’

Here we have used the notation Dy = €01, Da = 05, and DY = D]'DJ? for v = (71,72) € N3.
(iv) Recalling the notation D; = €0; and Dy = 0, we assume that for all x € T? we have

—1<Dywg < 15, |Dowg| <1, and |IDDywo| < 2. (4.10)

(v) We assume that the global minimum of Djwy is non-degenerate and occurs at x = 0. By this we mean that
Dl’wo(O) = —1, D2’u)0(0) = 0, DDle(O) = 0, and (1 - E)Id S D2D1U20(0) S (]. + €)Id

(vi) We assume that for each 2:5 € T, the function 21 — Dywq(21, x2) attains its global minimum at a unique point
zy = xY (x2), such that the bounds Dywq(zy (x2), #2) < —1F, and Dfwg(zY (z2), x2) > 75 hold.

(vii) We assume' that there exists 9 > 0 such that for all & € (0, 0] and all z1 such that |z1 — zY (z2)| > €1, we
have Dywo(z1, z2) > Diwo(zy (w2), x2) + i,

(viii) We assume'* that there exists £9 > 0 such that for all £ € (0, &0] the following holds. If z = (z1,x2) is such
that z; — zY (22) > €% and D2w(z) < &%, then Dywo(z) > —% and Dfwo(x) > —1. Symmetrically, if
(x1,22) is such that 71 — Y (z2) < —e% and D2wq (w1, z2) > —e%, then we assume that Dywo(z1,22) > f%

and D3wg(z1, z2) < 1. Lastly, we also assume that for z € T2, if Dywo(z) < —3, then D3wg(z) > 1.

Hrpe purpose of kg is to ensure that the initial data does not have vacuum, see (4.8). The assumption ko > 20 is made only for convenience.

Plntuitively, estimate (4.9) says that (at least up to the seventh derivative) we should think of wo (z) ~ ro+W( = w2), 20(x) ~ eZ(, x2),
and ao(z) ~ eA(%, x2), for some smooth functions (W, Z, .A) which obey O(1) bounds (w.r.t. €) for all their derivatives.

13Assumption ((vii)) is only used once: in the proof of Lemma 6.3; more precisely, in the proof of estimate (6.53).

14Assumption ((viii)) is only used in Sections 13 and 14, where we consider the downstream, respectively upstream, maximal development.



30 STEVE SHKOLLER AND VLAD VICOL

Remark 4.2 (Size of derivatives of the initial data). Instead of working with (4.9), it is convenient to quantify the
size of higher order derivatives of the fundamental variables in the analysis. Recall that (VV, Z,A,U, Z)|t:tin =
(wo, 20, @0, U0, 00), Jylt=t, = L ho1li=, = L hali=t, = 0. gl=x, = L N|=y, = €1, Tl=y, = e2, that
(W, Z,A)|,—, may be computed from the identities (3.10), while V |y, may be computed from (3.6). Then, us-
ing the identities in Section 3 (at t = t;,), we may show that (4.9) and assumptions ((1)), ((i1)) imply that there exists a
constant Cqaa = Cyata(av, 50, C) > 1, which is independent of ¢, such that

> DWWt + 22D (2 Aty + D (IDTWC ) + 27 D7(Z, A o)

1<|yI<7 [vI<5

n Z E%HD—Y(JQV'VN)(_’tin)HLQ +5 2 HD’Y JZN,JAN |n HL2 +E 2 HD’Y ZN7AN)< in)HLg
lvI<6 |

N Z 5||D7(Jg\iVN)('atin)HLs>o + HDV JZN,JAN tin HL + HD ZN,AN)( in)HLgc
[vI<4

N Z 57%HDW"\/T(.,»[M)||Li +5*%’|DW(2T,AT)(~,tin)HL3
lv|<6

n Z ||D7\iVT(~,tin)HLgo +5*1HD'Y(27—,AT)(~7tin)HL;o
[vI<4

n Z s*%HDW(JW2,079)('vtin)||Lg + Z HD“Y(Jg,E,.QaQ) , tin HLoo
lvI<6 [y|<4

# 3 EHOha VICtz + 3 P VI )] < Co e
lvI<6 lvI<4 H

Here we use the notation from (4.5), with DY = D}°D]'DJ?, and v € N3. We note that the gain of €= that the L2
bounds experience over the LS° bounds are due to the support of size O(g) in the x1 direction, see assumption ((i)).
Verifying that the bounds in (4.11) have a scaling with respect to € that is consistent with (4.9), and also with assump-
tions ((1)), ((i1)), is an exercise whose details are omitted here. Throughout the paper we shall refer to (4.11) instead
of (4.9), although the former follows from the latter.

Example 4.3 (The prototypical initial data). The prototypical example for wy is of the type

Wo,ex (T1, T2) = Ko + () p(x2), 4.12)
where ko > 20, and the functions p € C§°(R) and ¢ € C°°(T) have the following properties:

e o(r) = —r + 13 for all |r\ < V2 and ( ) = Ofor lr| > 137 For v2 < |r| < 137T we take o such that
-1 S bgn( ) ( ) S ;, 4 S QOI(T) = 11) and S sgn (T) ( ) < 3 For ¢ < 13’ we may view (p(g) as
[—, 7] periodic It is straightforward to construct a function o which sansﬁes all the above conditions.

. gb(*) =1— 17 forall 7| < randqﬁ( T) = 52 for 3 < [F| < m. For \ﬁ < |F| < § we take ¢ such that
—% < sgn(P)¢'(F) < 0, and |¢"(7)| < 3. It is straightforward to construct a function ¢ whlch satisfies all the
above conditions.

A plot of a prototypical function wg ex and its derivative Diwyg ox are given in Figures 9 and 10 below. We then verify
that the function defined in (4.12) satisfies the assumptions we imposed on wy:

o ((i)) holds because (=) = 0 when |x,| > 137e.

e ((ii)) holds since ko > 20 and because |p| < 1and 0 < ¢ < 1.

e ((iii)) holds for some C > 0 because @ and ¢ are C> smooth and have the correct scaling in x1 and x».
e ((iv)) holds because —1 < ¢’ < %’ l¢'| < l, and |¢"| < 5

e ((v)) holds because wo cx (21, T2) = ko — 2 + 3 1 = x5+ éﬁ — 112 z; x3, for all |x1]| < /2¢ and |x5| < J%'

e ((vi)) holds with =Y (x2) = 0 because (b > 0 and so the global minimum of the function O1wo ex (-, T2) =
é(p’(éw(yg) occurs where go is most negative, Le., at v1 = 0. Moreover, we have Diwg ex(xl (x2),x2) =
SD/(OW(?JQ) = —¢p(y2) < < *E: and D1w0 cx(xl (x2), 932)r: 90’"(0)925(92) = ¢(y2) > % > 10

e ((vii)) holds witheq = 6—° becausefor|a:17x1 (z2)] = |z1| > €%, we have Dywg(z1, 72)— Dlwo(xl (xg),xg) =

(¢'(@1) = @' (0)d(w2) = 55 (1 + ¢/ (1)) = fgmin{§, 5(2)?} > Fe? > &,
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o ((Viii)) holds because if 11 —xY (x3) = x1 > €%, it means that = > e4, and since qﬁ > 12 we have Dwg ex(z) <
s (:) o’ ( 1) < 2068 = 2> V2, since =2 < V2, then ¢ (””6—1) =2 > el whlch is strictly larger than
58 ife <ep < (33 ) Buttfml > V2, then ¢ () > —1 and so Dywg ex(z) = ¢/ () p(22) > -3 > -1
Moreover ¢ (&) > =1 and 50 D3wg ex(x) = ¢ () p(x2) > —3. The symmetric statement for v1 — zy (x2) =
z1 < —¢1 holds for the same reason. The last condition holds true because if —l > Diwoex(7) = @' (%) d(2),
then @' (%) < —% < —1, and hence |- | < \/— But in this region we have that ¢""(%+) = 1, and hence

D?wo,eX(ZE) = (Pm( )¢(5’32) > (15(2172) > % > =

W@

FIGURE 9. Left: a global view the function w x, plotted for |x1| < 10me and lzo| < 1, with
1

€ = 55- Right: a zoom-in of the function wp ex, plotted for lz1| < ZF and |zo] < , withe = 55.

FIGURE 10. Left: a global view the function Dy wg ex, plotted for |x1| < 107e and |x2| < =, with

_4’

€ = 35- Right: a zoom-in of the function Djwg ex, plotted for [z;| < %7 and 2y < L withe = &

20"

Next, we identify prototypical initial data for ay and zy. Note that these fields only need to satisfy conditions ((i1))
and ((iii)). As such, we may for instance take

20,ex(21,72) = 0. (4.13)
We may also take
agex(21,22) =0, (4.14a)

but maybe a more interesting prototypical example of initial data for aq is one for which the initial velocity ug is
irrotational, which is equivalent to %82100 = 0100 ex, and this is given by

ag.ex (1, 22) = §P(2)¢' (22) (4.14b)

where ¢ is as in (4.12), and ® is the compactly supported primitive of the function ¢ from (4.12). That is, ®(r) =
fﬁoo o(r")dr'. By choosing ¢ to be odd, we ensure that ® is supported in |r| < 13w, ensuring condition ((i)).
Moreover, condition ((i1)) holds as long as kg > 20, so that (4.14b) is a permissible choice of initial data for ay.

Remark 4.4 (An open set of initial data). We note that the initial data (wo, zo,ag) may be taken in an open set
with respect to a suitable topology. The most direct way to see this is to consider a ball of radius " with respect to
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the H] (X.y) topology", with N sufficiently large, centered at the prototypical functions (W0 exs 20,exs A0,ex ), defined
earlier in Example 4.3—see (4.12), (4.13), (4.14)—with ko > 20, and ¢ € (0,e), where 9 = eo(a, ko) is a
sufficiently small constant. Indeed, for any function in this ball, conditions ((1))—((viii)) are satisfied, if N is taken to
be sufficiently large. To see this, start with conditions ((1)) and ((iii)), these hold automatically for all functions in this
ball by the definition of the HJ(X.y,) norm, upon possibly enlarging the value of C. Condition ((ii)) holds because
for kg > 20 the functions (W ex, 20,ex, G0,ex) Satisfy these bounds with strict inequalities, and we have the Sobolev
embedding H{ (Xin) C L>(Xuw). Similarly, the bounds D1wy < 15, |Dawo| < 1, and |DDywo| < 2 appearing in
((v)) hold if € is taken to be sufficiently small, because by construction, the function wo cx satisfies these bounds with
strict inequalities. The bound Dywo(x) > —1 holds in a vicinity of x = 0 due to assumption ((v)), while for x away
Sfrom O it holds because there wy o« satisfies this bound with a strict inequality. Similarly, the conditions on the initial
data in ((vi)), ((vil)), and ((viii)) are all bounds satisfied by wo x With strict inequalities, and hence small enough
smooth perturbations will also satisfy these bounds. It thus remains to discuss assumption ((V)) on the initial data. It
is clear that arbitrary small perturbations of wg ex may not anymore attain their global minimum exactly at x = 0,
or this minimum may not anymore equal exactly —1, or we may not anymore have the exact equality Dowy = 0 or
D2Dywo = Id at this global minimum. Nonetheless, as we have previously discussed in [8, Section 13.7], we may
use the Galilean symmetry group and the scaling invariance of the Euler system to relax the pointwise constraints
in ((v)). For instance, small and smooth perturbations of wg ¢x Will attain their global minimum at a point near 0,
which may then be shifted to be exactly at 0 using translational invariance. An affine transformation of space may
then be used to ensure that Dowg and DDywq vanish at this point, and scaling may be used to enforce that Dywg
equals —1. Our condition on the Hessian of Dyiwy is already an open condition, so it will be automatically satisfied
for small perturbations. This concludes the proof of the fact that all smooth and sufficiently small perturbations of the
prototypical functions constructed in Example 4.3 satisfy all the assumptions on the initial data: ((1))—((viii)).

Remark 4.5 (Notation: usage of < and the dependence of of generic constants). Throughout the paper we shall
write A < B to mean that there exists a constant C > 1 such that A < CO'B, where C is allowed to depend only on «,
Ko, and Cqyata, but be independent of €. Throughout the paper we use C to denote a sufficiently large constant which
depends only on «, ko, and Cyata, and which may change (increase) from line to line. We emphasize that C is never
allowed to depend on . Since € will be chosen to be sufficiently small with respect to «, kg, and Cyata, we frequently
write inequalities of the type eC < 1.

4.3. Main results. The following three theorems are the main results of this paper. Theorem 4.6 concerns the process
of shock formation, and is proven in Sections 5—-12. Theorem 4.7 concerns the spacetime of downstream maximal
Cauchy hyperbolic development of the initial data, and is proven in Section 13. Theorem 4.8 concerns the spacetime
of upstream maximal Cauchy hyperbolic development of the initial data, and is proven in Section 14. See Figure 4
above. Additional optimal bounds for velocity, sound speed, and ALE map are reported in Section 15 in all cases.

Theorem 4.6 (Shock formation and the set of pre-shocks). Fix a = 77_1 > 0, where v > 1 is the adia-

batic exponent. Let ko > 20 and C > 1 be two arbitrary constants. Then, there exists a sufficiently small e =
eo(a, ko, C) € (0, 1] such that for every e € (0, 0] the following holds. If the initial data (ug, oo)—-or equivalently,
(wo, 20, ag) cf. (4.6)—of the Euler equations at time t = t;, (cf. (4.1)) satisfies assumptions ((i))—((vii)) with parameters
(o, ko, C, &), then there exists a spacetime P and a time-dependent family of diffeomorphisms (-, t): P N {t} — R?
such that the following hold:

(a) There exists a unique classical solution (u, o) of the Cauchy problem for the Euler equations (1.2) in the space-
time Peylerian := {(¥(x,t),t): (x,t) € P}, with data (ug, 0¢). The solution (u, o) is as smooth as the initial
data, i.e., it does not lose derivatives.

(b) Each diffeomorphism (-, t) is invertible with det(V) > 0 on P, for every t the map x — (x,t) — x is
']I‘z-periodic, and v is as smooth as the initial data, i.e., it does not lose derivatives.

(c) The map ) defines a smooth ALE coordinate system (2.7) on P, with associated smooth normal & tangent
vectors N & T defined via (2.6), and smooth metric-normalized Jacobian determinant J, =~ det(V)) defined
via (2.12). This ALE coordinate system flattens every fast acoustic characteristic surface and allows us to char-

acterize P = {(z,t) € T? X [tin, tmed]: ming, er J, (21, 2,t) > 0}, cf. (5.11), where tmeq is given by (4.3).

15Alternativc:ly, we may take perturbations in the standard H7(T?) topology which are sufficiently small. Such perturbations can potentially
destroy the support assumption (4.7). Nonetheless, because these perturbations are infinitesimal, and because the Euler system has finite speed of
propagation, a suitable cutting procedure, and the classical local well-posedness theorem for the Euler system reduces the problem to studying a
“cut” or “localized” initial data, which now does satisfy the support assumption (4.7). We refer to [8, Section 13.7] for the detailed argument.
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The spacetime P describes the Euler evolution for an O(e) amount of time past the “very first” singularity and
satisfies P C T? X [tin, tmed)-

The “top” boundary (future temporal boundary) of P, i.e., OwopP = {(2,t) € T? X [tin, tmed): ming, et J, = 0}
contains the set of pre-shocks =%, which parametrizes a cascade of first gradient catastrophes, resulting from
the distance between fast acoustic characteristic surfaces collapsing to zero. The set of pre-shocks is a smooth
co-dimension-2 subset of spacetime (see Definition 6.6) characterized as the intersection of two co-dimension-1
surfaces: 2% = {(z,t) € T? X [tin, tmed]: J,(z,t) = 0} N {(z,t) € T? X [tin, tmed]: O1J,(z,1) = 0} C DropP-
The ALE coordinate system allows us to define, via (3.2b) and (3.5), a new set of smooth multi-dimensional
differentiated geometric Riemann variables (W, i, A) whose time evolution is given by (3.22). On the space-
time P the Euler equations (1.2) for (u, o) are equivalent to the evolution of the differentiated geometric Rie-
mann variables, sound speed, and of the geometry itself, via (3.22), (3.19b), (3.14), and (3.15).

The unique solution (W, 2, A, X, N, T, J,) of this ALE-Euler system of equations—(3.22), (3.19b), (3.14), (3.15)-
on the spacetime P maintains uniform HS Sobolev bounds throughout the cascade of gradient catastrophes
emerging on % C OwpP. These Sobolev estimates propagate the regularity of the initial data, there is no
derivative loss. The precise pointwise and energy estimates for (W, 2, A, X, N, T, J,) are found in the boot-
straps (5.37), the geometry bounds (7.1), the improved estimates (8.21), (8.22), and (11.2), and in the optimal
HT regularity bounds for v o ), o o 1, and 1 reported in (15.1).

No gradient singularity occurs at points in the closure of P which are away from the curve of pre-shocks. That
is, for (z«,t) € OwopP \ E* we have limps (4 1) (2. +.)(|Vul, [Va|) o (x,t) < +00. On the other hand, for
(T4, ts) € Z2* exactly one component of (Vu) o ¢ and one component of (Vo) o 1) blows up at (x,,t.). With
n=w~otyp"tand T = Top™ !, we have that imps (. ) (z, 1) (|7 Onul, |0 ul, [curlu|, |0-0|) ot (x, ) < +00
and also imps (4 1) (2, ,t.) (N - Opu, divu, Opo) o Y(x,1) = —limps (44— (a, t.) J N, t) = —oo. That is,
the singularities emerging on Z* are pre-shocks, and there are no other singularities on the closure of P.

With respect to the usual Eulerian variables (y,t), the solution (u,o) inherits the H' regularity from U =

uo, X = oo, and the H7 invertible map 1, in the interior of the spacetime Peyierian = {(y,t): y =
Y(x,t), (z,t) € P}. In particular;, (u,0) € CPC) N CPCy is a classical solution of the Cauchy problem
for the Euler equations in the interior of Peylerian- The “top” boundary of the spacetime Pgyjerian contains
the Eulerian curve of pre-shocks defined as = 1oian = {(y,1): y = ¥(x,t),(x,t) € E*}. We have that
|Vu| and |Vo| remain bounded as we approach boundary points away from the curve of pre-shocks. As we
approach points on the co-dimension-2 set of pre-shocks, n - Opu, divu, and 0,0 diverge towards —oo at a
rate proportional to the spacetime distance 10 =g o ian While T - Opu, 0yu, curlu, and 0y remain uniformly
bounded.

Theorem 4.7 (Downstream maximal development). Let 0 < ¢ < go(a, ko, C) be as in Theorem 4.6, and assume
that the initial data (wo, 2o, o) satisfies the same assumptions as in Theorem 4.6. If wy furthermore satisfies ((viii)),
then there exists a spacetime P* and a family of diffeomorphisms (-, t): P* N {t} — R? such that P* > P, ¢|P is
the same as the diffeomorphism 1 from Theorem 4.6, and such that the following hold:

(a)

(b)

(c)

(d)

There exists a unique classical solution (u, o) of the Cauchy problem for the Euler equations (1.2) in the space-

time P} {((x,t),1): (x,t) € P}, with data (ug, 00). The solution (u, ) is as smooth as the initial

Eulerian *—
data, i.e., it does not lose derivatives, and (u, o) |73 is the same as the solution (u, o) of Theorem 4.6.

Each diffeomorphism 1)(-,) is invertible with det(V1)) > 0 on P¥, for every t the map x + 1)(x,t) — x is
Tz—periodic‘, and ) is as smooth as the initial data, i.e., it does not lose derivatives. As in Theorem 4.6, the
diffeomorphism 1 defines a smooth ALE coordinate system on P*, with associated smooth normal & tangent
vectors N & T, and smooth metric-normalized Jacobian determinant J, =~ det(V)), which flattens every fast
acoustic characteristic surface.

There exists a co-dimension-1 surface 11 parametrized as 11 = { (2} (x2,t), x2,t): (-, 22,t) € P} such that the
co-dimension-2 surface of pre-shocks defined in Theorem 4.6 is given by =* = 11 N Oyop P, and such that 11 C
{J,51= 0} (cf (5.12) and (5.13)). We say that a point (x,t) lies upstream of the surface Il if x1 < x7(x2,t),
and write this as (z,t) € II_. We say that a point (x,t) lies downstream of 11 if x1 > a7 (x2,t), and we write
this as (x,t) € I1.

The spacetime P* is characterized as follows. By (13.7) and Remark 13.3 we have that P* N TI_ = P NII_
and P* N 11 = P NIL In the downstream region, the spacetime P* N 11 is strictly larger than P N 11, and
by (13.7) and Remark 13.5 it is given by P* N 11, = {(z,t) € T? X [tin, tmed): T1 > 2} (22, 1), J,(x,1) > 0}.
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The new results in the present theorem (when compared to Theorem 4.6) concern the downstream part of P*.
The Euler evolution within the spacetime P* N 11, is the maximal hyperbolic development of the Cauchy data
(up, 00), within 1. In the closure of the upstream region, 1) is the same as in Theorem 4.6 and moreover all
results from Theorem 4.6 apply as is.

The “top” boundary (future temporal boundary) of Pt has global W regularity, and is smooth (the level
set of an HS function) on either side of the set of pre-shocks =*, which lies at the intersection of 3tc,p77ti with
the surface 11. A surface of fast acoustic characteristic singularities smoothly connects to the set of pre-shocks

in the downstream part of the “top” boundary of P*. This is the co-dimension-1 surface given explicitly as
DwopP? NI} = {(2,t) € T? X [tin, tmed]: J,(z,t) = 0,21 > z}(22,t)}. Since J, ~ det(V), this surface
parametrizes gradient catastrophes resulting from impinging fast acoustic characteristic surfaces in 11, i.e.,
it is the “envelope” of the spacetime in which the fast acoustic characteristic surfaces remain in one-to-one
correspondence with the initial foliation of spacetime.

In the spacetime P¥, the smooth evolution (3.22) of the differentiated geometric Riemann variables (\/QV7 2, A)
together with the evolution of sound speed and the geoemetry in (3.19b), (3.14), and (3.15), is equivalent to
the Euler equations (1.2) for (u,c). The unique solution (VOV7 Z,A. 3 N, T, J,) of this ALE-Euler system of
equations maintains uniform HS Sobolev bounds on the spacetime P*. These Sobolev estimates propagate the
level regularity of the initial data, i.e., there is no derivative loss. The precise pointwise and energy estimates are
found in the bootstrap bounds (13.37), the geometry bounds in Proposition 13.9, the improved estimates (13.48)
and (13.57), and in the optimal H" regularity bounds for u o 1), o o 1), and 1 reported in (15.1).

Gradient singularities occur at every point which lies in the downstream part of the “top” boundary of P*. That
is, for all (., t.) € OeopP* NIL1 we have that limp: 5 (4 )~ (2. 4.y (|7 - Onul, [0-ul, [curlul, |8;0]) 0 (2, t) <
+00 and impss (5 4) s (a, ) (N - O, divau, 0p0) 0 (2, 1) = —limpss (4 .4)—(a, t.) J Y, t) = —oco. The
same type of gradient singularities occur on the set of pre-shocks 8t0p77ﬁ NIL There are no gradient singulari-
ties on the upstream part of the “top” boundary of P¥, i.e., on OwopP* NTI_.

With respect to the Eulerian variables (y,t), the solution (u, o) inherits the H' regularity from U = wu o 1),
Y = oo, and the H invertible map ), in the interior of the spacetime ’Péulerian ={(y,t): y = v(x,t), (z,t) €

PtY. In particular, (u, o) € C? CS ney Cg is a classical solution of the Cauchy problem for the Euler equations

in the interior of Péulerian. The “top” boundary of the spacetime Péulerian has global W2 regularity and is
smooth on either side of the Eulerian curve of pre-shocks Z¢ ieian- Gradient singularities occur at all points

which lie on the downstream part of atoppéulerian. Here, n - O, u, div u, and 0,0 diverge towards —oc at a rate

proportional to the spacetime distance to 3topPéulerian, while T - Opu, Oyu, curl u, and 9;0 remain bounded.

Theorem 4.8 (Upstream maximal development). Fix oo = 77_1 > 0 for v > 1. Let kg > 20 be large enough with

1

respect to « to ensure that (14.38) holds. Let C > 1 and & € (0, 5| be arbitrary. Then, there exists a sufficiently
small g = o(a, ko, C,8) € (0,1] such that for every e € (0,¢¢] the following holds. If the initial data (ug, o )—or
equivalently (wo, 2o, ag)—of the Euler equations at time t = t, satisfies assumptions ((1))—((viil)) with parameters
(o, ko, C, €), then there exists a spacetime M3 and a time-dependent family of diffeomorphisms P(-,t): H5 N {t} —
R?, such that w’ﬁ syp IS the same as the diffeomorphism 1 from Theorem 4.6, and such that the following hold:

(a)

(b)

(c)

There exists a unique classical solution (u, o) of the Cauchy problem for the Euler equations (1.2) in the space-

time ﬁgulerian = {(W(x,1),1): (z,t) € H®Y, with data (ug, 00). The solution (u, o) is as smooth as the initial
data, i.e., it does not lose derivatives, and (u,o)| is the same as the solution (u, o) of Theorem 4.6.

HENP
Each diffeomorphism 1 is invertible with det(Vi) > 0 on H3, for every t the map x Y(x,t) — x is
']I‘2-peri0dic, and v is as smooth as the initial data, i.e., it does not lose derivatives. As in Theorem 4.6, the
diffeomorphism ¢ defines a smooth ALE coordinate system on S, with associated smooth normal & tangent
vectors N & T, and smooth metric-normalized Jacobian determinant J, =~ det(V1)), which flattens every fast
acoustic characteristic surface.

Upstream of the surface 11 defined in Theorem 4.7, item (c), the spacetime 11_ is foliated by slow acoustic
characteristic surfaces which emanate from Il = {x1 = x{(z2,1t)}, at least locally for x1 < x3(x2,t). The
portion of the spacetime of maximal Cauchy development of the initial data (ug, o), which lies within T1_,
has as “top” boundary (future temporal boundary) the unique slow acoustic characteristic surface emanating
from the set of pre-shocks =*.
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(d) The spacetime H3 is characterized as Sollows. For b € (0, %] arbitrary, we consider (cf. (14.3)) d-approximate
slow acoustic characteristic surfaces {(x,0°(z,t))}. Among these surfaces there exists a unique and smooth
distinguished §-approximate slow acoustic characteristic surface {(x, ©%(z))}, which emanates from the set of

pre-shocks Z*. The spacetime H® is then characterized as {(x,t) € T2 X [tin, tin): t < ©%(z)}. The new re-
sults in this theorem concern the upstream part of HS, i.e. H® NII_. In the downstream region H5 N 1L, the
spacetime considered in Section 14 is a strict subset of the spacetime P from Theorem 4.6, and all the results in
Theorem 4.6 still apply, as is.

(e) The “top” boundary of H? is the surface 8t0p7-o£5 = {(x,min{O%(x)), tsin} } and the set of pre-shocks embeds
this future temporal boundary as (“)top’)qé NIl = Z* As & — 0T, the surface {(ax@(x)} converges precisely
to the slow acoustic characteristic surface emanating from the curve of pre-shocks, so that in the limit & — 0
we recover the entire upstream part of the spacetime of maximal Cauchy development.

(f) In the spacetime H? the smooth evolution (3.22) of the differentiated geometric Riemann variables (\iV, 2, A)
together with the evolution of sound speed and the geoemetry in (3.19b), (3.14), and (3.15), is equivalent to
the Euler equations (1.2) for (u,o). The unique solution (W, Z,A 3N, T, J,) of this ALE-Euler system of
equations maintains uniform H® Sobolev bounds on the spacetime H3. These Sobolev estimates propagate the
level regularity of the initial data, i.e., there is no derivative loss. The precise pointwise and energy estimates
are found in the bootstrap bounds (14.132), the geometry bounds in Proposition 14.8, the improved estimates in
(14.190), (14.193), and (14.194), and in the optimal H" regularity bounds for v o 1), o o v, and 1 from (15.1).

(g) No gradient singularity occurs at points in the closure of 3 which are away from the curve of pre-shocks. That
is, for (T4, t.) € OropH® \ E* we have Wm0y i) IVUL [V O]) 0 90(2, 1) < +oo. A different kind of
singular phenomenon occurs in the upstream part of 6top7—a[5, in the limit as &6 — 0: the ALE diffeomorphism 1)
cannot be extended beyond this Cauchy horizon in a unique and smooth fashion.

(h) With respect to the Eulerian variables (y,t), the solution (u, o) inherits the H' regularity from U = uot, ¥ =

o o), and the H invertible map 1, in the interior of the spacetime He o, = {(y,1): y = ¥(x, 1), (z,t) €
HO}. Inparticular; (u,0) € C? Cg ney Cg is a classical solution of the Cauchy problem for the Euler equations

in the interior of'fjlgmerian. The “top” boundary of?':lgmerian is smooth and the only gradient singularities occur

on the Eulerian curve of pre-shocks =g oo, Which is embedded in OwopHE jcrian-

4.4. The proofs of the main theorems. The remainder of the paper contains the proofs of Theorems 4.6, 4.7, and 4.8.
The proofs of these theorems paint a much more detailed picture than what is summarized in the statements above,
which only mentions the highlights. Here we provide a roadmap for the structure of these proofs (including the
necessary forward references). The precise details are given in subsequent sections.

4.4.1. The proof of Theorem 4.6. Assume that the initial data (wy, 20, ag) = (ug-€1+ 00, ug-e1 — 0o, g - €2) satisfies
conditions ((i))—((vii)) from Section 4.2, for some parameters «, ~g, C (independent of €), and € > 0. As discussed in
Remark 4.4, this constitutes an open set of initial data. These assumptions in particular give (ug, o¢) € H'(T?), and
the initial density is bounded away from vacuum. By the classical local well-posedness theory for the isentropic Euler
system in Sobolev spaces, we know that there exists a sufficiently small time 7" > tj, and a unique classical solution
(u,0) € CO([tin, T); H"(T?)) of the Euler equations (1.2), such that all bounds on this solution are inherited from the
initial data, up to a deterioration/magnification factor of 1 + ¢ for all norms.

On T? x [t;n, T] we may define as in Section 2 the Arbitrary-Lagrangian-Eulerian (ALE) coordinates (v)(z,t),t) =
(h(x1,x29,t), x2,t) adapted to the geometry of the fast acoustic characteristics. The family of diffeomorphisms (-, t),
which evolves according to (2.11), induces a normal () and tangent (7) vector according to (2.6), and a metric-
normalized Jacobian determinant J, according to (2.12). In terms of this ALE geometry, we may then define as in
Section 3 a new set of differentiated multidimensional Riemann variables (W, 2, A), according to (3.2b) and (3.5).
Since on T? X [ti,, T we are dealing with C’it functions, and since the map ¢ is invertible (det(Vy) =~ J, is
bounded from below by a strictly positive number), by the construction of these differentiated Riemann variables we
have that their evolution in (3.22), together with the evolution of the rescaled sound speed (3.19b), and that of the
geometry (3.14)—(3.15) is in fact equivalent to the original Euler evolution in (1.2).

The above described short-time analysis may then be extended to a larger spacetime via a classical continuation
argument (which relies on local well-posedness of the Euler system and on finite speed of propagation) if we are able
to guarantee that in this extended spacetime all the unknowns in the problem retain the regularity of the initial data (in
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this case, H" regularity for U = u o), = o o and ¢ itself, and HY regularity for the geometric quantities A", T, .J,
and for the differentiated Riemann variables (\iV, 2, A)), and if we are able to show that in this larger spacetime the
family of diffeomorphisms 1) remain invertible (that is, J, > 0). A rigorous implementation of this continuation
argument requires quantitative bounds on all unknowns in the problem, which we establish via a series of “bootstrap
inequalities” for the solutions (W, 2, A, SN, T, J,) of (3.22), (3.19b), (3.14)—(3.15). These bootstrap inequalities (see
the inequalities in (5.37) below) consist of pointwise bounds for the fields (W, 2, A, ¥, N, T, J,) and their derivatives
with respect to space and time, and of L2-based energy bounds for derivatives up to order six for (W, Z A N, T, J,)
(the same as the regularity of these fields at the initial time). These bootstrap inequalities are stated in either the ALE
spacetime coordinates (x,t), or equivalently using a set of “flattened” (z,s) spacetime coordinates (given by (5.18b)
and (5.20)), which are more convenient to use for energy estimates (see also Remark 5.3 below). The spacetime P
mentioned in Theorem 4.6 is then defined as a cylinder (meaning, it is invariant under translations in the z;-variable) in
which the map (-, t) remains invertible, and which is quantified as 7 (x2, t) = ming, et J, (21, x2,t) > 0 (see (5.11)).

We note that the “top” boundary of the spacetime {7 > 0} intersects the final time slice mentioned in Theorem 4.6,
namely {t = tmed}, in a Lipschitz (as opposed to H%-smooth) fashion. In order to work with a spacetime which is
as smooth as possible, in our case the zero level set of a H 6 function, in Section 4.1 we have included one more
time-slice denoted by {t = tfin}. On T? X [tmed, tfin], Which is a spacetime beyond the scope of Theorem 4.6, we
smoothly extend the Euler evolution in an artificial way (by working with the function J, defined in (5.4a), instead
of the natural Jacobian determinant .J,), in order to ensure a smooth termination of our spacetime before the slice
{t = tsn}. While this extension is not seen in the statement of Theorem 4.6, its use is very convenient for the proof, as
it for instance ensures the flattening map (z,¢) — (z,s) given by (5.18b) retains maximal regularity, instead of being
merely Lipschitz continuous. It is important to emphasize that this technically useful extension does not alter the Euler
dynamics in any way on T2 x [tin, tmed], and at first reading one should ignore the modifications due to .J, — 79

The proof of Theorem 4.6 then consists of showing that in this dynamically defined spacetime the bootstrap in-
equalities may be “closed” if ¢ is taken to be sufficiently small. By “closing the bootstrap assumptions” we mean the
standard continuity argument: assuming the inequalities in (5.37) hold true with a specific constant on P, we use the
evolution equations (3.22), (3.19b), (3.14)—(3.15) to prove that the bounds in fact hold true on P with a strictly smaller
constant than what was postulated. This requires a careful fine-tuning of the constants in the bootstrap assumptions,
which is detailed in Remark 5.4 below. It is important here to notice that ¢ is the last parameter chosen in the proof,
sufficiently small with respect to o, kg, and C.

The closure of the bootstrap inequalities (5.37) is achieved in Sections 5—12 below. This necessitates a careful blend
of pointwise bounds and energy estimates, which appeal not just the bootstraps themselves, but also to a number of
bounds that are direct consequences of the bootstrap assumptions when combined with the ALE Euler evolution and
the functional analytic framework from Appendix B and Appendix C. In particular, the closure of the energy bootstraps
requires that we carefully keep track of the behavior of all unknowns in the problem as we reach the “top” boundary
of the spacetime P. It is here that we encounter the co-dimension-2 set of pre-shocks =* (see Defintion 6.6), on which
J, vanishes (1) becomes not invertible). We keep track of the behavior of all unknowns in the vicinity of OopP using
carefully chosen weights for the energy norms, in terms of fractional powers of 7 and .J,; see the definitions of the
energy and damping norms in Subsection 5.4.

Once the bootstraps are closed on P, we have established optimal H° regularity estimates for (W7 2, A, N, T, J,),
and also the invertibility of the map v (guaranteed by .J, > 0). Optimal H’ bounds for velocity U, sound speed ¥,
and ALE map ¢ are reported in Section 15. By the Sobolev embedding and the (Sobolev) inverse function theorem,
this implies the claimed C;f”t regularity of u, o, v and 1! in the interior of P, and also the equivalence of the system
(3.22), (3.19b), (3.14)—(3.15) with the original Euler evolution in (1.2). The claimed properties of the set of pre-shocks
are established in Section 6.6.

Lastly, the behavior of gradients of the solution as we approach the “top” boundary of the spacetime, as claimed
in (g) (or equivalently, (h) in Eulerian variables) are now direct consequences of: the identities (3.10), of the pointwise
bootstrap bounds (5.37), the properties of J and .J, established in Sections 6.4 and 6.7, and the characterization of
=* in Proposition 6.7. For example, (3.10a) and (3.10b) imply that (n - d,u) o ¢ = %(VQ\IN + Z,) and (9,0) o
P = %(VOV N — y4 ~)- The bootstrap (5.37g) gives that y4 ~ remains uniformly bounded in P. The bootstrap (5.37b)
together with the characterization of the pre-shock in Proposition 6.7 show that as P > (x,t) — =*, we must have
J,(2,t) — 0% and hence W /(z,t) < —2e1J (x,£)~! — —oc. This shows that (n - d,u, 0,0) 0 1h(z,t) — —o0
as P > (x,t) — Z*. On the other hand, (3.10) shows that the gradients (7 - 9,,u) o ¥, (O-u) o ¢ and (9,0) o v may
be computed solely in terms of AN, VQVT, 27, AT, whereas the bootstraps (5.37h), (5.37e), (5.371), and (5.37j) show
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that these terms remain uniformly bounded in P. This shows that (7 - d,u, Oru, 0;0) o ¥(z,t) remain bounded as
P > (x,t) — Z*. The fact that as P > (x,t) — OopP \ E* all gradients remain bounded is a consequence of the
fact that J, does not vanish on Owp P \ =, which is in turn a consequence of the proof of Lemma 6.4. The statements
concerning div u and curl u follow from (3.30) and (3.33). The asymptotic behavior of gradients in Eulerian variables,
as claimed in point (h), follows identically; we omit these redundant details.

4.4.2. The proof of Theorem 4.7. The proof is very similar in both spirit and implementation to the proof of The-
orem 4.6, outlined above. It is based on the equivalent formulation of the Euler equations in ALE variables from
Sections 2 and 3, and a continuation argument which is made quantitative via the propagation of bootstrap inequali-
ties. This close resemblance allows us to confine the entire analysis to one section, namely Section 13, in which we
highlight the details in the analysis which are different from the analysis in Sections 5-12.

The heart of the proof is to close bootstrap inequalities and to ensure that the map v is smooth and invertible in
the spacetime considered. The bootstrap inequalities themselves are the same as in Sections 5—-12 and have been re-
stated for convenience in (13.37). The principal difference with respect to the analysis in Sections 5—12 is that in the
downstream region, i.e., for 1 > x7(x2,t) (written as I in the statement of the theorem), we wish to extend the
spacetime P to a strictly larger spacetime P, whose “top” boundary should be characterized by {.J, (1, z2,t) = 0},
as opposed to {J(z2,t) = ming, J,(x1,z2,t) = 0}, for times prior to tmeq. In particular, this means that any
parametrization of the downstream part of the “top” boundary of the spacetime necessitates x1-dependence. In turn,
this 21 dependence enters the weight function J which replaces 7 in the downstream region (see definition (13.6)),
and in the definition of the flattening map s = q(«, t) which replaces q in the downstream region (see definitions (13.8)
and (13.10)). The closure of the energy bootstraps is then complicated by the appearance of an g,; term in the energy
estimates, and of the coefficient Q; = £J,; in the definition of the D, operator (see (13.12) and (13.13)). This difficulty
is overcome by noting that for z; which is in the downstream region P* N II and is “close” to the co-dimension-1
set IT = {(@%(w2,t),72,t)}, we have that .J,,; > 0, while for points in P# N TI which are far from II, we have that
J, is bounded from below by a positive constant. A careful design of the weight function J and of the flattening map
q in the downstream region (see Section 13.1) then ensures J,; is related to .J,,; and thus has a favorable sign. This
information is encoded through the fact that the coefficients Q; and Co)l are non-negative (see (13.38c) and (13.38d)),
and hence certain dangerous terms in our energy estimates have a favorable sign. Physically speaking, this desired
favorable sign in our energy estimates is a manifestation of the phenomenon of “compression”, which is natural in the
downstream region.

The weight function J and the flattening map q are also carefully designed so that the spacetime 7% NI captures
the full downstream maximal hyperbolic development for Euler, for times prior to tyeq (see Remark 13.5). As in
Sections 5-12, we artificially extend their definitions for times ¢ € (tmed, tfin] in order to ensure the smoothness of
the “top” boundary of the downstream part of the extended spacetime P*. As before, this extension of the ALE Euler
dynamics to T? X (tmed, tsin] (past the scope of Theorem 4.7) is done for technical convenience only, and it does not
affect the statement of Theorem 4.7.

The closure of the bootstraps corresponding to the spacetime P*, is established in Sections 13.6-13.13. Mod-
ifications to the argument in Sections 5—12 (which already covers the spacetime P* N II_) are only required for
the downstream part P# N II,. The closure of these bootstraps then implies optimal HS regularity estimates for
(\iV, i, A,N , T, J,), the invertibility of the map v (guaranteed by J, > 0 in the interior of P*%), and optimal H7
bounds for velocity (U, X, ) (reported in Section 15). The claimed Ci”t regularity of u, ¢, and 1! in the inte-
rior of P*%, and the equivalence of the system (3.22), (3.19b), (3.14)—(3.15) with the original Euler evolution in (1.2)
directly follows.

The fact that (’)topPﬁ NII; and (’)topPﬁ NII_ are smooth (the zero level sets of H functions) follows by construction.
The fact that (’9tc,,,73ﬁ only retains TW2°° regularity across its intersection with II, i.e., at the pre-shock =*, is due to the
fact that the second derivative with respect to x; of the weight function g is equal to 0 as ;7 — x7(x2,t)” (from the
left, the upstream part), while the second x; derivative of the weight function { is strictly positive (due to (6.54)) as
x1 — 2% (29, )T (from the right, the downstream part).

The remaining issue to discuss is the behavior of gradients of the solutions (u, o) discussed in item (g) (in ALE
variables) and item (h) (in Eulerian variables). The novelty here lies in the statement that the gradient components
(n - Oypu, 0y0) o 9(x,t) blow up as (x,t) € P* approaches any point on the downstream part of the “top” boundary,
atopPﬁ NTILy N {t < tmed}, NOt just at points on the pre-shock E* (as was shown in Theorem 4.6). This fact is in a
sense the very definition of downstream maximal development: components of (Vu, Vo) blow up everywhere on this
future temporal boundary of the spacetime. In turn, this blowup follows by our construction, which implies that this
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future temporal boundary {(z,t): J(z,t) = 0,21 > 2} (x2,t),t < tmed} in fact equals the set {(z,¢): J,(x,t) =
0,21 > 25 (22,t),t < tmed} (see Remark 13.5), and thus .J, vanishes identically on this set. As discussed in the
last paragraph of Section 4.4.1, the asymptotic vanishing of J, is equivalent to the divergence towards —oo of W,
and thus also of (n - dyu, 0,0) 0 ¢ = (%(WN +Z,), %(VOVN — Z,)). The bootstraps (13.37) also imply uniform
bounds for (Z,,A,,W.,,Z, A,) on P!, showing that (7 - d,u, dru,d;0) o 1 remain uniformly bounded on P!
The statements concerning div » and curl u follow from (3.30) and (3.33). The asymptotic behavior of gradients in
Eulerian variables, as claimed in point (h), follows identically.

4.4.3. The proof of Theorem 4.8. The proof follows the same strategy that was utilized in the proofs of Theorem 4.6
and 4.7 above: we use the equivalent formulation of the Euler equations in ALE variables from Sections 2 and 3, and a
continuation argument which is made quantitative via the propagation of bootstrap inequalities. We confine the entire
proof to Section 14, where we highlight the details in the analysis which are different from the analysis in Sections 5—
12. Nearly all differences arise due to the fact that we need to carefully analyze all slow acoustic characteristic surfaces
emanating from the pre-shock, and its vicinity.

The heart of the proof is to close bootstrap inequalities and to ensure that the map 1 is smooth and invertible in the
spacetime 5. Both of these require a careful design and analysis of the upstream part of the spacetime, denoted as
8 NIL_ in the statement of the theorem. While the bootstrap inequalities themselves are the same as in Sections 5—
12, and have been re-stated for convenience in (14.132), the meaning of the Li-based norms present in (14.132b) has
been adapted to the upstream geometry (cf. (14.122)), and the weight function J present in the definition of the energy
(cf. (14.130)) and damping (cf. (14.131)) norms has undergone a significant transformation (see (14.58) and (14.62))
in order to account for the degeneracy in the problem which occurs along the slow acoustic characteristics emanating
from the pre-shock.

The intuition behind the construction of the weight function J in (14.58) and (14.62) is as follows. Based on
intuition gained from Sections 5-12 and Section 13, we need to design the weight function J such that:

e Jis HS smooth, the same regularity as .J,,

o the level set {J = 0} perfectly describes the future temporal boundary of the upstream part of the spacetime 5,
at least in the vicinity of the set of pre-shocks =*, where the gradient singularities are lurking,

e such that the action of the \;-transport operators (9; +V 82) — (3—4)aX(J, 101 —g~ 3h,5 0s), gives a sign-definite
term when acting on g, for all i € {1, 2, 3}.

The immediate issue is that as opposed to our earlier analysis we cannot let J equal simply to min,, J, (cf. Sections 5—
12), or even J, itself (cf. Section 13). This is because upstream of the pre-shock, the level set {.J, = 0} describes the
future temporal boundary of a spacetime which cannot be accessed by neither \;-characteristic surfaces (suitable for
propagation of slow sound waves via Z) nor A-characteristic surfaces (suitable for the propagation density waves via
3, vorticity waves via €2, and tangential velocity waves via A), which emanate from the initial data (ug, 0g) att = ti,.

This begs the question: what is the maximal spacetime upstream of the pre-shock which is accessible by all charac-
teristic surfaces (corresponding to the A1, A2, and A3 transport operators) emanating from the initial data? As discussed
in Section A, this is the spacetime whose future temporal boundary is given by the slow acoustic characteristic surface
(corresponding to the slowest wave-speed, A1) which emanates from the set or pre-shocks, in the upstream direction.
This matches item (c) in the statement of Theorem 4.8. As discussed in (14.1), (14.3), and Figure 15 below, this surface
would normally be characterized as a graph over (z9, t), by letting 21 = 6(22, t) for a suitable function . The fact that
this surface emanates from the pre-shock E* = {(Z1(x2), z2,t*(x2))} is then the statement 0(x2, t*(z2)) = Z1(x2)
for all x5 € T (cf. (14.4)). The immediate issue which emerges is that the evolution equation for the function 6 con-
tains factors of J;1, which degenerate in as one approaches =*. Our observation is that if we re-parametrize the slow
acoustic characteristic surface emanating from =* as a graph over (x1, 2), by letting t = ©(z1, 23) for the function ©
such that ©(6(z2,t), x2) = t. A consequence of this re-parametrization is that the “evolution equation” for ©(x) (we
view ;1 as the evolution direction) now contains only factors of .J, (cf. (14.8)), which merely vanish as one approaches
=*. This makes a smooth analysis of © accessible, and with that, a smooth description of the spacetime of upstream
maximal development.

For technical reasons, related to the third bullet in the above-described requirements for J, it is convenient to retain
a damping term in our energy estimates (see the discussion in Remark 14.14). As such, for & > 0, arbitrarily small,
we define a d-approximate slow acoustic characteristic surface passing though the curve of pre-shocks, and replace
the ©(z) described above by ©%(z), as defined in (14.13). Then, the §-adjusted upstream spacetime of maximal
development of the Cauchy data, H5, is characterized as the set (x,t) such that ¢ < ©3(z), matching (d) in the
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statement of Theorem 4.8. For convenience, we also require ¢ < tg,, in order to cap the time evolution at an O(¢) past
the pre-shock. Then, the second bullet described above dictates that J needs to be designed such that J(x, @(m)) =0
for all x; in the vicinity of the pre-shock =* located at x; = #(z2) and t = ¢*(x2). In order to ensure that J
vanishes on 6top7—clé for times ¢ < tg,, we thus design J as a H 6 smooth function in 7—015, whose zero level-set is
given by {(z,©3(z))}. This matches the first two bullets in the above list of requirements for J. The extension of J
from 8t0p7:l5 down into 7° is then made to also take into account the third bullet, by ensuring that the 6-modified \q
transport operator (1 — 8)(0; + Vdy) — 2aX(J; 28, — g~ 2 h,5 Do) has J in its kernel (see (14.60a)). Additionally, we
require that on the plane {(2(x2), z2,t)} which emerges from the pre-shock at earlier times ¢ < t*(x2), the weight
J precisely matches the function J, (cf. (14.60b)). This ensures that J vanishes not just on the pre-shock, but on the
entire surface (, ©%(z)), which is a characteristic surface for (1 — §)(8; + V) — 2a%(J; 101 — g~ 2h,5 0,). This
strategy is implemented by letting J(z, 0% (x,t)) = J,(&1(x2),xa,t) for t < t*(x3) and all zo € T (cf. (14.58)),
where ©°(x, t) represents a family of characteristic surfaces for the -approximate \; transport operator (1 — 8)(9; +
V8y) — 205 (J; 10y — g~ 2 h,o ), which emanate from the plane { (i1 (22), 22, t)} (see (14.10)). In fact, the surfaces
(z,0%(z,t)), for (x,t) as described in (14.11a), smoothly foliate a portion of the spacetime ° which has Z* on its
future temporal boundary, labeled as ’Hi in the analysis, and defined in (14.15a). The fact that (x, ©%(x,t)) smoothly
foliates ’Hi allows us to perform a smooth and sharp analysis upstream of the set of pre-shocks. The spacetime
e \Hi is denoted by ’Hé_ in (14.15b). Here the analysis is simpler because J, ~ 1 (see (14.71c)), we are “far away”
from 8t0p3f15, and so we just need to ensure that J satisfies the third bullet from the above list of requirements. This is
implemented in (14.62).

With the weight J and our spacetime H3 defined precisely, the proof turns to the closure of the bootstrap assump-
tions, establishing the properties stated in item (f) of the Theorem. As before, pointwise bootstraps are closed in
(x,t) € H3 coordinates, while energy norms are estimated in flattened (z,s) € H° coordinates defined in (14.99)—
(14.106) below. Note that while the parameter & does not enter the bootstrap assumptions explicitly, this parameter
does affect the dependencies of the bootstrap constants themselves, cf. Remark 5.4. Our analysis shows that the con-
stants appearing in items ((iv)) (corresponding to K)—((xiv)) (corresponding to ) of Remark 5.4 need to be chosen to
depend on 9.

At the level of pointwise estimates, we highlight the lower bounds for J in (14.67), the fact that J gives a (good)
signed contribution when acted upon by the {)\;}2_; transport operators (this follows from (14.93)), and the fact that
J, > %3 (see (14.71)). In particular, this last fact and the fact that § > 0 in the interior of H3 ensures that J, > 0in

the interior of 7%, implying the invertibility of ¢ claimed in item (b) of the theorem.

At the level of energy estimates, several complications arise when compared to the analysis in Sections 5-12
and Section 13. The principal new difficulty stems from the fact that H‘lhas a “right lateral” boundary located at
x =6 (22,s) (see the definition in (14.118)). As such, the adjoint operator D* corresponding to the L?-norms defined
in (14.118) contains a number of boundary terms (14.129) at z; = € (x5,s). At the top level of the energy estimates,
these boundary terms seem to be out of control; a more careful inspection, which uses fine properties of the spacetime
H?% and the design of the weight function J shows however that these boundary terms (or, suitable combinations of
them) either have a good sign (see e.g. (B.23)), or they vanish altogether since J vanishes (see for instance the proof of
Proposition (14.10)). Another difficulty in closing the energy estimates stems from the A;-transport operators, written
as (QBs+V dy)— (3—i)aX(J; 10, — g~ 2DhDy) in (x,s) coordinates, acting on J. Here, by design we obtain helpful
signed damping terms, see e.g. Remark 14.14 and the lower bound corresponding to Z, in (14.211) (which is due to
the fact that & > 0). We also mention here that the functional analytic framework from Appendix B can be adapted
to the (z,s) coordinates considered in Section 14, as discussed in Section B.5 below. Similarly, the space-time L>°
estimates from Appendix C also hold in the flattened upstream geometry, which changes to the proof of these estimates
that are described in Section C.2.

Concerning points (e¢) and (g) in the statement of the Theorem, we remark that at points (x,¢) such that z; <
7 (w2,t) and such that t > sups¢ g, 1] ©3%(x), that is, at points which lie upstream of the pre-shock and above the

envelope of the 8-approximate slow acoustic characteristic surfaces (-, ©°(-, -)), an Euler solution cannot be computed
in a smooth and unique fashion from the initial data (ug, 0¢) at time t;,. This is because a slow acoustic characteristic
surface passing through (z,t) would necessarily have to intersect (backwards in time) the surface dyop P* N I1, the
downstream part of the top boundary of the space time P* constructed in Theorem 4.7. But according to Theorem 4.7,
item (g), at every point on 9y, P* N I1 a gradient singularity occurs both in density and in the normal derivative of
the normal velocity, precluding a smooth continuation back to the initial data.



40 STEVE SHKOLLER AND VLAD VICOL

In closing, we mention that the only gradlent singularities for the fundamental variables u or o which may be
encountered on the closure of the spacetime HO (the closure of ’HEu,enan in Eulerian variables) occur on the set
of pre-shocks =Z* (denoted as Zf ..., in Eulerian variables), which is embedded in the future temporal boundary
of our spacetime, 8t0p7-°[5. This fact was claimed in items (g) and (h) of the statement of the Theorem. Indeed,
as was already discussed in proof of Theorem 4.6 and the proof of Theorem 4.7, the only potential singularities
permitted by the p01ntw1se bootstrap assumptions are in (n - d,u, 0,0) o ¥(x,t), because these terms are com-
puted in terms of W, while the bootstraps only control .J, WN ~ (wg),1. As before, for (z.,t.) € E* we
have that lim; i) Jo(@,t) =0, and thus W,, — —oo. However, for any (z.,t,) € 8t0p7-L \ 2

S(x,t) = (zx, b
we either have limys5, 4 40y Jo(:1) 2 & when dist((z.,t.),E*) 2 ¢ due to (14.80a), or we have that
Wmgys 5 o ) (e ey Jo (5 0) 2 w ~ (Ldist((zs,t.),2%))%, when 0 < dist((z.,t.),E*) < € (due to
(14.86) and (14.92)). As such, hmma(w B> (@at) J,(z,t) > 0, and so the bounds for Jg\iVN do imply a (finite)
upper bound for (|n - O, ul, |0n0]|) o ¥ (z,t), thereby concluding the proof.

5. SHOCK FORMATION: SPACETIME, ENERGY NORMS, AND BOOTSTRAP ASSUMPTIONS

5.1. Local well-posedness. With the Cauchy data defined in Section 4.2, the classical local well-posedness of the
Euler system gives the existence of a time T' € (tjn, tfn), such that uniform sixth-order energy estimates for solutions
(W,Z,A,J, h,y) to (3.34) are obtained on the time interval [ti,, 7], and the support of each solution at all times
t € [tin, T is contained in the set

Xin == {z € T?: dist(z, Xin) < Couppe } (5.1)
where the constant Cg,p, > 0 depends only on « and kg (see (6.5) below). That is, solutions to the compressible
Euler system have finite speed of propagation, and we are bounding solutions for an amount of time which is at most
thin — tin = == - 2L: moreover, the local existence theory implies that

in = T¢a " 50°
inf J,(x,t) >0 5.2
(z,t)e’}I‘gx[tin,T] g(.%' ) (5-2)

which is to say that no collision of characteristics occurrs on [tin, 7.

5.2. A smooth remapping of spacetime. Our initial goal is to extend the ALE Euler solution (W, i .&7 J,s hya ) of
(3.34) from the set X, X [tin, T'] described in Section 5.1 to a certain spacetime P C Xap X [tin, tn], such that
e in this spacetime P, the ALE Euler solution maintains uniform sixth-order Sobolev bounds;
e J, > 0 in the interior of P; and
o the boundary of P contains a co-dimension-2 surface on which J, and J,,; vanish, the so-called curve of pre-
shocks.

A priori, it is natural to consider the spacetime set

P = {(x,t) € T2 X [tin, tfin): min J, (1, 22,1) > 0}. (5.3)
1

We note that the future temporal boundary of the spacetime P in (5.3) is not smooth along the intersection of the
parabolic cylinder {(z2,t): ming, et J,(x1,22,t) = 0} and {¢ = tsn} (see the green surface in Figure 11). The
lack of smoothness of this future temporal boundary along this intersection is an artifact of our choice of the final
time ¢ = tg,; in particular, any “final time” which is O(g) can be used in place of ts,. As such, we introduce a new
spacetime, which coincides with P fort € [tin, tmed], but whose future temporal boundary is both smooth and properly
contained in the set T? X [tin, tfin].
For this purpose, we introduce a specially constructed modification of .J,, which we denote by J,, which has the
following three properties:
() J, = J, forall t € [tin, tmed];
(ii) J, has the identical regularity as .J,; and
(iii) for any z € T?, we have that J,(z, -) vanishes at a time ¢.(z) < tfn.
More precisely, we define .J, by modifying (3.15) as follows:

(0, +Vdy)J, = (1;av"vN +1527,0) — J,in T? X [tin, thn) , (5.4a)
J, = on T? x {t =t} (5.4b)
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FIGURE 11. Consider the function J, = J, (21, 2, t) resulting from the evolution of the initial data
from Example 4.3, with (wo, z0,a0) = (wo,ex,0,0), with e = 2—10. The bounding box represents
the zoomed-in region |z1| < ZE, |xo] < %, and t € [—tfin, thn]. In red, we plot the level set
{(z,t) € T? X [tin, thn): J, (21,72, t) = 0,21 > 2} (22,t)}. In magenta, we plot the future temporal
boundary (or “top” boundary) of the spacetime P from (5.3), which consists of the level set {(z,t) €
T? X [tin, thin): ming, J,(z1,72,t) = J,(z%(22,t), x2,t) = 0}, together with the flat portion of this
temporal boundary {(z,ts,) € T? x {tqn}: ming, J,(21,72,ts,) > 0}. The curve of pre-shocks,
represented in black, is defined by the intersection of the magenta and the red surfaces, i.e., it is the
set {(z,t): J,(x,t) =0 = J,,;1 (x,t)}. See also Definition 6.6 below. Lastly, in green we represent
the slow acoustic characteristic passing through the curve of pre-shocks.

where J = J(t) > 0 is a smooth time-dependent function (independent of x), given by

3(t) — 2(tﬁn_tmed)Q:( t—tmed )7 (55)

€ tfin —tmed

where € is a C®-smooth cut-off function, with €(r) = 0 for r < 0, with 0 < €(r) < 2and 0 < €'(r) < 4
for r € (0,1], with fol ¢(r)dr = 1, and with ||%¢HLO@(O)1> < 1, where the implicit constant depends only on
ke {1,5}.

We note that in view of (3.15a) and (5.4a) we have (9; + V9)(J, — J,) = —J, and thus we arrive at the identity

t
T (2t) = J(2.1) — Tpoe / 3o, €z, € a, £), ), ), At 5.6)

tmed

With the choice of J in (5.5), we arrive at the explicit formula

t—tmed

I, (z,t) = J,(z,t) — 214t /tﬁ"_tmed E(r)dr. 5.7
0

This identity, the bootstrap (5.37k) and continuity, shows that for every x € T2, there exists a time t,(x) € [tin, tfin]
such that J, (x, t.(z)) = 0. Additionally, (5.7) shows that uniformly for (z,¢) € P we have

81(79 - Jg) = 07 82(79 - Jg) = 07 _wlte[tmedvtﬁn] < at(jy - Jg) < 07 (5'8)

and also
|(Eat)k(’]g - Jy)| S ]-tE[
forall k € {1,...,6}, where the implicit constant only depends on « and k. Note also that

7, < J,. (5.10)

(5.9)

tmed;tfin]
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Next, we modify the spacetime P of (5.3), and define the spacetime
P = {(z,t) € T X [tin, thin) mi%jg(xl,xz,t) >0} . (5.11)
T1€
We shall prove in Lemma 6.4 below that for (2, ) € P with t > t;,'° the minimum with respect to 2 of .J, is attained
at a unique point z7 (x4, t), so that we have

J, (73 (22,1), 2,t) = min J, (21, 72,1). (5.12)

x1€T

In particular, for t > t;,, 2% (w2, ) is a critical point for the function J, 1 (-, z2,1), i.e.

J,1 (23 (29, 1), 29,t) = 0. (5.13)
For brevity of notation, throughout Sections 5—-12 we shall denote
T (x2,t) := J, (25 (29, 1), 20, 1). (5.14)
We note at this stage that due to (5.10), we may show that
J(z2,t) < 1. (5.15)

In order to prove (5.15), we refer to (6.39)—(6.40) below, which implies the bound J,(x7(x2,t), z2,t) < 1+ (t —

tin) 52 (— - +2Cy,) < 1— (¢t — tin)w < 1, once ¢ is chosen sufficiently small. We note that since J, — .J,

FIGURE 12. Consider the function J, = J,(x1,2,t) as defined by (5.7), with .J, as in Figure 11.

The bounding box represents the zoomed-in region [z;| < 77, |xa| < %6, and t € [—tfin, thin)-
Left: In red, we plot the level set {(z,t) € T? x [tin, tan]: J,(21,72,t) = 0,21 > x}(w2,1)}.
In orange, we plot the future temporal boundary (or “top” boundary) of the spacetime P from
(5.3), which consists of the level set {(z,t) € T? X [tin, tan]: J(72,t) = ming, J,(z1,72,t) =
J, (x5 (xa,t),m2,t) = 0}. The intersection of the orange and the red surfaces, i.e., the set
{(z,t): J,(x,t) = 0 = J,,1(z,t)} is represented in black. The slow acoustic characteris-
tic emanating from this black curve is represented in green. Right: in order to emphasize the
fact that for ¢t < tneq the figure on the left side precisely matches Figure 11, we compare the
level set {(z,t) € T? X [tin, thn]: J(@2,t) = ming, J,(z1,22,¢t) = 0}, in orange, with the
level set {(x,t) € T? X [tin,tain]: (72,t) = ming, J,(v1,72,t) = 0} U {(2,tan) € T2 x
{tfin}: ming, J,(z1,22,ts,) > 0}, in magenta. In black we represent both {(x,t): J,(z,t) =
0=J,,1 (z,t)}and {(x,t): J,(z,t) =0 = J,,1 (z,t)}. Itis clear that the modifications only occur
for t € (tmed, tfin], in order to ensure that the top boundary of the spacetime is smooth.

16Note that since J,(z,tin) = 1, the minimum of .J, is not attained at a unique point when t = t;,.
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is independent of x, the global minimum of J,(-, x2,t) is attained at the same point where the global minimum of
J, (-, x2,t) is attained, and hence (5.12) may be rewritten as

J,(z7 (x9,1),29,1) = mierqlr J, (21,29, 1) . (5.16)
1

Note that if (1, x2,t) € P, then (2!, x2,t) € P for all 2}, and so this spacetime is invariant under shifts in the x;
direction. It is thus convenient to define its projection onto the (z2,t) coordinates by:

P = {(w2,1) € T X [tin, thin) : T (w2,) > 0} . (5.17)

In order to perform energy estimates on P, it is convenient to introduce the transformation
q: P [0,¢) (5.18a)
s=q(z2,t) :i=e(1— T (a2,1)) . (5.18b)

We have that q(x2, ti,) = 0, so that the set {s = 0} corresponds to the initial time slice {¢ = t;, }, which is the past
temporal boundary of the projected spacetime P. We also note that the future temporal boundary of P, namely the set

OhopP = {(22,) € T X [tin, thin] : T (22, ) = 0}
is mapped under q to the set {s = ¢}.
Next, we define a suitable inverse of q by
g T x [0,8) = [tin, thin) s (5.19a)
t=q""(a25), (5.19b)

such that t = q~!(za,q(xa,t)) for all (z5,t) € P, or equivalently, that s = q(z2,q " (z2,s)) for all (z4,s) €
T x [0, ¢). In (5.19) we are abusing convention: it is the map (z2,s) — (22, t) defined from T x [0,&) — T X [tin, tfin)
which is the inverse of the map (z2,t) — (x2,s) = (x2,q(x2,t)). The fact that such a map is well-defined is
established in Lemma 6.5 below.

5.3. Change of coordinates for the remapped spacetime. Given any function f: P — R, where we recall cf. (5.11)
that P C T? X [tin, tfin), We define the function f: T? x [0,€) — R by

flz,s) == f(x,t), where s = q(xa,t). (5.20)
Then, by the chain-rule, (5.18b), and (5.13) we obtain
O f(z,t) = Q(xg,s)asf(x,s) , (5.21a)
dof(w,1) = (92 — Qa(w2,5)s) f(x,5) , (5.21b)
O f(x,t) =01 f(x,5), (5.21¢)
where for compactness of notation we have introduced the functions
Qa2,s) = &,q(:z:g,t)‘ - - —5(8tj_q)(xf(x2,t),:r2,t)‘ - (5.22a)
t=q~!(z2,9) t=q~!(z2,9)
Qulas,s) = —82q(x2,t)’ - - 5(821,)(x’{(x2,t),x2,t)‘ o (5.22b)
t=q~"(z2,3) t=q~!(22,9)

For later use, it is also convenient to define

Q(z,s) := CA)(mg,s) - ‘7(96,5)62(302,5) = —e(0,J, + Vagjg)(x’{(xg,t)7x2,t)‘t:q_l(m 9

— (V(z1,20,1) — V(xf(xg,t),xg,t))‘ C Qumas), (5.220)
t=q~1(z2,s)
and . ~ .
Q - 85Q7 Qs = 8SQ, Q2 = 8562 . (522d)
With the above notation, it follows from (5.21) that the spacetime gradient operator in (z,¢) variables, namely D =
(€04, €01, 02), becomes the gradient operator D associated with the (z,s) coordinates, which is defined by

D = (Ds,D1,D2) := (¢Qds, £, 02 — Quds) - (5.23)

That is, we have that s
Df(z,t) = Df(z,s).
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Next, we notice that the components of D commute, that is

[Ds, D2] = [Ds, D1] = [D2,D1] =0, (5.24)
so that for any € N3 we may write unambiguously D? = D2°D}*D}2, and notice that
(D7f)(w,t) = (D7 )(x, ). (5.25)
Via the identity Q0s + V02 = %[N)S + 1752, we note that material derivatives are mapped into (x, s) coordinates as
(0 + Vo) f(x,t) = (Qds + Vo) f(2,5) = (1Ds + VDo) f(2,5) . (5.26)
It also follows from (5.24) and the second equality in (5.26) that
[(Qds + Vd,),D*]f = [V,D¥]D2f = —D*V Do f — (D", V,Daf). (5.27)
Lastly, we may identify the adjoint of D with respect to the L? inner product on T? x [0, s] by
D = —Ds — eQs + eQ(ds — o) , (5.28a)
Df = —Dy, (5.28b)
Dj = —Dy + Q2 — Quds, (5.28¢)
(Q0s + V3y)* = —(Q0s + V) — Qs + Q(Js — 60) + VQa — DoV . (5.28d)

Here we have used that .J, (, t;,) = 1, so that Qy(z,0) = 0.

Remark 5.1 (Lower bound for jq and definition of “fake J,”). By using (5.20) with f = J,, and the definition of
the map q, we deduce that

T,(z,s) = J,(2,t) > minJ,(2,t) = T (x2,t) = (1 — 2) = T (x2,5). (5.29)

Throughout the paper, we shall refer to J (x2,t) = J (x2,s) as “fake J,”. We shall discuss in Section 6 several useful
properties of J. Moreover, note that J does not in fact depend on x- at all.

Remark 5.2 (Dropping theAliildes). Rather than~working with a new family of variables that depend on the spacetime
coordinates (,s), namely W(z,s) = W(z,t), Z(z,s) = Z(z,t), A(z,s) = Az, t), J,(z,5) = J,(x,1), J,(x,s) =

T (z,t), T(z,s) = J(x,s), h(z,s) = h(z,t), §(x,s) = g(z,1), N(z,5) = N(z,t), and T(z,s) = T(x,t), for
notational simplicity we drop the tilde and abuse notation to continue using the variables \IDV7 2, A, gy, jq, T h,g, N, T,
but now depending on (x,s) rather than (x,t). This identification is made throughout the rest of the paper and
no ambiguity may arise because we shall still use the notation D for the spacetime derivative operator in (x,s)
coordinates. As such, D f means that f is viewed as a function of (x,s), while D f means that f is viewed as a function

of (,t), where t = q~ (w2, ).

At this stage it is convenient to record a few of the evolution equations transformed into (z,s) coordinates. For
instance, (3.13b), (3.15a), and (5.4a) imply that (as mentioned in Remark 5.2, we drop the tildes)

(Q0s + Vdh)J, = L2 W, + 52,2, (5.30)
(Qds + Vo), = E2 W, + 15972, — 3, (5.31)
(Qds + V3s)Doh = g(1£aW, + 1527, (5.32)
from (3.19¢) and (3.20) we deduce
DY = 3J,(Wy — Zy) + LJ,Dh(W, — Z,), (5.33a)
DoX = g3 (W, — Z,), (5.33b)
(QOs + V)T = —aX(Zy + A,), (5.33¢)
(QOs 4+ V8,)2 "2 = 20857 25(Z + A, (5.33d)

while transforming (3.14) yields
(QOs + Vo) = —(H2W, + 15227, (5.34a)
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(Q0s + V)T = (W, + 1527, ). (5.34b)
The specific vorticity evolution is transformed to the equation
%(Q8s + V3)Q — adQ + a,g 2Dah D2Q = 0. (5.35)

Here we have appealed to the abuse of notation mentioned in Remark 5.2.

5.4. The L?-based energy norms. In Sections 5—12, we will make use of the “energy” and “damping” norms defined
as follows. We use the convention in Remark 5.2, dropping all tildes for functions that depend on (z,s) € T? x [0, ¢).
We keep the D notation from (5.23) to emphasize this (z,s) dependence. See also Remark 5.3 for equivalent norms in
term of (x, t) coordinates.

The energy norms at the sixth derivative level are given by

E3(s) = E5u(s) + (Ke) €3 1 () (5.36a)
E8 x(8) = | T IED (I, W, J, 2y, A (9)] 2 (5.36b)
E8+() = |72 JEDO W, 2, A (-, 9)][ (5.36¢)
and are defined at the fifth derivative level by
E3(s) = £3 (s) + (Ke) °E2 1 (s) (5.36d)
&2 1 (5) = | JZD (W, 1,2, LA 9)|[ (5.36¢)
&(5) = | D (W 2 A9, (5360

where K = K(a) > 1 is a sufficiently large constant chosen solely in terms of «, see (10.73). In particular, K is
independent of €. The sixth-order damping norms are given by

Di(s) = Dg (s) + (Ke) D3 (s) (5.362)
D o () / |75 JED (W, T, 2o, A (8|72 d8' (5.36h)
D§ () —/ |74 72D (W, 2, A ) (8|, (5.361)
and the fifth-order damping norms are
D3(s) = D3 . (s) + (Ke) °D3 . (s) (5.36))
D20 = [ 1B UMWt 2y A 08 (5:36K)
D2 () /IID5 W, 2, A, HL2 (5.361)

where K > 1 is the same constant in (5.36a), (5.36d), (5.36g), and in (5.36j).

5.5. Bootstrap assumptions. The existence of solutions in the spacetime P (equivalently, on T? x [0,¢) in (z,s)
variables) relies on quantitative bounds on all unknowns in the problem. We establish these quantitative bounds via
a series of “bootstrap inequalities”. Assuming these inequalities hold true with a specific constant on P (intuitively,
this constant is related to the size of various norms of the initial data multiplied by a constant which only depends on
« and ko), we use the equations to prove that the bounds in fact hold true on P (equivalently, on T? x [0,¢) in (z,s)
variables) with a constant which is strictly smaller than what was assumed. A standard continuity argument is then
used to justify that the bootstrap inequalities indeed hold true globally on P.

The bootstrap assumptions are as follows. There exists a constant Cg,pp, > 0, which depends only on « and g
(see (6.5) below), such that for all s € [0, €), we have

supp (W, Z, A, D.J,,DD2h)(-,s) C Xan := {x € T?: dist(z, Xin) < Couppe } - (5.37a)

Regarding W, we assume that pointwise for (z,t) € P, or equivalently, (z,s) € T2 x [0, ), we have
JWN > —105 -1 implies that J, > 2 3 (5.37b)
LW, < (14e)et, (5.37¢)
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ID(J,W,)| < 3e71, (5.37d)
W, |<1+¢, (5.37¢)
IDW| < 2Cqata - (5.376)
Regarding Z and A, we assume that pointwise for (z,¢) € P, or equivalently, (z,s) € T2 x [0, ¢), it holds that
|Z,| +|DZy| < Cy,, (5.37g)
|Ay|+ DA, < Cy,. (5.37h)
2| +|DZ,| < Cy e, (5.37i)
A,|+ DA, < C4 e, (5.37j)
where C; ,Ci ,Cs ., and C4  are sufficiently large constants which depend only on «, ko, and Cgata, and which

are fixed throughout the proof (see conditions (9.17), (9.20), (9.26), (9.33), (9.40), (9.47), (9.54), and (9.61) below).
Similar pointwise in spacetime bootstraps are assumed on the geometry, ALE-drift, and sound-speed:

0<J, <8 (5.37K)

IDJ,| < 4(1 + ) (5.371)

max{3|Dihl, 5|D2hl, graye [Dehl} <€, (5.37m)
max{5357|DD1h], 5o |DD2h|} < ¢, (5.37n)
V] +|DV| < Cye, (5.370)

2 <X < ko, (5.37p)

IDX[ < 2k, (5.37q)

where Cy is a sufficiently large constant which depends only on «, kg, and Cyata, Which which is fixed throughout the
proof (see (9.15)). Lastly, for the energy bootstrap we assume that there exist constants Bg, Bs, By, B, > 1, which
only depend on «, kg, and Cyata, such that

e sup &4(s) + Dg(e) < Bg, (5.37r)
s€(0,e]
2 sup 5~5(s) + 55(6) <Bs, (5.37s)
s€[0,e]
561 86 2
D DthLi,s([O,e)xﬂﬁ) +|D DQhHLiYS([O,e)XT?) < Bne”, (5.379
1Dl 2 .0y < Bue: (5.37u)

Without loss of generality, we will henceforth assume the ordering Bg < B; < Bj, By,.

Remark 5.3 (Norms with respect to (z,s) versus (z, t) variables). Using definition (5.20), in the bootstrap bounds
(5.37) we have identified functions F = F(z,t): P — R and their counterparts F = F(z,s): T2 x [0,e) — R.
Additionally, according to Remark 5.2 we have dropped tildes, writing F' instead of F, but have kept D instead of
D to emphasize (x,s) versus (x,t) dependence. The perspective taken in our proof is that some of the bootstrap
assumptions (e.g. for W ~ and J,) are more convenient to close in (x,t) variables, while some others (e.g. the energy
bounds) are more convenient to close in (x,s) variables. It is important however to emphasize that with the exception

of the bootstraps for sup, Es(s) and sup, Eq(s), no ambiguity arises from using (x,s) versus (z,t) variables. Indeed,

it is clear that at the level of pointwise bounds, (5.20) and (5.25) imply that for any function F(x,t) = F(x,s) and
k > 0, we have

ID*F| 2, Py = D Fll s, (0.0 xT2) - (5.382)
This addresses (5.37a)—(5.37q). Next, we note that the Jacobian of the map (x,t) — (x,s) present in (5.20) is easily

seen to equal |0yq| = (AQ and the bound (6.38a) below gives global upper and lower bounds for Q (which are strictly
positive, and depend only on «). As such, with the spacetime ‘P defined in (5.11), the change of variable formula gives

that for any function F(z,t) = F(x,s), any k > 0, and any weight p(z,t) = @(z,s) > 0, we have
0;1”&f)kﬁ”Li,s([O,s)xT?) < ||%0DkF||L§,t(7>) < Ca||<5[~)kﬁ\\1:§,5([o7a)x1r2) , (5.38b)
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for a constant C,, > 1 that only depends on o. This addresses the Li’s = L?([0,€) x T?) norms present in (5.37r)—
(5.37u). It remains to discuss the L° L2 = L>°([0, €); L2(T2)) norms norms encoded by the bootstraps for sup, Es(s)

and sup, Eq(s) in (5.371)~(5.37s). Here, bounds which correspond to the “time-slice foliation” of T? x [0, €), namely
(T? x {s})se(0,e], do not translate to bounds on a “time-slice foliation” of P. Instead, a foliation via level sets of J,

namely {(xi, x9,t): J(x2,t) = 1—2} = {(21, 22,97 (x2,5)) } fors € [0, €], must be used. That is, for any function
F(z,t) = F(x,s), any k > 0, and any weight p(x,t) = ¢(x,s) > 0, we have
[(BD* F)(x,5) 2 (r2) = |(¢D*F)(2, 7" (w2, 9)) |l 22 (12) » (5.38¢)

for any s € [0,¢). The equivalences in (5.38a) and (5.38b) will be used throughout the paper. In contrast, (5.38¢) is
never used.

Remark 5.4 (The order in which the bootstrap constants are chosen). We will show that the bootstrap assump-

tions (5.37) close if the various constants appearing therein, namely
Csupp ; Ci/\/ ) CAN ’ CiT ; C,&T aCV ) K,Bs ; Bs ’ B, ) Bh, (5.39)
are chosen suitably. In order to make sure that there is no circular argument, we discuss the precise interdependence
of these constants. We first note that:

_ =1
- 2

(ii) The initial data, through assumptions ((i))—((iii)), ]ers two parameters kg > 1 and C > 1. Moreover, as
explained in Remark 4.2, the parameters o, kg, and C determine a sufficiently large parameter Cqara > Ko.

(i) The Euler equation fixes the parameter o > 0, where v > 1 is the adiabatic exponent.

It is important to emphasize that o, kg, and Cyaia are independent of € > 0, which will be chosen to be sufficiently
small at the end of the proof. Next, the precise order in which the bootstrap constants are chosen is as follows:

(iii) Csypp is chosen in (6.5) to depend only on o and k. Subsequent dependence on Cypp, is encoded as dependence
on o and Ky.

(iv) K > 1is chosen in (10.73) to depend only on «. For the downstream maximal development in Section 13, K
also needs to depend on Ky, cf. (13.55).

(v) Be > 1 is determined by (10.74) and (12.92) to be sufficiently large with respect to only «, and Cyaia. For the
downstream maximal development in Section 13, Bg also needs to depend on kg, cf. (13.54) and (13.84).

(vi) Bs is chosen in (6.79) to depend only on «, Cyaia, and Bg. As shown in (6.10), the quotient B Bgl is bounded
from above by a universal constant, and from below by a constant that only depends on . As such, subsequent
bounds of the type A < By will be written as A < é’BG or A < Bg (see Remark 4.5).

(vii) By is chosen in (7.2a) to depend only on «, kg, Cyata, and in a linear fashion on (Bg). Since Bg > 1, subsequent
bounds of the type A < By will be written as A < é’Bg or A < Bg (see Remark 4.5).

(viii) By is chosen in (7.2b) to depend only on «, ko, Cyata, and in a linear fashion on (K)(Bg). Since Bg > 1 and
K > 1, subsequent bounds of the type A < By, will be written as A < CO’KBg or A < KBg (see Remark 4.5).

(ix) C/SN is determined by (9.17) and (9.20), and depends only on o and Cyata.

(x) CAT is determined by (9.26) and (9.33), and depends on «, kg, Cyata, Cf\/v’ and Bg. In view of points ((v))
and ((ix)) above, dependence on Cj__ is subsequently encoded as dependence only on o, ko, and Cyata.

(xi) Cy is determined by (9.15) and depends only on «, kg, Cgata, C;\N, and C;\T. In view of points ((ix)) and ((X))
above, dependence on Cy is subsequently encoded as dependence only on o, kg, and Cyata.

(xii) CiN is determined by (9.40) and (9.47) and depends only on «, kg and Cyata.
(xiii) CiT is determined by (9.54) and (9.61) and depends only on «, kg, Cqata, and CiN' In view of point ((xii))
above, dependence on CiT is subsequently encoded as dependence only on «, kg, and Cyata.

The last parameter chosen in the proof is:

(xiv) € > 0, which is taken to be sufficiently small with respect to o, ko, and Cyata. That is, € is taken to be small
enough with respect to the parameters induced by the initial data, cf. points ((1))—((ii)) above.

We emphasize that in view of points ((iii))—((xiii)) above, ¢ is sufficiently small enough with respect to any of the
constants appearing in the bootstrap assumptions, cf. (5.39). This fact is used implicitly throughout the paper.
6. FIRST CONSEQUENCES OF THE BOOTSTRAP ASSUMPTIONS

In this section we collect a few direct consequences of the bootstrap bounds (5.37), which are then subsequently
used throughout the paper. We emphasize that the order in which these consequences are proven is irrelevant, they



48 STEVE SHKOLLER AND VLAD VICOL

are all consequences of (5.37). As such, we sometimes make forward references to other bounds which are direct
consequences of the bootstrap assumptions.

6.1. Spatial support. The goal of this subsection is to prove the bootstrap (5.37a). Recall that at the initial time
t = ti, we have that (W, Z, A) and hence (U, X) are compactly supported in [—137e, 13me] x T; see the set Xi,
defined in (4.7). Then, for a speed v which is to be determined later in the proof, one may define an expanding set

X(s) :={x € T?: |z,| < 267e + vs}.

Note that at time s = 0 we have that X}, C X'(0), giving us a bit of room to operate, at least for some infinitesimally
small time. Then, we may use the system (3.3), (3.15a), and (3.19b) to show that there exists a sufficiently large
parameter v, depending only on ¢, &, such that

L.
(e >

for all s € [0, ¢), where we have denoted |U]2 = U}CU}C and |3|2 = 2,3, with the usual convention of summation
over repeated indices. As gé" > 0on T2 x [0,€) (cf. (5.11), (6.38a), (6.38D), (9.10)) if we establish the above identity,
it means that the solution (LDJ, 203) is compactly supported in X(s), as claimed. For the sake of a contradiction, assume
that there is a minimal 5 € (0, ) such that (6.1) holds on [0,5], but that (% Jixee o (102 + |22)da)|s=s > 0.
Then, from the chain rule we obtain

(& S0P+ 57)a)
(X(s))C

Next, from (3.3), (3.15a), (3.19b), (5.21) and (5.26), we obtain

(I0P + |%[*)dz =0, (6.1)

7§/ ) 6‘s<3§(|0|2+\2°3\2))dx—5/ (0P +[BP)dz. 6.2)
(X(3)° 9X(3)

S=S§

Jg 10 S _ °) S o A —a y, « A e 5
Os(3L (0P +12P) = (0P + [SP) (42 LWy + 1520,2, + S A, + S2 )

oooooo

— T, (35(0F + [£1) - aZiesUj — 39~ Hha (O] + £P))
— (aUSrig ™} + aSkebUp + S0 + [£12)g~ bz + 35 (102 + 13)) 2
— (a7 ha UiSk — 5972 (0P +52) )z - (6.3)

A remarks is in order. Since for all s € [0,3] we have that (U, ), and hence also (W, Z, A), are supported in X (s),
from identity (6.25) below, and the bounds (6.8), (5.370), and (6.38), we obtain that if v > Ce¢, then J,(x,s) = 1 and
hyo (z,s) = 0 forall z € (X(5))C. Thus, in (6.3) we have that the .J,,» and h,25 terms vanish identically, at all points
in the interior of (X'(5))C. Moreover, we may freely multiply (or divide) the right side of (6.3) by powers of .J,, since

we are then multiplying by 1. Using these observations, we integrate (6.3) over (X (s))c, integrate by parts the pure
derivative terms, and appeal to the bootstrap bounds (5.37) to conclude

/(X(s))c 85<%(|0|2 + |i|2))dx

<< / S0P+ [EP)de + (32a(1 + a)ko + ég) / CLR(OP +BP)de. 64
(x(3)° DX (3)
Note that by assumption on the minimality of s, the first term on the right side of (6.4), vanishes. As such, if v is taken to
asv := 65a(1l4 )k, and € is chosen sufficiently small, (6.2) and (6.4) yield d% f(X(s))G % (| LQJ|2 + \203\2)dx\s:§ <0,
a contradiction.
We have thus shown that by letting v = 65a(1 + a)ko, the functions (U, 33, D.J,, DD, h)(-,s) are compactly
supported in the set X (¢), for all s € [0, €]. Choosing the constant Cqypp in (5.1) to equal 137 + v, i.e.,

Coupp = 137 + 65a(1 + a)ko , (6.5)

shows that the bootstrap (5.37a) is closed.
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6.2. Flow of the ALE velocity V. Due to the presence of the ALE transport operator 9, + V 0o, when working in
(x,t) coordinates it convenient to consider the flow map:

& (x1, o, t) = V(x1,&(21, 22,1), 1) for t € (tin, tin) (6.62)
&(x1,x9,tin) = 22, (6.6b)
where we recall that V' is defined in (3.6). Given a label z, the flow £(z, -) is then defined up to the stopping time
Te(z) = sup{t € [tin, tan]: ({(,1),t) € P}.
Then, for any function F': P — R, by the composition F'o{ we mean
(Fof)(z,t) = F(x1,&(1,72,1),1),

which is well-defined for ¢ < T¢(x). Similarly, the composition with the inverse of £, which is denoted as usual by
£~1 only affects the second space coordinate.
Next, we note that the bootstrap assumptions (5.37) and the identities

Ot(log&,a) = Vg0 (6.7a)

€20, (§L) = Vo1 of (6.7b)
Vi = —aSg 2hs+g 2 (J,Ay — ho (2T W, + 5527,2,.))

g 2hoJ, (A — b (W, + 1527 ), (6.7¢)

Vo = —a¥g S hoo +A; — by (OW, + 15027, (6.7d)

imply that pointwise in (z,t) € P we have
|£(l‘,t)—$2| 5527 |§a2 _1| 5527 |at£‘ g‘ga |§al| 55' (68)
Pointwise estimates for V2¢ may also be obtained upon by noting that (6.6), (6.8), (7.1j), and (B.2d), imply
61| S B3V o +€lBiBaV | o + B3V,

S e 3[IDiD*V(-,0)|| 1o +272(ID'D1 V| . S K(Bo) (6.92)
€21 S ||5152VHL:?5 +2(ID3V || .., S <K (Bo), (6.9b)
€221 S €[|B3V] ., S =*K(Bs), (6.90)
pointwise for (z,t) € P. The bounds (6.8) and (6.9) imply that for any smooth function f we have
ID(fo&) — (Df)o&| Se*IDf|o¢ (6.10a)
[D*(f 0 &) — (D*f) 0 &] < e*K(Bq)|D2f| 0 & +&%[D*f[ 0§ (6.10b)

pointwise for (z,t) € P. For later use, we record the equations (6.7¢) and (6.7d) transformed into (x, s) coordinates:
D1V = —aXg 2D:Doh + eg % (J,Ay — Doh(E2 T W, + 1527,Z,))
+eg 3Doh J,(A; — Doh(1E2W, + 1522 ) (6.11a)
DoV = —aXg 2D2h + A, — Doh(H2W, + 1527, (6.11b)
6.3. Bounds for (W, Z, A). The goal of this subsection is to establish the pointwise bounds
W (z,t) — ko| < %Iio, | Z (x,t)] Sf-@oe(l—l—f’—"‘Ci/\/), |A(x,t)] Sﬁoe(l—l—Sﬁo—l—ffaaCAN). (6.12)

14+
forall (x,t) € P.
From (3.19a), (3.14a), and (3.21¢c) we deduce that

(B +V3)(U - N) — aBZy + A(H2W, 4+ 1592) =0, (6.13a)
(O + VO)A+ SE(W, — 2, —2A,) — (U - ~) (152 W, + 152Z,) =0, (6.13b)
and hence, by also appealing to the bootstrap inequalities (5.37), we obtain

2O+ V) ((U- N2+ A2%) =aS(U-N)Zy — 2AW, —Z, - 2A,))

|
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< aB((U NP+ A2)F (12l + W | + 12, + 21A)
<C((U-M)?+ Az)% (6.14)
Upon integrating the above estimate we further obtain
(U n)% + A2)% 0 (1) — Jug(x)]| < Cee. 6.15)
On the other hand, appealing to ((ii)) we have that
[wo(@)] = (H(wo(e) + 20(2))? +ao(w)?)* € [ — 2,32 +elwo (6.16)

We deduce in particular the preliminary estimate ||U - || L, <4 21 3 ko + Ce <1 mo

The estimate for A now follows by integrating (6.13b), and using the preV1ously established bound for U - & along
with the bootstrap inequalities (5.37), to obtain

|Ao&(z,t)] < lao(z) (%n0(1+6+5CiT+2CZ\N) + Lro (152 (1 4 ¢) + 152%C5 ))

1+a

< kot + 12+sa gé (7+214904,£0 + argCy W Ca) < moa(l + 3Kko + %CAN> .

The A estimate in (6.12) follows by composing with £ ~1.
The Z estimate is obtained in a similar way by integrating (3.21b), and appealing to the existing pointwise bounds

|Z 0 &(x,t)] < |z0(z)| + lfa%<sé’+2tmoczv> < /105(1 + 125G ) .

The Z estimate in (6.12) now follows.
Lastly, the IV estimate is obtained by integrating (3.21a), together with assumption (5.37p), and appealing to the
existing pointwise bounds

[W o &(x,t) —wo(z)| < Ce? = |Wo&(x,t) — ko| < [W o&(x,t) —wol(x)] + |wolx) — ko| < Ce? + 48
Taking ¢ to be sufficiently small and composing with £ ~! yields the W estimate in (6.12).

6.4. Pointwise bounds for Dk(JgW ~) and D*.J, when 0 < k < 2. For future use, it is convenient to record the
following pointwise bounds for the first few derivatives of J,W , and J,Z,..

Lemma 6.1. Assume that the bootstrap bounds (5.37) hold on T? x [0,¢). If ¢ is taken to be sufficiently small with
respect to o, kg, and Cyata, then

|(J, W) (2, 1) — (wo) 1 (z)| S e (6.17a)
|D(J,W ) (z, t) D(wo),1 (z)| < eK(B (6.17b)
|D2 (J,W ) (z,t) — D*(wp),1 (x | )| < K(Bg (6.17¢)

holds for all (x,t) € P.

Proof of Lemma 6.1. From (3.24b), upon composing with the flow £ associated to the vector field 9; +V 92, we deduce
that for each frozen z, and for t < T¢(z), we have

(J,W ) ol (@, t) = (wo) () W' (2, 8) + W3 (1), (6.182)
where we have denoted
: 2 _3
1N (2,t) = e 2 i (AT 797 2 Bhaza)ot(@nydr (6.18b)
t . _3 N
AER) =/ EY of(z,r)e” % Jr(AT—g 23ha2)ot(@r)dr' g, (6.18¢)
tin

EX(2,t) = —aSg 2 Ay, +950 2 hos (1,2, — 2J,A;)
+ 2RI, Zy — (BFOW, + 1522 ) A — (HOW, + 1597, W, (6.18d)
Using the bootstrap assumptions (5.37), we see that the terms defined in (6.18b)—(6.18c) satisfy the pointwise estimates
-6t WP s, (6.19)
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from where we deduce that

[(J,W )0 () — (wo) 1 ()| S %|(wo) 1 (x)| +¢ Se. (6.20)
Additionally, the implicit function theorem combined with the bounds (4.11) and (6.8) give
[D*(wo)y1 () — D*(wo),1 o€~ (x,8)| < [|D*(wo) 12 || ge [z — €M, 1) Se, (6.21)

for k € {0, 1,2}, from which (6.17a) follows.

Establishing (6.17b) and (6.17c) requires bounds for the derivatives of I{} I and 132, which we obtain as follows.
Using (6.8), we have that |Dy (0 )| S D1 f|o€ +22Daf|0€ S [Df| o€, [Da(f o)l S [Daf|o& and [Dy(f o)l S
IDif| 0 € + €2|Daf| o &€ < |Df| o & With this in hand, we return to the terms defined in (6.18b)—(6.18d) and use the
bootstrap inequalities (5.37), the product and chain rules to estimate

IDR ] e, S * +lDhozz || e,

D e, S 2%+ 2 [D°As | o + DR

+* D] .+ e*[|D%hy

215 +2[D%he2

iz, 2z,

+||D*(T,Ay) HL:% + HDZ‘]"HLT%‘%

|D? EWNHLngo Set+ ID?(J,Ax2) HL%Lgo + DAy HL%Lgo +5%HD2(Z’J§)HL;3 + HD3J9HL$L30

IPEV] e, S 1+([D%hse

iz,

+5%||D2h,2 HL°° + ||D2(VQVT72T7J9AN)HL2L?O +€||D2AT||L2L°,° +€HDZ(‘].va)||L2L<>,<> :

The L‘X’t norms present in the above estimate, which are the same as L%, norms cf. (5.38a), are estimated using (B.2d).
On the other hand, the LQL;'CO norms are not equivalent to L2 < L2° norms, akln to the discussion above (5.38c). Nonethe-
less, the proof of estimate (B.2e) (designed for L2 LS° norms) can still be applied in this case,'” leading to obtain upper
bounds in terms of L?c’s norms for 5! order derivatives. In turn, to bound these we appeal to the bootstraps (5.37r)—
(5.37u), the bounds for the geometry and sound speed in (7.1), and to the vorticity estimate (8.2). For instance, (B.2d),
(7.1c), and the fact that 7 < 1, imply that [D?h,s || 20, < e 2D (- tin) £z + 7 H|D%ho2 || 12, < Ke(Bs). Sim-

ilar arguments show that |D2J, | < (Bg), |D?Z||L> < (Bg), |[D3h,2 lz2re < Ke? (Bg), and HDSJqHL%LgQ <

x,t tt— ~

€3 (Bg). Similar arguments imply for (WT, Z-. A, JgZN7 JgAN). For instance, (B.2e) and (5.36j) imply that
[D2(W.,Z, ,&T)HL?Lgc < ez ||DY (W, Z, AT)HL;;J < e 2D5, < Kez(Bg). The same argument shows
D2(J,Z,)|| L2re S £~ 2 (Bg). Some of the bounds for the terms involving A, are more delicate and require that we
relate A A to the vorticity via A v =0+ %Va\IT + %iT. These vorticity-improved bounds are obtained in Section 8
(see (8.21a) and (8.21c)). For instance, (8.21c) implies ||D2i\N||L§LgO Se2 ||D4ANHL§_t < Ke2 (Bg). This bound,
the bootstraps (5.37), and the product rule in turn gives ||D2(.J,A )| 2re S Kez (Bg). Next by appealing to the im-
proved bounds in Corollary 8.2, and to Lemma B.4, we may show that ||D2(J AN)HLoo < 1+5_1||D5(JQAN)||L§¢ S

(Bs) +e ' ID*Ay |12, < K(Bo), and that [|D*(J,Ax 2 )|z S e 2 ID*(J,Ax) |12, + 2% (Bs) S Ke? (Bo). In-
serting these bounds into the previously established bounds for DI3"*, D213, DEY, and D%E}/, we derive

DI < Ke*(Bs) (6.22a)
|D? |xvl|\L§; < Ke(Bs) (6.22b)
[ EWNHL;;; < K(Bs) (6.22¢)
ID*EY |l 2 S Ke?(Bo). (6.22d)

The bounds on E} and the integrating factor | 1 imply also that
D] +[|D? V2] S Ke(B). (6.22¢)

17 First, at each fixed ¢ one uses fundamental theorem of calculus in the 21 and x2 variables, and the Poincaré inequality in the x1 variable to
bound the L°(({t} x T?) NP) norm of a function F in terms of the L2 (({t} x T2) NP) norm of e2 D1 DF (see (B.6)). Second, one integrates
this expression in ¢, leading to a bound for HF||L%LOC in terms of £~ 2 ID1DF|| ;2 . Third, one uses (5.38b) to transfer an upper bound in terms

of |[D1DF|| ;2 into an upper bound in terms of || DiDF| 2 . This argument is used repeatedly throughout this section.
x,t x,s
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With (6.19) and (6.22), we return to (6.18a) and obtain the pointwise estimates

ID((J, W) 0 &(x,t) — (wo) 1 (2))] S Ke(Bs) (6.232)
ID?((J, W) 0 &(x,) — (w)1 ()] < K(Be) (6.23b)
for all (x,t) € P. We note that (6.23) and (6.10), together with (6.17a) and (6.21) imply (6.17b)—(6.17c). U

Integrating the bounds obtained in Lemma 6.1, we obtain pointwise bounds for .J, as follows:

Corollary 6.2. Assume that the bootstrap bounds (5.37) hold on T? x [0, ¢). If € is taken to be sufficiently small with
respect to «, kg, and Cyata, then the bounds

|, (2,8) = 1= (t = tin) 5% (wo) 1 ()] < 152Cy (t — tin), (6.24a)
|DiJ, (x,t) — (t — tin) 252 Di(wo )1 (2)| S (¢ — tin)eK(Bg) for i€ {1,2}, (6.24b)

(0 + V) J, (1) — 12 (wo) 1 ()| < 252lCy (6.24¢)

|0, (x, ) 2 (wo) 1 (2)] < H2Cy, (6.24d)

|DiD;jJ, (2, 1) — (t = tin) H2DiD; (wo) 1 ()| S (t —ti)K(Bs),  for  i,j€{1,2}, (6.24¢)
DidJ, (2,t) — 2D (wo) 1 (2)] <81+ )Cs,,  for i€{l,2}, (6.24f)
|6t8th z,t)] <4(1+a)ll —alCy e, (6.24g)

hold for all (z,t) € P. Here we have introduced Cj, = Cy,(cv, ko, Cdata) > 0, defined by |1 — a|Cs = = 1F2C

ICs,. =

Proof of Corollary 6.2. Upon composing (3.15a) with the flow £ and integrating in time, we obtain that for ¢ < T¢(z),

Jol(z,t) =1 +/ (1+O‘(J W, )of 4 =2 5% (J, ZN)of) (x,t)dt’. (6.25)

Using the bootstrap assumptions (5.37), and the previously established bound (6.17a) , we deduce from the above
identity that

| J,08(x,t) — 1 — (t — tin) 152 (wo).1 (2)] < (t —tin) (eC + 22720C, ). (6.26)

Upon composing with £~ (x, t) and appealing to (6.21) with & = 0, we deduce (6.24a).
In a similar fashion, we may differentiate (6.8) with respect to space, appeal to (6.18a), and deduce that for ¢ €
{1,2} we have

Dy (J,08) (2, t) — (t — tin) 52 Di(wo) 1 ()

= /t (HTQ(UJO)’I (2)D I (2, ) + 4D, (wo) 1 (@) (I (2, ¢) — 1)

+ L52D 2 (a, ) + 152 Di((J,2x)06) ) (a )l (6.27)
Using the initial data assumptions, the bounds (6.19), (6.22), (6.10), (5.37g), (5.37k), and (5.371), we deduce
Di(J,08) (2, 1) — (t — tin) 252Dy (wo) 1 (2)] S (t — tin)eK(Bs) . (6.28)

Next, instead of merely appealing to (6.8), we use that similarly to (6.8) we may show |2 (z,t) — 1] < e(t — tjy) and
|€,1 (z,t)| < (t — tin). The resulting bounds are

[(DiJ,) 0 &(w,t) — (t — tin) 252 Ds(wo) 1 ()| < (¢ — tin)eK(Bs) , for i€ {1,2}. (6.29)

Combined with (6.21) with k£ = 1, this bound implies (6.24b).
Differentiating (6.25) with respect to ¢, recalling the definition of £ in (6.6), the identity (6.18a), and the bounds
(6.19), (5.37g), and (5.37k), we obtain

(0 + Vo) J,) 0 &(x, 1) — 1% (wp) 1 ()] < Ce+ 22Cy (6.30)

The bound (6.24c) now follows upon composing with £~ and using (6.21) with & = 0. The bound (6.24d) follows
from (6.24b) with ¢ = 2, (6.24¢), and (5.370).
Next, we establish (6.24e). We apply D; to (6.27), appeal to the bounds (6.19), (6.22), and (6.10), to obtain

|D;D4(J,0€) (@, £) — (¢ — tin) 152D, Dy uwo).r ()] S (¢ — ti)K(Bo) + (t — o) [D*(, 201, - (6:3D)
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To bound the last term in the above estimate, we use (B.2d) and the improved .J, y4 ~ bound available from (8.22a). We
obtain

ID*(1,Z)l|1ze, S & 21D (1, Z,) (-, tin) 22 + & [[D°(J,Z0) 2, S K(Bs) - (6.32)
The bounds (6.31) and (6.32) thus imply
|D-D- (J,08)(z,t) — (¢ —t;n)”—o‘Dva(wo),l (x){ < (t—tin)K(Bg) . (6.33)

Appealing to (6.24b), (6.9), to the bounds |£,2 (x,t) — 1| < e(t — tin) and |€,1 (2, t)| < (t — tin), and to the previously
derived estimate [|D?J, || >, < (Bs), we also obtain

ID,;D;(J, 0 &)(x,t) — (D;D;J,)0&(w,t)| < (t — tin)K(Bg) - (6.34)

Upon combining (6.33) and (6.34), composing with £ ~1, and using (6.21) with k = 2, we arrive at the proof of (6.24e).
In order to prove (6.24f) we apply D;0; to (6.25), use (6.23a) and the bootstrap assumptions (5.37), and obtain that

€2 (D2(0y + VDa)J,) 0 & — 152Dy (wp),1 | < CeK(Be) + 7(1+ @)Cy, ., (6.352)
€2 (D1(0s + VD2)J,) 0 € — 152Ds (w).1 —e&,1 (D2(0s + Vo) J,) 0 €] < CeK(Bg) + 7(1+0a)Cy, . (6.35b)

By again appealing to (6.8) and also to (5.370) and to ||D?J, (Bg>, we derive from the above that

[(DidhJ,) 0 & — 152D, (wp),1 | < CsK(Be> +7(1+a)Cs (6.36)

Zy
for i € {1,2}. The bound (6.24f) now follows from the above estimate, upon composing with {1, and from (6.21)
with k = 1.

The last estimate in (6.24), namely (6.24g), follows by differentiating (3.15a) with respect to time, which yields

(0101 + 1DV s + V3,05)J, = 520y + Vo) (J, W) — 52V (J, W) + 152D,(J,Zy) - (6.37)

Using the previously established bound (6.24f), the bootstrap assumptions (5.37), the time differentiated version of
(6.18a) which gives (0y + V92)(J,W ) o {(x,t) = (wo) 1 (x)@tlé‘[’l(x, t) + 8t|\’,\yf’2(a:, t), and the bounds (6.22), we
deduce that

007, < €+ 1321C5 71+ ).
The bound (6.24) now follows, concluding the proof of the Corollary. (|

6.5. Properties of the remapping coefficients. We recall the coefficients Q, Q,, (AQ, Q, Qs, and (32 introduced in
(5.22). These coefficients are bounded as follows:

Lemma 6.3. Assume that the bootstrap bounds (5.37) hold on T? x [0,¢). If ¢ is taken to be sufficiently small with
respect to a, kg, and Cyata, then the various functions appearing in in (5.22) bounds are bounded as

1) < Q(aa,s) < 401(1+a), (6.38)

|Q — Q| < 3Cves < 3Cve?, (6.38b)

|Qa| < 3s < 3¢, (6.38¢)

Q| < 2250°Q (6.38d)

Q.| < C, (6.38¢)

1Q - Q| < Ce, (6.38f)

hold uniformly for all (x,s) € T? x [0,¢). In particular, (6.38a) and (6.38b) imply that

20te) < Q <402(1+a). (6.38g)

Proof of Lemma 6.3. From (5.22a), (6.24d), and (5.7) it follows that in order to obtain a bound on (5, we first need a
bound on (wp),1 (] (x2,t), z2). To obtain such an estimate, we recall that by (5.16) x7(x2, ) is the point at which
the global minimum of J, (-, z2, t) is attained, and hence by (6.24a) we have

1+ (t— tin)l%‘((wo),l (2] (wo,t), x2) — C_]t) < J, (27 (x2,t), z2,1)
< J, (27 (x2), w2,1)
< 1 + (t - t,n) ((wo),l (1‘1 (CC2) SCQ) + CJt) 5 (639)
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where we recall cf. assumption ((vi)) that zy (w2) is the point at which (wy),1 (-, z2) attains a minimum. Therefore,
— L < (wo),1 (2Y (22), 22) < (wo) 1 (2] (w2, 1), m2) < (wo),1 (2Y (z2), m2) + 2Cy, < — 70 +2C, . (6.40)
Inserting the above obtained bounds for (wq),1 (7 (x2,t), z2) into (6.24d) yields

(=2 = Cy,) < 2 ((wo)o (a7 (w2, 1), 22) — Cy,)
< (6th)(x1(x2,t) Za,1)
< 158 ((wo) 1 (27 (w2, 1), m2) + Cy,)
< %(*ros +Cy)- (6.41)

Next, we use the bounds (6.40) and (6.41) in order to prove (6.38a).
Differentiating (5.18b) with respect to ¢ and appealing to (5.7), we have

Q(2,q(w2, 1)) = (910) (22,1) = —€(9,],) (¥} (w2, 1), 72, 1)
= —e(9,J,) (] (22, 1), 22, ) + 200(1 4 o) € (Ltmet ) . (6.42)

tfin —tmed

We observe that (6.41) and the definition of € implies
a9 cCy) < Q(ra,5) < LEX(1+eCy) +400(1 + )Ly (] - (6.43)

The bound (6.38a) now immediately follows.
Due to (5.22¢) we have that

1Q = Ql(x,5) = lV (2,102, | (] (2, £), 22, ) i=q-1 (za.5) = £V (@, 9)|02,| (@7 (22, ), @2, )| i=g-1 (2 5
and so by appealing to (5.370) and (6.24b) with ¢ = 2, we obtain
Q= Q| < Cu(a " (w2,5) — tin) 2 (I(w0) 12 (a7, w2)| + CKe(Bo))
<e(l+a)Cu(a™ (22,5) — tin)- (6.44)

The bound (6.38b) will follow if we are able to establish q~1(x2,s) — tiy < s. Using that q(xo, ti,) = 0, we write
s = q(xa,t) = q(x2,t) — q(x2,tin) = ftt (0:q)(x2,t")dt’. Integrating the lower bound in (6.43) with respect to time,

_ /t(ﬁtq)(mg, #)de > 20k (4 (6.45)
tin
Note that a reverse inequality also holds:
= /t(ﬁtq)(mg,t’)dt’ <401(1 4 ) (t — tin) - (6.46)
tin
From (6.45) and (6.46) we obtain that
M) < i <A01(1 + ). (6.47)

Combining (6.44) and (6.47), we immediately arrive at (6.38b).
Next, we recall the definition of Qa(x2,s) in (5.22b). Using (4.10), (6.24b), (5.8), and (6.47) we deduce that

Qa(a2,5)| < (t — tin) 2 (D1 D2 (wo) (2}, 22)| + CK(Bg)) < (A2 + C?K(Bg))s (6.48)

The bound (6.38¢) follows.
In order to prove (6.38d)—(6.38f), we first note that implicit differentiation of the relation J,,1 (z(x2,t), z2,t) =

Iy (25 (22, 1), x2,t) = 0, with respect to z and with respect to ¢ gives the relations
ot (o, t) = —(gigf‘jg)(x{(xg,t),x%t) . and  Ouat(aa,t) = —(gigijz)(m’{(xg,t),xg,t) . (6.49)
In turn, cf. (5.8) and (5.22) this implies
Qu(e2,5) = 5055 (8t8tJ - %) (@ (22, 1), 2, t)‘t:qil(m’s) (6.50a)
Qalw2,5) = 5= (0102, — 25200 (w7 (w2, 1) s, t)‘t:qfl(m) (6.50b)

Q(z2,5) = Qs(22,5) — Qa(2,5)V (2,5) — Qa(z2,5)8sV (x,5). (6.50¢)



THE GEOMETRY OF MAXIMAL DEVELOPMENT FOR THE EULER EQUATIONS 55

It thus becomes apparent that we require a positive lower bound for J, 11 (27 (22, t), 22, t); we note that this is the only
place in the argument where assumption ((vii)) on the initial data enters. We revisit the second and third inequalities in
(6.40), which show that 0 < Dywg (2} (2, 1), 22) — Dywo(z) (22, 1), z2) < 2eCy,. Since 26Cy, < £7 for  sufficiently
small, by assumption ((vii)) this implies that |2} (25, ) — xY (x2)| < £%. We can however obtain an improved bound
for this difference. We recall that J,,1 (27 (z2,t), x2,t) = 0 (see (5.13) and (5.8)), while (6.24b), (5.37r), and (5.37s)
imply that |,y (% (22,t), 22, t) — (£ — tin) (wo) 11 (2} (2, 1), 22)| < C(t — tin)K(Bg). Together, these bounds yield

|(wo) 11 (& (w2, 1), 22)| < CK(Bg). (6.51)

On the other hand, using assumption ((vi)) and (4.11) we may perform a second order Taylor expansion in x; (at fixed
x2) around 2y = Y (x2), to obtain

(wo)s11 (a5, @2) = (wo)1 (Y, @2) +(2F — 2Y) (wo)yi11 (27, x2) +1(af — 2Y)? (wo)yiin (2, 22)  (6.52)
—_—

1< (Bs) =0 > o5 || < S

for some z* that lies in between x} and . Moreover, using that |} (z2,t) — 2 (22)| < £3 we have that |(z} —

:c}/)(wo),lnl (l’g,ﬂfgﬂ < Cdat3573+% and thus

2t (2, 8) — 2 (22)] < CK(Be) (1 — S5 ) ™" < 20K (Bg)e® (6.53)

10e3

Notice the improvement of 0(51) > O(g3) that the above bound gives over assumption ((vii)). Using (6.53) we
return to (6.24e) with ¢ = j = 1, use the mean value theorem in x; and assumption ((vi)), and deduce that

D1D1J, (2}, 2,t) > (t — tin) 2 D3 (wo) (2], 22) — C(¢ — tin) K(Bs)
(t = tin) 52 D3 (wo) (2}, 2) — (¢ — tin) 22 L=20] | Ddg [ e — C(F — tia)K(Bs)
(

2 2e
> (- ti) 20 (¢ —g,) Lpa 20K B fc<t7tin)K<Bﬁ>
> (1 — tj) 2Lt (6.54)

upon taking ¢ sufficiently small. We note that the above lower bound vanishes as ¢ — t;,. We may obtain a matching
bound for Dy 0;J,(x7, 2, t) as follows. By Taylor’s theorem in time, and using that J, (-, tin) = 1, we obtain that

t
0= D1J,(x,tin) = D1J,(z,t) + (tin — t)D10¢J, (,t) +/ D102, (x, t') (Y — tin)dt’ . (6.55)
t

in

Evaluating the above expression at z = (27 (z2,t), x2), and using that J,,1 (23 (z2,t), x2,t) = 0, we obtain that

t
D10y J,(x] (w2, 1), x2,t) = ﬁ/ D102J, (x} (x2,t), 2, ') (t — tin)dt’ (6.56)

and therefore
‘Dlath(xI(xz,t),Izat” < %

D10} J, I, - (6.57)

In order to bound the right side of the above identity, we appeal to Lemma B.1 and the available bounds at the 6"
derivative level which are given by the bootstrap (5.37u) and the initial data assumption. More precisely, we have
D%, |l Lee, < e=2||D%J, (-, tin)|| 2 + € |DOJ, ||z . < (By). This estimate gives a sub-optimal bound since upon
noting that D97 = ¢~2D,DZ, we infer |D192J,|| 1=, < e~2(By). To obtain the correct bound, which is sharper by a
full power of €, we note that (6.37) implies ’

D197J, = —1D1(D;VaJ,) — Di(V3;02J,) + 2D (9, + Vo) (J,Wy)
— 39D, (VO (J,Wy)) + 152D1Dy(J,Zy) - (6.58)

Next, recall that the D, differentiated version of (6.18a) gives D1 (8; + Vdy)(J,W,) o &(x,t) = —e&,1 02(0; +
V) (J, W) o€ (2, t) +e(wo) 11 ()N (, )+ (wo),1 (2)D10cky (2, ) + D181y 2 (, t). Therefore, using (6.8),
(5.375), the Sobolev embedding bound [|D2(J,W.)|| =, < e 2[[D*(, W) (-, tin) [l 22 + 1D (J, W) | 2
e 1(Bs), and (6.22), we deduce )

s N~

ID1(0r + Vo) (J, W) || 1=, < e (Bs) - (6.59)
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Using the above estimate, we return to (6.58), and bound the remaining term by brute force using the bootstraps (5.37)
and the improved Z,, bounds from (8.22a), to obtain that

10107 J, ||z, S & " (Be) - (6.60)

Then, the above estimate and (6.57) imply that
|D10yJ, (x7] (w2, 1), 2, t)| S o (Bg) (6.61)
holds pointwise for (22, t) € P.

Using (6.54) and (6.61), we return to bound three terms in (6.50). By also appealing to (5.7) we rewrite 9,0;.J, =
0:0,(J, — J,) + 010, J,, the fact that |€’| < 4 and tg, — tmed = and to the bounds (6.24), (6.38a), (6.38D),

(6.38¢), (6.46), and (6.51), we deduce (H a
|Qel2.9)] < g2y (e + €Y L5 (By)?) < 257250°Q (6.62a)
Qz(@2,5)| < sy (£ T2(Be) 1 (6.62b)
1Q(z2,5) — Qs(w2,5)| Se+sSe. (6.62¢)
The above bounds establish (6.38d)—(6.38ﬂ, thereby concluding the proof of the lemma. O

6.6. Properties of J,, q, and the definition of the curve of pre-shocks. First, we show that the minimum of
J,(+, w2, t) is attained at a unique point as soon as t > t,, justifying the definition (5.12).

Lemma 6.4 (The point 75 (2, t) is uniquely defined). Assume that the bootstraps (5.37) hold, and assume that € is
sufficiently small with respect to «, ko, and Cyata. Then, for all (z4,t) € P witht > ti,, there exists a unique x7(x2,1t)
at which the minimum of J, (-, x2,t) is attained.

Proof of Lemma 6.4. Recall cf. (5.16) and the discussion in the paragraph above that equation that x7 can be equiv-
alently defined as the location of the global minimum of J, (-, z2,t) or J,(-,z2,t). Fix (z2,t) € P, with t > t;,.
By (4.7), (5.37a), (6.8), and (6.25), we have that the continuous map x; +— J,(z1,22,t) — 1 is supported in
{Jz1] < (9+ Caupp)e} C T. As such the minimum of this function is attained at at least one point. For any such point
x7, we have that (6.40) holds, and thus the argument which as lead to the bound (6.53) holds true, yielding the estimate
|zt — Y| < e3. Now assume that 2} was not unique, rendering the existence of two such points zj , and 27 ;. Then
we must have J,1 (77 ,, 2,t) = Jy,1 (27 b, Z2,t) = 0, and by the mean value theorem there must exist xﬁ which lies
in between 7 , and 27 ;, such that J;,11 (xl, x2,t) = 0. But note that (6.53) implies \xl — zY| < 3. Therefore, we

may repeat the bounds in (6.54), with z7 replaced by 331, and deduce that J,,11 (:cl, Xa,t) > (t—tin) 2(}+0‘) > (. This
is a contradiction, concluding the proof. (]

Lemma 6.5 (The map q is invertible). Assume that the bootstraps (5.37) hold, and assume that < is sufficiently small
with respect to o, ko, and Cqata. Then, the map q defined by (5.18) is invertible, with inverse q~' defined by (5.19).

Proof of Lemma 6.5. Fix zo € T and s € [0,£). We need to show that the equation s — q(x2,¢) = 0 has a unique
solution ¢ € [tin, tfn). The uniqueness part is easy: if two solutions ti, < t, < t, < ts, would exist, then we’d
have q(2,t,) = q(z2,%), and so by the mean value theorem 9;q(x2,t*) = 0 for some t, < t* < t;,. But we have
already shown earlier, see (6.43), that 9;q(x2, tﬁ) > @ > 0, a contradiction. When s = 0, then ¢ = t;, clearly
solves the desired equation since q(z2,tin) = 0. When s € (0,¢), the existence of ¢ follows by the intermediate
value theorem, the continuity of q with respect to time, and the bounds (5.37k) and (6.46). Indeed, (6.46) shows that
q(z2,t) < 401(1 + a)(t — tin), so we can find ¢, > ti, such that s — q(z2,t,) > 0. For the other bound, we recall
cf. (5.7) and the bootstrap (5.37k) that for every = € T? there exists t.(z) < tg, such that J,(z,¢.(z)) = 0. This
implies that for every x5 there exists ¢, € [tin, tfin) With J(z2,t,) = 0. Hence, s — q(x2,t,) = s — & < 0. Thus, by
the intermediate value theorem there must exist a root ¢ € (t4,t,) of s — q(x2,t) =0. O

Definition 6.6 (The curve of pre-shocks). For all x5 € T we define, extending the definition of q~' by continuity,
r1(z2) == slﬁimﬁ 23 (22,97 (22,5)) = 27 (22,97 (22, 2)). (6.63)

he parametrized curve

(1]

= {(il(xg),xg,q_l(xz,s)): To € ']I‘}
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is called the curve of pre-shocks. We define t*(z2) := q~ ' (22, €) so that Z* := {(il(xg), Lo, t*(x2)): 2 € ’]T}.

Proposition 6.7 (Equivalent characterization of the curve of pre-shocks). The curve of pre-shocks =* is precisely
the intersection of the two-dimensional surfaces {J, = 0} and {J,,1 = 0}.

Proof of Proposition 6.7. We first establish the inclusion =% C {J, = 0} N {J,,; = 0}. The fact that .J,,; vanishes
on Z* follows from the definition of 27 (see (5.13)), which gives that J,,1 (27 (x2,t), 22,1))|1=q-1(2,,s) = 0, and thus
this equality also holds as s — ¢, by continuity. The fact that .J, vanishes on Z* is a consequence of the definition of
the map q~* (see (5.18b) and (5.19)). Indeed, as s — &, we have that 7 (22, q~*(z2,s)) — 0, which means via (5.14)
that J, (23 (22,9 (22,5)), 72,9 (22,5)) — 0 ass — &. By continuity of J, in the 1 and t entries, it follows that
J,=0o0nZ=".

The proof is completed once we establish the reverse inclusion, namely {J, = 0} N {J,,;= 0} C Z*. Let
(71,22,t) € {J, = 0} N {J,,1= 0}. We need to show two things: t = q~!(xa,¢) and 1 = z}(w2,q (22,¢)).
Since J,,; = J,,1, we have that J,(z1,72,t) = J,,1 (v1,22,t) = 0, and therefore the map x; — J,(71,z2,1),
with (z2,t) frozen, has a global minimum at z; (indeed, J, cannot attain strictly negative values in the closure of
the spacetime considered here). By (5.12) and the uniqueness statement established in Lemma 6.4, it follows that
x1 = %(w2,t). Moreover, by the definition (5.14) it follows that 0 = J, (1, ¥2,t) = J(z2,t), which gives in light
of (5.18b) that t = q~ (2, €). This concludes the proof. O

6.7. Damping properties of J, and 7. In this section we record the properties of J, and J that are most important
to the analysis, especially to the energy estimates in subsequent sections.

Lemma 6.8 (Damping). Assume that the bootstraps (5.37) hold, and assume that € is sufficiently small with respect
to a, ko, and Cyara. Then, for all (z,t) € P, we have that

(T W) (@, t) < =32 + 18 (a,t). (6.64)

Proof of Lemma 6.8. 1f (x,t) € P is such that J,W (z,t) < — 1=, then (6.64) holds automatically due to (5.37k).

If on the other hand J,W . (z, t) > — 3, then by (5.37b) we have J, (z,t) > 2. In this case, (6.17a) and (4.10) give

o ° o 2% 2 _ > _2

10z + S Wl 8) < 5z + (o) (@) + Ce < g5z + g + O < HLEJ )7 < BE 5

thereby proving (6.64). (|
For the purpose of closing energy estimates, we will make use of the following crucial lemma:

Lemma 6.9 (Damping and anti-damping). Assume that the bootstraps (5.37) hold, and assume that ¢ is sufficiently
small with respect to «, kg, and Cyata. For all (x,s) € T2 x [0, ), we have

— J(QOs+ V)T 2 + T2(Qds + V) J, > e
Proof of Lemma 6.9. We recall that by (5.29) we have

Tz, . (6.65)

(Q0s +V32)T = —9. (6.66)
As such, using (5.30) we rewrite the left side of (6.65) as
— QO+ VER)TE + THQO+ V)], = 3T5,Q + T2 (B2 W, + 1520,2,) . (667

Using the bootstraps (5.37), the coefficient bounds (6.38), and the fact that 0 < J < J,, we then bound from below
the right side of (6.67) as

878,90+ T (S W + 5520,2,) = 374,24+ 874,959 + 73 (Be g W, + 1520,2,)
> 3780, He = e b, - T2 + 0)
> 74, e = T8, (52 + €)
> 74, (M =€)
> g5, e (6.68)

Combining (6.67) and (6.68) proves (6.65). O
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6.8. Closure of the (5.37s) bootstrap. In this section we show that (5.37s) follows from (5.37r).
We first consider a general function F' such that 7" 0. F € L%S for some r € R. Then, by the fundamental theorem
of calculus in time we have that for ' € R to be determined, pointwise in s it holds that

T ECS) ez < T (S)NFC,0)|pz + T (s) / T (NOF (-, |2 T (s)ds’ (6.69)

and therefore we have

197 Fllaz, < 1010 oz + 1772:F e, ([ 726 [[7>@asas) . w0
0 0

At this point, we recall from the definition (5.18b) that we have the identity 7(s) = 1 — 2 Therefore, an explicit
computation shows that (6.70) yields

: 1 / . 7’ € T
ifr > 5 andr’ >r —1, then: IT" Fllz, < o= = 1F(-0)llz + T T [T 0sF |12, , (6.71)
and
: 1 1 . v’ T
if r < 5 and ’f’l > —3 then: HJ FHL?S < 27 1 ||F( )”Lg + m”] 3SF||L35 . (672)

Returning to (6.69), we also note that upon taking ' = 0, we have

1

if r < %, then: ”F”LSOQLi < ||F( )”Lz + = ||._778 F”LQ . (6.73)

Lastly we note that if only a bound on J"0F € Lfc’s is available with » > 5, then (6.73) is not available. In this

situation, we require knowledge of 7™~ 2 J28,F € L2 and conclude J2 F € L°L2. The argument is as follows.
Using (5.30), (5.37), (6.38), and (6.64), we conclude

4\ F|2, = / LIFPQaL, 42 / 1 FO.F

— / SIFP(-Vud, + B2 I Wy + 1520,2,) + 2/J9F65F

9(1 13(1 3(1— 1 1
< / GIFP (52(1 +a)Cy — Hd + B, + 20280Cy ) + 201 Pz |17 05F | 2

< BYJEF|2 + 20|07 Fll 2 |17 0F | 12 (6.74)

upon taking ¢ to be sufficiently small. Integrating the above inequality in time, and recalling that 7 (s) = 1 — £, we
are lead to conclude that

15
if £ <r <1, then: S%p] 1JZF ()2 < e[| JZF(-,0)|L2 + 69/0 HJg%asF(-,s)HL%ds
s€|0,e

= O TEF(0)] 1 + € / 1T TROF (82T E (s)ds
0

1 i S =
< ONFFC0) s + 2= T2 JFOF (9 iz, - (675)

Having established the bounds (6.71), (6.73), and (6.75), we show that (5.37s) follows from (5.37r), assuming B
is sufficiently large with respect to Bg. Indeed, from (6.71) with v’ = 0 and r = %, using (4.11), recalling that

Os = %55, and that @_1 is bounded according to (6.38a), we deduce
55,N(5) S Cdata + %66 N( )
55,7'(5) < €Cdata + 1+aD6 T( )
From the above bound and the definitions (5.36g) and (5.36)), it follows that
Dg(&) S 2Cgata + (1+a) D6 ./\/’( ) (KE)_Q (252C§ata + (1+a) D6 7'( )) S 4C(Qiata + (1+a)2D6( ) (676)
since K > 1. Similarly, by appealing to (6.75) with r = % usmg (4.11) and the fact that J,(-,0) = 1, we deduce that

st]&—,,N( $) < €?Caaac ™ + (2)2e® 22D ()
s€[0,e
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sup 55,7(5) < egcdataf‘:% + (%)%egiﬁgj(e)
s€[0,¢e]

and therefore, upon recalling (5.36a) and (5.36d), we obtain

e s E2(s) < 28 Chuy, + 46 T3 DE 1 (6) + (Ke) 2(2613Ch, 1,62 + 4™ 7225 DF - (6))
se€|0,e

< 4e"°Clay + 1€ 770 Dy (e) - (6.77)
From (6.76) and (6.77) we thus obtain
e2 sup Es(s) + Ds(e) < 2(1 4 €°)Caata + l}Toa(l + ¢%)Dg () (6.78)
s€[0,e]
and so the bootstrap (5.37r) implies that (5.37s) holds (with a strict inequality) as soon as

2(1+ €”)Caata + o5 (1 + €”)Bs =: Bs.. (6.79)

Remark 6.10 (B5 and Bg are proportional). Note that since we will choose Bg > Cyaia (see (10.74)), the relation
(6.79) implies

7% (1+€”)Bg < Bs < 12(1 4 ¢”)Bs. (6.80)

As such, any upper bound of the type A < Bs may be written as A < Bg, upon changing the implicit constant.

7. BOUNDS FOR THE GEOMETRY, SOUND SPEED, AND THE TANGENTIAL REPARAMETERIZATION VELOCITY

The purpose of this section is to establish the following bounds, which are then subsequently used throughout the
paper. Additionally, we close the bootstrap assumptions for the D6 level bounds on the geometry, (5.37u)—(5.37t).

Proposition 7.1 (Bounds for the geometry, sound speed, and ALE velocity). Assume the bootstrap assumptions (5.37)
hold, and that ¢ is taken to be sufficiently small to ensure 2 ((By)+ (Bn) + (Bg)) < 1. Then, assuming € is sufficiently
small with respect to o, kg, and Cyata, we have

&2 || T30, |l ey + 17D, 5 S =(Bo) (7.1a)
|\55JQHL?L2 < 7 (Bg), (7.1b)

e¥|| T D Dah |3 2 + [T D DohFs S KeHBg),  (T.do)
e || FADODhl| ez + T EDDuhl|z2, S €2 (Bs) (7.1d)
IDDoh(-,9)| e SKe2(Bs),  (T.1e)

e3(|\JiDl ez + T 1D ]Iz, S K% (Be)?, (71D

Y sciy<al T (DI + g7 7 DIIDA) 2, + |75 (D17 — g~'ADID2h) |12, S Ke¥(Be),  (7.1g)
|7 4D N |2 + 71D 7|12, S K(Bs),  (7.10)
175 D°N Loz + 1T FDOT | Loz S Ke?(Bg),  (7.10)
HBGzﬂHLgﬁ < e(Bg), (7.1j)

[JADOS# e Se¥(Bs),  (TK)

BV, SK(Be), (.11

172DV | o o SKe2(Bs),  (7.1m)

where the implicit constants in all the above inequalities depend only on o, kg, and Cyata.

Proof of Proposition 7.1. The proof consists in combining the bounds contained in Lemmas 7.3, 7.4, 7.7, 7.14, in
Remarks 6.10, 7.6, 7.9, 7.10, 7.11, 7.12, and Corollary 7.13, which are all proven below. O

One immediate consequence of the above proposition (we recall that the implicit constants therein only depend on
Q, kg, and Cyata), and of the bound (5.15) is that the bootstraps (5.37t)—(5.37u) are closed.
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Corollary 7.2. Assume that By and By, are sufficiently large with respect to Bg and K. More precisely, define

60(%.1a)<86> =: B, (7.2a)
6(CE1oK+C31q)(Bs) =: Bn. (7.2b)

Then the bounds (5.37t)—(5.37u) hold with constants %Bh and %B J respectively, thereby closing these bootstraps.

The following inequalities will be used several times throughout the proof, and provide bounds for the norms of V/
and X*! in terms of norms of Dok and J,, and of (Bg).

Lemma 7.3. Under the same assumptions as Proposition 7.1, the rescaled sound speed 3. and the tangential transport
velocity V' satisfy

5%, S <(Bo) + (e + [BDahl,, + 2B, ) (Bo) + (BBt 4B, ). (73w

HBGVHL3 < e2(Bg) + || D°D2h| +5||55Jg||Lis. (7.3b)

|12
L'J;,s

Proof of Lemma 7.3. We prove (7.3a) only for 3. Comparing (5.33d) with 8 = % and (5.33c¢), and appealing to the
bootstrap (5.37p), it is clear that the bounds for ¥ ! are proven in exactly the same way.
In the case that DS = D,D?, we apply D" to (5.33b), and apply (4.11), (5.37), and (B.13), to obtain

||D5D22HL2 < 1|D°(g% (W, - Z, )||L2 . <Ds +s||D5D2h||L2 +¢e<eDs +5HD5D2hHL2 . (4
Similarly, in the case that D6 = D D5 we let D act upon to (5.33a) and and apply the inequalities (4.11), (5.37), and
(B.13), to obtain that

IB°D1%]],, <€D (Wi J,Z4)| 2+ ]| D°(J,Dh(Wr — Z1))]

L%,S
S 55§,N + 525?,7 + 6||6562h”L,2, + 52H65‘]9HL% +e?
S By + <[ B°Bah], + 2B, .5)

Finally, in the case that D = D, from (5.26), (5.33c), we have the identity
DSY = —£Dy XD’V — eVDSD,yX — ae(Z, + A, )D°S — aen(DZ,, + DPA )
—&(D?,V,D3%) — ae(D2, Zy + A, %)
Using (4.11), (5.36j), (5.37), (7.4), (7.5), (8.22a), (B.2a), (B.2d), and (B.16) we find that

B2, S elD2Vlyy, +2%(D°Dox 1y +2[ID°Dix] . +2[|D2(Zy, Ar)

s,
+e(e+DIV]|22,) (72 [DsD2% (-, 0)| 2 + & M[ID*D1DsDs¥l 12, ) + (1 + [D2(Zy, Ar) 22,
55”5561‘/”%5+52||D"D22||L3’5+5HD“’D12||L3’S+ ID2V |2 ID*D1% |22, +%(Be) + &
Se+e[D°DiVl, +e(e+][B°DiV]|,, ) ((Be) +[ID°Dahl , +e[B° . )- (7.6)
In light of (7.4), (7.5), and (7.6), the DSY. bound is completed, once a bound for D5D1VIS available.

The bound for D8V is obtained in a similar fashion. If D¢ = D,D?, then using the identity (6.11b) together with
4.11), (5.37), (7.5), (B.2a), and (B.13) shows that

[5°5aV],, < 559 253+ 5%, + 15" (Bon(M4o W, + 522,)|

Lazc,s
S i P ol WY S
< €%(Ds) +||D°Dah , +€D°, ], - 1.7

Next, if DS = D;D® we apply D to (6.11a), and use (4.11), (5.37), (8.21c), (8.22), (B.2a), and (B.13) to obtain

||D1D5VuL%s < ||D%(2g~2D1D2h) HL%S +¢[|D%(g72,AL) HL%S +¢||D%(g 2 Dah (12 g, Wy + 152.,2,) HL%S

+¢[D°(g™ 2 D2, Ar) | 1+ D (972 (D2)* T, (MW + 152 Z7))|
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55“552

po BB, +lB ]+
+ 5H65'&NHL3,5 + 52H65(ngm Jgi/\/)HLfm + 52||55(V0VT7 z, Z\T)HLg,s

< e*(Bo) + [[D°Dahl| , +e[D°J |, (1.8)
Lastly, if D’ = DS, we transform (3.23) into (z, s) coordinates, apply D? and find that

IDEVl,s S lDI(VDaV)||,a +el|DE (2% (252 W, — 52 — Ay —Dah(oh, — (1-a)2,)))

Iz,
Lz,s

By appealing to (4.11), (5.37), (7.5), (7.7), (7.8), (8.21c¢), (8.22), (B.2a), and (B.13), we obtain
B2V, < @IBBWV BV +lBIBT , +<2[BEBoA] o+
+ EHBS(VOVT, Z. A A, 2N)HL§‘S + EHSSBQhHL%S
< %(Be) +&7||DDah|,, +2*|D°J, . - (1.9)
In the last inequality we have used (5.26) and (5.32) to bglslnd "
IB2Bah]l 2 S el[DS (g(H52Wr + 252 2)) |, +¢l|B3 (VD3R)]| o
S €?|DiD2hl|;  +*(Bs) +&?[[D3D3A] 1y +e?[IDSVl -
To conclude the proof of the lemma, we first s1;1; (7.7), (1.8), (7.9) to obtaiI: ‘5 -
ID°V|, S €*(Bs) + [D°Dah| , +elID| .
which proves (7.3b). Finally, inserting (;jSS) in the sum of (7.4), (7.;)5', and (7.6), wengtain that
1595l S (Bs) +<|[B°Bal,_+ B2
+2(c*(Bs) + [[D°Dah]l , +2][D° ]l )
+e(=+2%(Bs) +[[D°Dah|y +2[IB° ]|z ) (Bs) + [[B°Dahl| , +e[[D° ]I, )
S &(Ds) +e(e + [D°Dahl|  +2[D°A || ) ((Be) +[|D°Dahl| p +[D7J, ][,z )
which proves (7.3a). Here we have used that 5<BG)> <L | | | g
Next, we turn to the energy estimate for J,, aiming to prove (7.1a).
Lemma 7.4. Under the same assumptions as Proposition 7.1, we have that
s 74609 +i/06||ji[N)GJq(-,s)’|2Lids§e<86>2, (7.10)

where the implicit constant depends only on o and Cyata.
Proof of Lemma 7.4. We let DS act on (5.30) and write this as
(Qds + V) (D®J,) = 1£2D8(J W) + 152D%(J,Z,) +R,, , (7.11)
where R, = —D®V Dy.J, — (D, V, D2J,) thanks to (5.27).
We compute the L2-inner product of (7.11) with J B 66Jg to obtain that
%/ﬁ (Qds + V)| DO, | = HTa/j% DO (J,W,)BOJ, + 1*7&/3 D(J,2,)D%, +/ﬁRJQ B%J,. (7.12)
We next commute 72 around (Q0s + V 02). For this purpose we note that identity (6.66) shows that for any function
f = f(z,s) and any r € R we have
T (QOs+ V) f =0(T"Qf) + 0o(T"VF) +rfT 'S — fT(Q+ 0:V). (7.13)
Using (7.13) with 7 = 3 and f = 1|D°J, |2, we rewrite (7.12) as

g [apeap e [gepear -y [ 7@ aw)prp
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=t [ FBUMWB0, + 55 [ FHDLZ0D%, + [ TR, B,
Then, using the bootstraps (5.37), and the bounds (6.38) we obtain that
e [ Q7B + B - ColT A - 222 [ Q7B
< 7B o (521 T DML 22 + B2 T (1,20 llns + ITHR , 122 )
< 552|700, 32 + 41+ a)e|| TEDC (J, Wiy, J,Z0) 132 + 255 | T5R,, 132 - (7.14)

In order to bound the commutator term appearing on the right side of the above estimate, we appeal to the boot-
straps (5.37), the bound 7 < 1, and to Lemmas 7.3, B.1 and B.5, to conclude that

TRl s - < BV llza, D5, s, + (B, VDo, )2,
< (€2(Bo) + [[D°Dah 1y +€[[ D, ) (141D, lzzs) +€llB°T, e, + > (1 + 11D, 1 2x,)
%(By)({Bs) + (By) + (Bn)) - (7.15)
Using Gronwall’s inequality in time for s € [0, ] in the bound (7.14), inserting the commutator bound (7.15) with the

assumption that £2 ((B,) + (By,) + (Be)) < 1, appealing to the upper and lower bound on Q which arises from (6.38),
we deduce

sup |70, + L 17BN 9)Eads S IBLC O +e(B0, (16)
s€(0,e

where the implicit constant depends only on «. The bound (4.11), which gives [|[DS.J, (-, 0)||2 72 < € and the bootstraps
(5.37r)—(5.37s) conclude the proof of (7.10). O

Remark 7.5. We shall frequently make use of the fact that (B.2d), (4.11), (7.10), and the bound 1 < J I imply
1Dl e, S (Bs)- (7.17)

Remark 7.6. In the proof of Lemma 7.4, we have tested the equation (7.11) with J = 2 56J The presence of the 3 is
what allowed us to obtain the damping term on the left side of (7.14), by commuting Q@ + V0, past J2. In addition,
this factor was necessary in order to bound D6(J W N y4 ~ ). Other than this, the Tz factor did not play any role in
the bounds; indeed, already in the first line of (7.15) we have discarded the extra factor of J 1. With this in mind, we
may return to (5.30), act on it with D5, and this time test it with D"J By repeating the same bounds as in the proof of
Lemma 7.4, in analogy to (7.14) and (7.15), we may thus establish the bound

st/Q\D5J|2 < Ce™ /Q|D5J 2+ Ce||D°(J, W, J,Z,) ||r; +c°*e||RJg||iZ,

and therefore

sup e =D, (-, 5) |2 < £(Bg)?. (7.18)
s€[0,e]

This concludes the proof of (7.1b).

Lemma 7.7. Under the same assumptions as Proposition 7.1, we have that

sup || 75 DDyh( s)|7: 4+ 1 / e DﬁﬁzhHiQ < K2e3(Be)?, (7.19)
s€(0,e]

where the implicit constant depends only on o and Cyata.
Proof of Lemma 7.7. The proof is similar to that of Lemma 7.4. We let D¢ act on (5.32) and write this as

(Qds + V3,)D®D2h

= (1 + )Wy + (1 — @)Z;)D2hDODoh + g(A42DW, + 159D6Z,) + 77 _ Rt (7.20)
where the remainder terms are given by

Rs, = —[D% VID2h, R,= (D° g, 22W, + 152Z), RS, = ((1+a)W, + (1 — @)Z;)[D°,D2h]DDsh .
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We compute the L2-inner product of (7.20) with 72 D6Dsh, and use (7.13) with r = fand f = %|56[~)2h|2 to obtain
4 / Q7 [BODhJ? + 4 / JQ|B%Dyh|?
/J (2(Q+ V) + (1 + @)W + (1 — @)Z,)Dh) D Dok
/jz (e DOV, + 152592, )DODsh + 2, / TERS, DDsh.

Thanks to (5.37), (6.38), and the Cauchy-Young inequality, it follows that

ﬁ/Qj%|6652h\2+ Lo (1 Ce)||7 D Db, — %/Qﬁ@ﬁﬁzhﬁ
< B2 (14 Ce?)[|T DDk ]| T T (DWW, DOZy) || o + |7 5D D] Lo ok | TARSS
““HJ"DﬁDthL?—s—ZL (1+a) eHJ (DSW.-,DSZ., HLQ 5;zi:1HRD2hHL2. (7.21)

In anticipation of integrating (7.21) in time (via Gronwall), we bound the three commutators appearing on the right
side as follows. First, using (4.11), (5.37), (7.3b), (B.2d), and Lemma B.3, Lemma B.5, we have that

[[Ron

< B3] .. I

L2, L%,s_‘_ H(([N)ﬁava [N)gh))HLgs §€2<Bh><86>'

Similarly, since £ (Bh) <1, we have

IRzl 2 < 5210 0. W) + 152 (D%.9.Z)| 2 < *(Bu) +£°KBs < &%,
and also
Rozll 2 < (L + @)W +( Z[|,.. ) ((D®, D3k, DD2R)|| 1, + [[Dah| . DDt . )
Cioage | | | |

Inserting the bounds obtained in the previous three displays into the time-integrated form of (7.21), and appealing to
the upper and lower bound on Q which arises from (6.38), we obtain

sup [|7 5D Dah(-,s)l[32 + L[| T 73D DohFz S [ TFD Dok, 0)|[72 + K2e*(Be)® +£7(Bn)*(Be)?, (7:22)
s€[0,e] *

where the implicit constant depends only on . The fact that £(B)? + £(Bg)? < 1, and the bound on the initial data
which arises from (4.11), concludes the proof of (7.19). O

Remark 7.8. We shall also make use of the fact that from (B.2d), combined with (4.11), the bound 1 < J *%, and
(7.19), we have

ID*D2hl .., < Ke(Bs). (7.23)

Remark 7.9. In the proof of Lemma 7.7, we have tested the equation (7.20) with J 3 6652h. The presence of the
J 2 is what allowed us to obtain the damping term on the left side of (7.19), by commuting Q0s + V 0o past J 3. In
addition, this factor was necessary in order to bound 56(V°\/T7 27) Other than this, the Jz factor did not play any
role in the bounds; indeed, already in (7.21) we have discarded the extra factor of Ji from the commutator terms on
the right side. Keeping this in mind, we return to (5.32), act on it with D5, and test the resulting equation with D° Dgh
By repeating the same arguments as in the proof of Lemma 7.7, in analogy to (7.21)—(7.22) we may establish

ZdS/Q\D5D2h|2 < Ca_l/Q|D5D2h|2 + Ce||(D°W, D°Z,) |2, + CeXi_ |IReI:

L27

and therefore

sup e~ T D7 Dh(-,5)|2s < K23 (Bs)?. (7.24)
s€(0,¢]

This concludes the proof of (7.1e).
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Remark 7.10 (Estimates for g). The Dgh estimates established in Lemma 7.7 have as a direct consequence estimates
for g = 1+ (Dsh)% More precisely, the identity Dég = 2D5(D2hD2h) = 2D2hD7h + 2|[D5 Dgh]]DQh combined
with the bounds (5.37m), (5.37n), (7.19), (7.23), (7.24), (B.16), (B.17), and (B.21) (with a = o' = b = 0) imply that

% sup || JTD%g(-,s)||zz + |7 TDl| 12 . < K23(Be)?,
s€[0,¢] o

which proves (7.1f). Since 1 < g <1+ Ce?, by appealing to the chain rule it is clear that any rational power of g
appearing in the proof (e.g. g% , g% , g_% , g_%) satisfies the same bound as g.

Remark 7.11 (Estimates for 51h). We note that the bound (7.1d) is a direct consequence of the identity [N)lh =
69% J,, of the bounds (5.37k)—(5.37n), (7.1a)—(7.1f) and of the product Moser-type Lemmas B.4 and B.6.

Remark 7.12. We note that with the bound 1 < J‘i, inserting estimates (7.10) and (7.19) into (7.3), gives the proof
of (7.1j) and (7.11). Indeed, (7.3a) becomes

||E>62||L25 < e(Ds) + (e + Ke(Bs) + £2(Be)) ((Bs) + Ke?(Bs) + £2(Bg)) < e(Ds) + £2(Bs) < (Be)
since £(Bg) < 1, and recalling Remark 6.10. Similarly, (7.3b) becomes
||66v|}L§5 < e2(Bg) + Ke?(Bg) + £2(Bg) < Ke?(Bg) .
Corollary 7.13. Under the assumptions of Proposition 7.1, we have that for 3 < |y| < 6,
17 =5 (D" + g7 ' 7DDk 2 + |77 (DI — g~ ADIDah) |12 | < Ke®(Be) (7.25a)
175D W 2+ 173D 7|2 | S Ke®(Bo) - (7.25b)

Proof of Corollary 7.13. The bounds for & and 7 are symmetric, so we only prove the estimates for . From (3.11),
we have that DA” = —g~!DDsh 7. Therefore, we have

DMlx + g~ 17DMDyh = — D=1, g~ 7] DDy h. (7.26)

In order to bound the commutator term on the right side of (7.26), we appeal to inequality (6.72) with ' = —% > — %,

r=0< %, and F' = |[6‘”f|’1 g ] DDA, together with the chain and product rules, and the D* bounds for th(~, 0)
contained in (4.11), to deduce

|7 D"~ g 7IDDA| , < e* (D17, g7 7IDD2A( +e| @D, g7 71DD2A| .,

0l 2
< e+ ||Ds[D11Y, g1 7] DDQhHLg g (7.27)
Using the product rule and (3.11), we may further rewrite |
BB, g~ 7]DBuh = [B.BN1, g~ 7]BDsh + (2Dsh7T — x)g~2D.DshDP Bah
Due to (5.15), (5.37m), (5.37n), and (7.1c), the second term in the above estimate may be bounded as
(2D27 — A)g~*DsD2hD"Doh| , S e|DVD2h, S *K(Bs).

Similarly, by by appealing to the chain rule, the bootstrap inequalities (5.37), the bounds (7.19) and (7.23), and
Lemma B.5, that

BB, g~ 7B h1s < [BBa . [B7 (577 s +[I(B7 g~ 7)BBoA] S *K(B).

Combining the above five displays concludes the proof of (7.25a). The bound (7.25b) follows from (5.37m), (7.19),
and (7.25a). U

It remains to prove estimates (7.1k) and (7.1m), which is achieved next.
Lemma 7.14. Under the assumptions of Proposition 7.1, we have that
D08 | ey S Ke (Bo), (7.280)
DOV < Ke? (Ba). (7.28b)
[F& EGNHL?LE, + HJ%66T”L§OL§ < Kez2 (Bg). (7.28¢)
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Proof of Lemma 7.14. In view of Remark B.7, the proof is very similar to that of Lemma 7.3, and so we only present

here the differences. As such, by repeating the argument used to establish (7.4), we deduce from (B.22) that
|77D°DoX|, ., S || J2D° (W, Z,) + e[| JZDDahl|; . . +%(Bs) S Ke? (Bo) -

Similarly to (7.5), with (B.22) we have

H‘]g% 55612“@%5 S 8“‘]9% D (J, W, 2N)HLchg + 52HJ9% 65J9HL;><>L§

HLSOOLEE

+€|[ 2 D°Dahl|, o + 2] JE (Wr, Z7)||, o +2 (Bs) S €2 (By) (7.29)
while in analogy to (7.6) from (B.22) and (B.2c) we have

1 ~p~

B e S DV s + 2Dy +<[B25

el B2y e EBEA e + < (B

S 3BVl g + (19 B30 e + 27 [1DSZ 5
+ ]| JFD2Z || e o + ]| F2DIAL | o + 27 (Bo) S €2 (B (7.30)
In the last inequality we have additionally appealed to (7.1j), (7.11), the improved Z ~ estimate in (8.22a), and to the
previously established bound for HJ_E,% 6;5 622” LooL2"
The bound for HJ% BSVHLOCL2 is obtained ssim;larly to (7.7) when D = DDy, in analogy to (7.8) when Db =

D5 D1, and in parallel to (7.9) when DS = D6 To avoid redundancy we omit these details.
The bound for ||j DS w H 1o 12 follows from the identity (7.26), the previously established bounds (7.1¢) and (7.1e),
the bound (7.23), and the commutator bound (B.21)withm =5anda = b= 0:

175N ey < ITFD°Dh| e + Cel[D* (977 ey + O % (]| Do 7|+ [ID°Dahr]| 1 +€%)
< Ce?K(Bg) . (7.31)
This concludes the proof of the lemma. (]
8. VORTICITY ENERGY ESTIMATES AND THE RESULTING IMPROVED ESTIMATES
8.1. Bounds for the vorticity. The goal of this subsection is to establish the following bound.

Proposition 8.1 (H° estimates for the vorticity). Let () be the ALE vorticity, defined in (3.30), and Q be the ALE spe-
cific vorticity given by (3.31). Assume that the bootstrap assumptions (5.37) hold, and that ¢ is taken to be sufficiently
small to ensure £% (By) + 2 (By) + €2 (Bg) < 1. Then, assuming ¢ is sufficiently small with respect to o, ko, and
Cdata, We have the bound

€ ~
sup [[73D6Q(.9)|, + g/ 155 9|2, ds < =(Be)?, 8.1)
s€[0,e] - 0 -

where the implicit constant depends only on «, kg, and Cyata. Additionally, we have that

€
2 ~ 2
s [P0 95, + 2 50 9 5 (e 52)
0,e x 0 x
where the implicit constant depends only on «, kg, and Cyata. Moreover, we have that
HQHL 23+ % e Chata (8.32)
||DQ||Loo < 2(4e") 5 Ca- (8.3b)

Proof of Proposition 8.1. Recall from (3.31) that the vorticity is obtained from the specific vorticity by 2 = (aX) Q.
In light of the already established bound (7.1j) and the product and chain rules, the bound (8.2) follows from (8.1). As
such, we shall only establish the later.

Applying the operator D® to (5.35), we have that
%(Qa, + V,)D°Q — 00, D°Q + g 2D2hDDQ = R, 84)
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where the remainder term Rq is given by appealing to (5.26) and (5.27) as
Ro = —[D%, £](1Ds + VD2)Q — £[D°, V]D2Q — a[D°, J,g~ 2 D2h] D2 Q
= 1D, £]D,Q — [D%, £](VD2Q) — £[D% V]D2Q — a[DC, J,g~ 2 D2h]D2Q
= RY 4+ RE 4 RY L RW (8.5)

For 8 > 0 to be chosen below, we compute the spacetime L? inner-product of (8.4) with ©~25+1D6Q), use the
identities (5.28b), (5.28¢), and (5.28d), to obtain that

1 1 S
H(‘%#DGQ(.?S)Hiz _ ]|("§§)2D6Q(-70)H2LQ —//]D6Q| (Qds + V) 525 —a(26—1)//]D6Q\2%
0
//|D6£)| 2 (Qs — VQy + Do) +a//|D6Q| (D, —Qg)%t?h

/ D0 Q, ggz;Dﬁ” / / <2—-RaD’Q (8.6)

By appealing to (5.30), (5.33a), (5.33c), the above becomes

|42 B0c9)7, - |45t o)}, + [ [15°af dee
:a/%yﬁﬁﬂf@zg—%ﬁgh‘s+/0/#RQD6Q. 8.7)
where
Gao =~ (2 Wy + 1520,20) + 208, (Zy + Ar) ) = a8 = ) (I Wy = J, 2y + J,D2h(W - Z,))
—J,(Q = VQa + DoV) + (28 — 1)a,g~ 2 D2hDsS + aQe¥ g~ 2 Doh (8.8)
Using the bounds (6.38), the damping inequality (6.64), and the bootstrap assumptions (5.37), we conclude that
Go > —(aB+ §)J, Wy = 220QJ, - C(8) > (B + §) (1 — £J,) - 2220°QJ, - C(8), (89
and that
|Qu2g 7Dah| < Ce2. (8.9b)

From (8.6)—(8.9) we conclude that

. 1 1 __ ° s ~
(1 6 B0 52, — [ S@L 5000, )2, + o (af + 5 — Ce(3) /0 0%t
< BBt} )ﬁj)so (1+a) /Hu Q)2D6 Hde +7/ || 5D Q( )zl s7Ra (8] 28", (8.10)

where, as usual, we have that C'is a function only of «, kg, and Cy,ta, but is independent of /.

Next, we estimate HﬁRQH 2 - The most delicate term is RS)

. From Hoélder’s inequality and the bootstrap
assumption (5.37p),

D'D Q||

s

IRl < LIBE] . 50, + 2™y S5 5%
=0

where the implicit constant depends only on Cg,pp, hence on o and kg. Using the initial data assumptions (4.11), the
bootstrap assumptions (5.37), and the bounds in Lemmas B.3, we arrive at

4
|3:RG2a, < SlIDo 0],y + Srs ") 3o (ID°%],5, +2°) (R3]l D° 0l )F +2%)
: * =0 ’
< (Il + (1B, +=(5)"). 10

where as usual, C' = C (@, Ko, Cdata) is independent of 3. For the remainder terms {Rg) }i=2,3,4 we can afford rougher
upper bounds since no inverse powers of € are present. As such, using the initial data assumptions (4.11), the bootstrap
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assumptions (5.37), the Poincaré inequality (B.2a), the bounds in Lemmas B.3 and B.5, and the definition of Q, we
may thus estimate that

Z?:QHZBR(”HL? > (4”‘0_1 z 2||R(1)HL2

< Clasg’ (%HWWQHLQ +e[B0t ], + BV +2[D%,

s +D°Dan,, +e). 12
Note that Lemmas B.4, and the Poincaré inequality (B.2a) and the bootstrap bounds give that

I+

5|, 5 [5°

e +D°57Y . +e. (8.13)
By further appealing to Proposition 7.1 and the bound 1 < 7 ~%, we deduce from (8.11)—(8.13) that
Is5Ralls, < €01 +e2)|[ DA, + (k") (Be) (8.14)

where C' = Co’(a, k0, Cdata) > 1 is a constant independent of f3.
Next, by combining (8.10) and (8.14), with the Cauchy-Young inequality we arrive at

. 1 1
(1= €| 3000 9) 1, — [|5=D00C, )l

+ i afh - Cetg) - 1+ 20) [0} a8

ds' + Ce(4°k51)?P (Bg)?, (8.15)

s sttt [|ugioir. )|,

where C = C' (v, ko, Cdata) > 1 is a constant independent of 3. Since Co'(g,l 5) is independent of 3, we may first choose
[ to be sufficiently large (in terms of «, kg, C4ata), and then ¢ to be sufficiently small (in terms of «, k¢, Cgata), to
ensure that

aB —C.s) > 0, and i- eCs.15(B) — e2Cs154” > 0. (8.16)
This makes 8 = («, ko, Cdata). With this choice of 3, (8.15) implies

1 S
JQ)% = 2 ~ 2
3|22 9, + & [ B0ac.g);,a
i~ 2 5 [° 3~ 2 . _
<[220, 0);, + < / |22B00 (8|7, ds' + Ce(4h5 )2 (Be)?, (8.17)
Using a standard Gronwall argument, and using the initial data bound provided by (4.11), we obtain from (8.17) that

[EIEEErY

sup ‘

€[0,e] / 5 D°Q S)Higds < Ce(Bg)?.

where C = C (0, ko, Cdata) > 0 is a constant (the 8 dependence is included in the dependence on «, kg, Cgata). The
proof of (8.1) is concluded upon multiplying the above estimate by Iigﬂ and appealing to (5.37p) and (6.382)—(6.38b).
The first inequality in (8.3) follows from (4.11) since we may apply Proposition C.1 to the evolution (3 32) of Q,
to deduce that || Q] Ly, < 4e18Cy,ta. The bootstrap (5.37p) allows us to convert this into ||| L, <4- 4a - el 5Cyata-
The second 1nequa11ty in (8.3) follows in a similar manner, but we need to differentiate (5 35) before applying
Proposition C.1. We have that

J,Q05(DQ) + J,(V + a%g~2D2h)Ds(DQ) — 25D;(DQ) = Error, (8.18)
where

Error = —XD(£)(1D,Q + VD,0) — (JgﬁV + azf)(lqg*%f)gh)) D,Q. (8.19)

Notice that (8.18) is in the form of the equation (C.12) with f: DQ and with T?Lf-l— q = Error. Using the bootstrap
assumptions (5.37), we have that

17 Lee, < L]|ED() 1601+ a)+18) < 20 and || e, < Ce[|D2Q)|1x, - (8.20)

HL‘”*E z,t —
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In turn, this means that the parameter 3 appearing in (C.13) may be chosen to be = max{w, 1} =

20-23(14)
[e%

, which is a constant that depends only on .. Then, (C.13) leads to the bound

IDQ|, . < (4e®)?|DO(, 0)]|, . + Ce2E (4e')?(|D2 Q) ex, -

I
Taking ¢ to be sufficiently small to absorb the second term on the right side into the left side, concludes the proof. [J
8.2. Improved estimates for A,.. The boundedness of the damping norms Dg and Ds assumed in the bootstraps

(5.37r) and (5.37s) implies that the L2 _ norm of 7 7 JZDS(J,A,) and D*(J,A ) are bounded by Bg and respectively

Bs. The goal of this subsection is to show that these bounds for A, are greatly improved (one fewer powers of .J,, and
one gain of €) as a consequence of the vorticity estimate obtained earlier in Proposition 8.1.

Corollary 8.2. Under the standing bootstrap assumptions, we have that

||ij)5,i’\N||L;,CLi < e2K(Bg), (8.21a)
||j%Jg%[~)GAN||LSwL§ < e2K(Bg), (8.21b)
ID°Ax|,. < <K(Be), (8:21c)

|T% 2 BGZ\NHL%& < eK(Bg). (8.21d)

where the implicit constant depends only on «, kg, and Cyata.

Proof of Corollary 8.2. We ﬁrst prove (8.21b) and (8.21d). From (3.30), (5.36a), (5.36g), (5.37r), (5.37s), (8.2) and
the bounds 7 < 1 and J, § =, we deduce that

|2 S % (Bo) + Ke(Bo)e 2,

< €(Be) + Ke(Be)

szJgED(%AN”LgOLg S ”Jg%f)GQHLSOOLg + Hj%‘]géf)G(wT’zT)

HJiJgéﬁﬁ»&NHLg,s S HS‘SQHL%S + HJ%JQ%BG(WT’iT)HLi,S

thereby proving (8.21b) and (8.21d), since J < J, < J,.
Next, We note that (8.21c) 1mmed1ately follows from (8.21d) and (6.71). Indeed, we may apply (6.71) with ' = 0
and r = and recall that 0; = 3 D so that with (4.11), (6.38a), (8.21d), and F' = D5AN, we obtain

1Al 2 < sEHDSAN<~70>||Lg +2|Q o 75 B.BA 12, < K(Bo).
thereby establishing (8.21c). Similarly, (8.21a) follows from (8.21d) and (6.75). Applying (6.75) with r = % and
F = D°A,, we arrive at

sup [|J7D°A(,5)l|z2 < ID°Ay(-,0)||z2 + 273757 DDA |12, < 22K(Bg),
s€[0,¢]

concluding the proof of the lemma. (|

8.3. Improved estimate for y4 e Since y4 ~ does not appear in the definition of the vorticity, we take a different
approach to improve the bounds for the derivatives of Z, in Li,s' By using an argument similar to that in the proof
of Proposition 8.1, and by appealing to a key step in the bound (8.21), we are able to show that when ¢ is sufficiently
small (in terms of «, kg, Cqata), We have the following:

Lemma 8.3. Under the assumptions of Proposition 8.1, we have that for any 8 > 0, and @ € [0, %]
€
1xze 112 ~5= 2
| 1,ED°Zx||] o + g/ [D°Zx(s)]| . ds < e(Bg)?, (8.22a)
s x 0 x
”542NHL§OL§ < 7 (Bg), (8.22b)

[SPTA7I DD 2|, < &IBT AT ITNID D), 20 )|z, + Ce()PK(Be), (8.220)

| /\

| /\

[SP770 0,02, ||, < LIS PT I TIIDDZ e, + Ce(2)PK(Bs) . (8.220)
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where the implicit constant and the constant C depend only on o, kg, and Cyata. It is also convenient to record the
estimates

l\J\»—A

173D 2| S €75 (Bs), (8.22¢)
173720202 pn S 72 (Bo), (8.22f)

where the implicit constant and the constant depends only on o, kg, and Cyata.

M\»—A

Proof of Lemma 8.3. We first prove (8.22a). Letting D® act on the (z,s)-variable form of (3.25a) which has been
.. 7
pre-multiplied by 5%, and find that

%(Q8s + V3o)(D°Zy) — 2a(D°Z )1 +20],97 2 DohD2(D°Z) = — L (D°Z,) (152 T, W,y + 1227, 2,) + Errz,
(8.23)
where the error term Errz is given by

Errz = —[D% £](1Ds + VDs)Zy — %2[D% V]D2Z, — 2a[D?, J,g~ 2Doh]DaZ,y
—[D°, (554, Wy + %’*J mz D*((J,Z)(&A; + g3 D3h))
+ 9D ((J, W) (LA, — g73D3h)) +aD® (972 (J,A\),2 ) +2aD%(g7 2 (Z, + LA)D2J,)
—D° (S (LA (W, + ?%“ZT)) ~ D (& (1,Z,) (552 W, + 1522,)) + aD?((J,A;)g~ 2 D3h)
= S Errg () (8.24)

The first three terms appearing in (8.24) should be compared to the remainder terms in (8.5). Next, we test (8.23) with
¥.28+1D5Z ., for B > 0 to be determined, and similarly to (8.6) we arrive at
*fi=55 |2
-0 [flo° 2 5
0

1. 5~rs * (17555
|92 5°20 5) [, — | 420200, — [ [18°2.f* (@01 + Vo) i
//|D52N| i (Qs — VQy + DsV) +2a//D5ZNl (B2 — Qz) 4 2

S ~r o
+2a/\D5zN\ QQJQQTQ_DE” s—//%|D5zN|2(1—TaJHWN+ #JQZN)JF//#WZNENZ. (8.25)
0 0
By appealing to (5.33a) and (5.33c) the above becomes

H (JgQ) 2 Q)2 D5ZN_ HL2 . H (Jy Q)z D5ZN HLz //‘D5ZN‘222‘3

+ / / 52 D°ZErrz, (8.26)
0
where

G ((172% T W, + 1582 1.7,) — 208, (Z, + AT)) —20(8 — 1) (S, Wy — J,Z + J,D2h(W, — Z7))

= 2a/|D52N| Q- q%?ﬁlezh

— J,(Qs = VQo 4 D2V) 4 20(28 — 1)J,g” 2D2hDo ¥ + 2aQ25,g~ 2 D2h (8.27)
By using the pointwise bootstrap inequalities in (5.37) and (6.38), using the bound (6.64), upon taking
B> 3, (8.28)
and ¢ sufficiently small with respect to «, kg, and Cyata (but not ﬁ) we may derive the bounds
G>—(208—a— 1) W, — 2BCQJ, — C(8) > (af + 1) (1% — L2J,) — 22QJ, — C(B),  (8.29)
Qg 2D2h| < Ce2. (8.29b)
We note that the bounds in (8.29) are identical to those in (8.9), and hence, as in (8.10) we deduce
(1= O | SREB 29[}, — [ SREB 20}, + (08 + = Co(8) [ D 2ul5)] 0
33(aB+3)+2250%(1+a) (J, Q)2 55 N5
< mepsiamotie [UGLED ()} + 2 [ D2l o), 08

(8.30)



70 STEVE SHKOLLER AND VLAD VICOL

where C is a function only of a, kg, and Cyata, but is independent of /3. It thus remains to bound the error term Errz
appearing in (8.24), in Li,s. We note that the first three terms in the definition of Errz are in direct correspondence
with the three terms in the remainder R from (8.5); as such, these terms are estimated in a nearly identical fashion,
leading to a bound analogous to (8.14), namely

zley%Errz“)HLz C(1+e%4P) HEBDE’ZNHB +C(4°ky )7 (Bg) - (8.31)

The remaining terms on the right side of (8.24), namely {Errz( )}Z 4» are bounded similarly, using the Moser-type
inequality in Lemma B.4, the Gagliardo-Nirenberg inequality in Lemma B.3, the bootstrap inequalities (5.37), the
bounds in Proposition 7.1, and the above established estimates (8.21). We shall detail the estimates for the two most
difficult terms: Errz(4) and Errzm For the fourth error term, we have that

7Bz @]l < (455 IID®, $ (52 W + B2 1, 20120 2

< O(argh)? ZHS“Z'(%(%“JQWN + 52,20 e D2 20
i=0 o o

4
< C(4rg )P Z HD5 LW, J,Zy) HL2 S 0)(<ﬁ§|\§052w|%>%+a%)

=0
< S $D2l,, + ()7 (Bo). (8.32)
and for the seventh error term, we obtain that
Iz, < [|D° (972 D2(SA0)|l 1o < Celdrg™)?(Bs). (8.33)

A straightforward application of (5.37) and (B.16) shows that all of the remaining terms on the right side of (8.24)
satisfy even better bounds, which combined with (8.31)—(8.33) leads to

[="7Errz]] , < 1+ e24%)| $5D° 2|+ C(4g )" (Bo) (8.34)

where C' = C (a, ko, Cyata) 18 a suitably large constant, which is independent of 8. Inserting the bound (8.34) into
(8.30), similarly to (8.15) we are lead to

(1 - G| A5, o), — || LB, (.

Iz 022

b2 (af+ - Cel) - c<1+s245 /|| B2, (9|2, a8

33(aB+1)+2-250%(1+a) (J,Q)2 /55
S 6(1+a /H D ZN

y|L2 ds' + Ce(4°k51)?P (Bg)?, (8.35)
where C' = CD’(a7 ko, Cdata) > 1 is a constant independent of . Since Co‘(g,35) is independent of 3, we may choose
first 3 to be sufficiently large (in terms of «, kg, Cqata), and then ¢ to be sufficiently small (in terms of «, kg, Cgata), to
ensure that

af —Cgs5 >0, and 1 —eCis5(8) —Ciasd” > 0. (8.36)
The choice (8.28) and (8.36) makes 5 = 5(«, ko, Cdata). With this choice of 3, (8.35) implies
AR B 2o}, + & [ D2 )
< ||<JQ D°Z, (-, ||L2 / | {292 Q8 Bz, (., ||L2ds’+C°e(45mgl)25<86>2, (8.37)
Using a standard Gronwall argument, and using the initial data bound provided by (4.11), we obtain from (8.37) that
Shl)p]” EALE T Nz + 2/05H2113652N(~,s)||12ds < Ce(Bg)?. (8.38)
s€|0,e x

where C' = C' (e, Ko, Cdata) (the 5 dependence is included in the dependence on «, kg, Cgata). The proof of (8.22a) is
concluded upon multiplying the above estimate by Iigﬁ and appealing to (5.37p) and (6.38a)—(6.38b).
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The bound (8.22b) follows directly from (8.22a) by the fundamental theorem of calculus; in particular, using (B.2c),
we obtain that

2 S ID'Zu (-, 0)|l 2 + e 2 |D7Zu 12, S €% Cuata +¢ 7 - £(Bg) (8.39)

which proves (8.22b).
Next, we turn to the improved estimates for D6Z,, stated in (8.22¢)—(8.22d). We emphasize that the parameter
B > 0 appearing in these estimates is arbitrary, it is not the same as the B appearing in (8.37). Note that we are

only able at this point to obtain such an improved estimate if either DS = D?D;, or D® = DD, i.e., if at least one
space derivative is present. To see this, we return to (3.19b), which we first differentiate in space, and then convert to
(z,s)-variables, to obtain
DiZy = —DiA; — L(1Ds+ VD2)D;E — £(Zy + A;)D;Z — LD;VD,E,  for i€ {1,2}. (8.40)
Upon applying DS to the above identity, and recalling from (3.20) that
DiX=£J,(Wy —Z,) + £J,0:h(W, —2Z;), and DoX=Llg2(W,—2,), (8.41)
we deduce
D°DiZy = ~D°D1A; — -2 71DDs(J, Wy — J,Z, + J,Doh(W, — Z,)) — LVE~ID’D, (g2 (W, — Z,))
— = [D°, 7D (J,Wy — J,Zs + J,Doh(W, — Z,)) — L[D®, VE~!|D; D%
~D°(27Y(Zy + A;)Di2) — LD° (271D VDoY) (8.42a)
D°D2Z, = —D°DoA, — 557 1D°Ds(g% (W, — Z,)) — LVE1D°Da(g% (W, — Z,))
— 5 [D% 27Dy (g% (W, — Z,)) — L[D° VE~|D3s

~D°(L(Zy +A+ 1 DQV)DQZ) (8.42b)

Taking into account the bootstraps (5.37), the previously established bounds (7.1), (8.21), (8.22a), and the Moser-type
bound (B.13), we deduce from (8.42a) that

[S=PT5 Dy < elIS TP AT IID DL, 2 ) s,
+ (4kg V)P (1 + Ce)eKBg + C(4ky 1 )Pe2K(Bg) + C(4rg ') e (Bs)
+ CargYoe|| T3 D5(Q85+V82)(JgWN)|\LiYS
+ C(drg ") (Bo) [ (QDs + V) (J, W) 1,
+C(4rg ) 2| DH(QDs + V) (J,W,0)| 2 - (8.43)

In the above estimate we have chosen not to leave the terms involving éf)s(JqVO\/ ) as is, since they would give sub-

optimal bounds, and instead to write them in terms of (Q& + V8,)(.J,W.), which satisfies better bounds. Indeed,
from (3.24b) written in (z, s)-variables, combined with (5.37), (7.1), (8.21), (8.22a), and (B.13), we obtain that

1(Q0s + V) (J,W)l| =, S 1 (8.44a)
ID*(QQx + V32) (J,W )| 2, < K(Bs) (8.44b)
175D°(Qdx + Va) (J, W) [ 2, < K(Bs) (8.44c)

holds, under the assumptions of Proposition 8.1. Inserting the above bounds into (8.43), and using that ¢ is sufficiently
small with respect to «, kg and Cyata, it follows that for any @ € |0, %]

3 - —

[ PT3 D D1 2|, < E ISP TETIDD(, 20 12, + Cldg ) K (Bs), (8.45)

where the implicit constant is independent of /3 and .
Similarly to (8.43), we may deduce from (8.42b) that

| T D D02, |, < Celang)PK(Be) + L[5 P ITD(Qa, + Vas) (gF (Wi — Z,)) 12,

+ Ce(4rg )7 (Be) [(QDs + Vo) (9% (W — Z7)) |12, - (8.46)
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Here we have again chosen to rewrite some of the %[N)s terms in terms of (Qds + V 02), as otherwise we are obtaining
sub-optimal bounds. By using (3.16a) and (3.27), written in terms of (x, s) variables, and by appealing to (5.37), (7.1),
(8.21), (8.22a), and (B.13), we may show that

=PI TDY(Q0s + V) (97 (W = Z)) | 12,
< Ce(4ry ")PK(Bg) + L2257, DD 2| 12 | (8.47a)

and
1(Q0s + Va) (9% (W — Z7)) |1, S &+ 1(Q0s + V32)Zy | e, S 1. (8.47b)
The bound (8.22d) now follows by combining the above two estimates and (8.46).
It remains to prove the bounds (8.22¢) and (8.22f). Notice that here we do not aim for a sharp pre-factor in front of
the leading order term, as done previously for (8.22c) and (8.22d). First, we revisit (8.42a). Taking into account the
bootstraps (5.37), the previously established bounds (7.1), (8.21), (8.22a), and the bounds in Lemma B.6, we deduce

|73 J2DID° 2|, 2 S €2 KBg + ¢ 2B + |52 DO(J,Dah (W — Z7))
+€H\7%Jg% 66(9%(WT - 27’))HL<>0L2 +€7%<B6>
+ |75 JZ[D°, VED1DoE|, o + 2 (Bs) + 2 (Bg) . (8.48)

HLgOLg

For the three terms on the right side of the (8.48) which still involve norms of products and commutators, the results
in Lemma B.6 do not apply directly; instead, the desired bound follows from the argument which was used to prove
Lemma B.6. For example, the available bounds, Sobolev interpolation, and the fundamental theorem of calculus in
time, imply

733500 Ry — ) S K3 B0 + 3,16 )B W 2

-

< Ke?(Bg) +e7 + €_§Zk=2HDSBG_k(g%)[N)k(\IOVT, Z,)| .

T,

. .
+eiy [P (gR)DD W, Z )l

< Ke? (Bg). (8.49a)

Similarly to (8.49a) one may show that
| 7% .72 D8 (J,Dah(W — D s S Ke? (Bg) (8.49b)
|7%2 D%, VE*1]|D1D22||LOCL2 < Ke? (Bg). (8.49¢)

Inserting (8.49) into the bound (8.48) leads to
|73 7DD Z || e S 27 (B).

thereby proving (8.22¢). Estimate (8.22f) is established in a nearly identical manner, by bounding the right side of
(8.42b), instead of (8.42a). We omit these redundant details. O

8.4. Improved estimates for .J,W,,. We next obtain a few improved estimates for D% (.J,W.).

Lemma 8.4. Under the assumptions of Proposition 8.1, in addition to the improved bounds for (Qds + V d5)(.J,W)
from (8.44), we have the estimates

1

1D (L, W)l e 2 < 2Caatac™ 2 (8.502)
|77 72 DsD°(J,W.0)| . < CeK(Bs). (8.50Db)

Proof of Lemma 8.4. In order to prove (8.50a), we apply D5 to (3.24b) and then transform to (z, s) variables, to obtain
(Q0, + Vdo)DP(J, W) + aXg~7.J,D°D,.A,,
—[D%, VD2 (J,W,) — D*((2A, — 25¢72D3h)(J,W,)) — Rem (8.51)
where the remainder term is given by

Rem = a[D® %g 2 J,]D:A, — 2D*((A, + Xg~2D2h)J,Z,)
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+ D% (LW, + 1522,)J,AL ) + D*((L52W, + 1592, ) J,W,) + aD®(Xg 2 D3hJ,A,) . (8.52)

Thus, establishing (8.50a) amounts to bounding the forcing terms in (8.51) and the remainder from (8.52) in L%S. For
this purpose, we note that (5.37), (6.17¢), (7.1), (8.21), (B.2a), (B.13), and (B.17), imply
115, VID2(J, W) 5 +[ID°((5A7 — §39™2D3h) (/,Wa)) [ .o | < K(Bo) (8.53)
and
HRemHLi ] < Ke(Bg) - (8.54)

Next we return to (8.51), which we test with [~)5(JQV.VN). By appealing to (5.28c¢), (6.38), (8.53), and (8.54), we
obtain

S
Q D5 JWN , < Q D5 JWN 5 —2c Zgiét]_qBSSQANES(JgWN)
L L
0
+C/ 1Q2D°(J, W) (-, Hde’+C°K2<BG>2. (8.55)

The only tricky term is the second term on the right side of (8.55). For this term, we recall the bootstrap (5.37s),
Remark 6.10, and the improved estimate (8.21d), to bound

S ~ ~ o ~ o
//zg—%JgD5D2AND5(JgWN) <
0

< Ce2K(Bg)2 (/0 J(s)%@)é

< CeK(Bg)?, (8.56)

PO (L, W)l e 2 177 77 D Doz |7

where in the last inequality we have used the fact that s < ¢ and that J(s) = 1 — £ is a function independent of .
Using this bound and taking a supremum in time in (8.55) for s € [0, ], we deduce that

sup HQ 2D (J, W, )( + CK2(Bg)? .

< [|Q? D° (J,W,)(
s€0,e]

—|—C£ sup HQ 2D JWN
s€(0,e

HL2 HL2 ||L2

The proof of (8.50a) now follows upon absorbing the second term on the rlght side into the left side, by appealing to
(4.11), to the upper and lower bounds for Q at time s = 0 which follow from (6.43)—(6.44), and by taking ¢ to be
sufficiently small with respect to K and Bg.

In order to prove (8.50b), we appeal to (8.44c), to the identity (Q0s + V92) = %55 + V62, and to the bound
J, < 2, to conclude

L7472 DODa(J, W) |22, < el 7572 D Da(J,W,)IL2 , + D%, VID2(J, W) [z, + K(Bs).  (8.57)

Note that (5.37r) gives |7 5 JZ D?Dy(J,W,) |22 . < Bg. Moreover, from (B.17), (5.37), (7.11), and (8.50a) we obtain
I[D%, VIDa2(J,W )|l 12 . < eK(Bg). With these bounds, multiplying both sides of (8.57) by ¢, gives (8.50b). I

9. CLOSING THE POINTWISE BOOTSTRAP INEQUALITIES
The goal of this section is to close the pointwise bootstrap inequalities (5.37b)—(5.37q). We first claim that:

Proposition 9.1. Assume that the bootstraps (5.37) hold, and assume that < is sufficiently small with respect to «, K,
and Cyata. Then, for all (z,t) € P we have that

ng“’vN > —%571 implies that J, > 1000 , (9.1a)

| JW| < (1+5)e71, (9.1b)
ID(J,Wy)| < 3e7, 9.1c)
J, <2 (9.1d)

IDJ,| <4+a. (9.1e)

In particular, the bootstraps (5.37b), (5.37¢), (5.374d), (5.37k), and (5.371) are closed.
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Proof of Proposition 9.1. The bound (6.17a) implies that
[, W (z,8)] < |(wo),1 (z)] + Ce < e™H (14 Ce?) <e7M(1+5).
The same estimate also shows that if J,W (z,t) > — e, then we must have (wo),1 (z) > —15e~ ! — Ce, and
therefore (6.24a) and (4.4) imply
Jy(@,t) = 1+ (¢ — tin) 5% ((w0) 1 (2) — Cy)
> 1+ (t—tin) 2 (-3 — 2Cy,)

_ _2e 5l1l4a (9 _ 459 _ — 41 _81
21— 355 (10 +2eCy ) > 1 500 — 3¢C0 = 565 — 3Cu = 1000

14+«
2
1+«

assuming that ¢ is sufficiently small. In a similar fashion, the upper bound for J, is also obtained from (6.24a),
combined with the upper bound in (4.10)

Jo(@,) < T4 (= tin) 52 ((wo) 1 () + Co,) <1+ 25 B H2(f5 +2Co) <1+ 25 +2:Cy, < 5,

assuming that ¢ is sufficiently small. The bound for D(Jg\iV ) follows from (6.17b) and (4.10), which together give
ID(J,W,)(z,1)| < 1[DDywo(x)| + CeK(Bg) < 2 + CeK(Bg) < 2

assuming that ¢ is sufficiently small. It remains to estimate D.J,. When D = D; or D = D3, from (6.24b) and (4.10)
we deduce

D3, (2, )] < (t — tin) H2DDywo (z)] + C(t — tin)eK(Bg) < g e Ce?K(Bg) < 3, 9.2)
assuming that ¢ is sufficiently small. When D = £9;, from (6.24d) we deduce
€0y J, (@, )| < 2 |Dywo ()| + Ce < Loy Ce<1+a.
The claimed bound for D.J, thus holds in both cases, concluding the proof of the Proposition. ]

9.1. The WT bootstraps. Next we turn to the bounds for WT. From (3.27) we obtain that

A t(ay,—3 _ 3420 R ot (m.r)dr
W o &(z,t) = (wo),2 (:E)ef‘in(zzg 2 hya— HP= A)og (z,r)d

t
JF/ (*a297%A7’2 +%297%h,22 (Z7 +2Ay) — 1722a ZTAT) o&(w,r)
t

in

% el (55g™ 8 hpp— 2E20 Ar)ot(z,r')dr’ g, 9.3)
By appealing to the bootstrap inequalities (5.37) we deduce from the above formula that
‘\IOVT o&(z,t) — (wp),2 (x)| < 52|(w0),2 (x)’ + 2. (9.4)

Upon composing with £~ *(, ) and using that (6.8) implies | (wo ),2 (§ (2, 1)) —(wo),2 (2)] < €2||(wo),22 [ S €2,
we arrive at
(W (z,t) — (wo),2 ()| < Ce? 9.5)
where the implicit constant depends solely on «, xg, and Cqy,t,. In view of assumption ((iv)) on the initial data, which
gives ||(wo),2 ||z~ < 1, the bound (9.5) closes the bootstrap (5.37e), upon taking ¢ to be sufficiently small.
In order to obtain a bound for DWT, we differentiate (3.27) to obtain

(9, + V32)DW, = —DVDoW,, + (239~ 2h,9p — 3420 A, ) DW

— aD(Zg~%)DyA, — aXg 2DDsA, + (2D(Sg 2 )R + 259 i Dhygy —32¢DAL )W,

+9D(Sg 2 (Zy + 2A4)) hyoo +95g 2 Dhyos (Z, + 2A,) — 122D(Z,A,). (9.6)

In order to derive an estimate in the spirit of (9.4), we need to estimate in L7, the last two lines of the above identity.

°

The most difficult terms are DDyA - and Dh, 22, for which we do not have pointwise bootstrap inequalities readily
available. Instead, we use (7.23) to bound ||Dh,22 ||, < Ke(Bg), and we appeal to the Sobolev embedding (B.2d),

@, t N

which gives ||[DD2A || L, S K(Bg). The remaining terms on the second and third line on the right side of (9.5) are
then bounded using bootstrap inequalities (5.37), in Lg%, by Co'e<86>. Similarly to (9.4), we then obtain

|(DW) 0 &(a,t) — D(wo),2 (x)| < €2|D(wo).2 (x)| + Ke(B) 9.7)
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which in turn implies upon composing with ¢! that

|(DW)(2,t) — D(wo),2 (z)| < Ke(Bs). (9.8)
By combining (9.8) with (4.11), we thus obtain
IDW - (2,t)| < [|D(wp),2 || 22 + CKe(Bg) < Cgata + CKe(Be) 9.9)

where as usual we have C' = C (o, Ko, Cdata). Taking e to be sufficiently small with respect to «, kg, Cdata, and B,
closes the bootstrap inequality (5.37f).

9.2. The X bootstraps. We seek sharp estimates for the quantities

DX _ Dao
b} oo :

For this purpose, we appeal to (6.8), (6.9), and the ¥ evolution in (3.19b). First, by using the bootstraps (5.37g) and
(5.37j), we deduce that

|Zoé(x,t) — oo(z)| = ao(x)’e_a Ji, ZxvottArogdr < Co’aao(ac)eéE .

¥ —og, and

Since the mean value theorem gives [X o {(z,t) — X(z,t)| < |€(2, 1) — 2[[X,2 || Lz, , by (4.8), (6.8), and (5.37¢), we
deduce that

Sat) _ 1‘ < Ceele 4 €2 < (e (9.10)

oo(x) oo(z)
upon taking ¢ sufficiently small with respect to «, K0, and Cdata The initial data assumption (4.8) closes the bootstrap
(5.37p) if we choose ¢ to be small enough to ensure Ce < 12 KQ-

Next, differentiating (3.19b) we deduce

(8 + VD)= = —DVZE2 — aDZ, — aDA,,
and thus by appealing to (5.37g), (5.37h), and (5.370), we obtain that

t . t o . t o o
B8 o ¢(a, 1) — 0 (o)) < e[k PV 1] g ek PV (1102 o]+ DA o €ldr
tin

o0 oo(x)
< Ce2Bn@l 4 e
Using the bound [[Dy 8% (|1, <1+ ||D2E\|L3cf S1+e71D*D1X| L2, < (Bo), and the estimate (6.8), we deduce
from the above bound that
|88 (, 1) — Beo(a)] < Ce? Bl 4 e+ Ce?(Bg) < Ce B0l 4 Ce.
Note that from ((ii)), ((iv)), (4.10), and (4.11), upon takmg ¢ to be sufficiently small with respect to kg and Cy,ia, We

have that
D100($)|§%§1’ and \%’W@K%Sla (9.11)

o0

where we have used that ko > 1. By also appealing to (9.10), and by taking ¢ to be sufficiently small with respect to
CY, H/07 Cdata» and <Bﬁ>7 we deduce

|DE(, )| < [Dog(z)|(1+eC) +eC < 2+ Ce <1< hg. (9.12)
This closes the bootstrap (5.37q).
9.3. The h bootstraps. We first note that the bootstrap (5.37m) implies
lg(z,t) — 1] < (1+a)?kie?.

In order to close the bootstrap (5.37m) we first recall from (3.8) that D;h = €0;h = g™ 2 (HO‘ W+152 7). Therefore,
with (6.12) we arrive at
IDih| <e(l— Ce?)~ 2 (Bltal g 4 Ce) < 5(1;"‘) €KQ

which closes the D;h part of the bootstrap (5.37m). Moreover, since h,; = g% J,, from (5.37k) we deduce
ID1h| < 3e(1+ Ce?)2

which closes the D1 h part of the bootstrap (5.37m) upon taking ¢ to be sufficiently small. On the other hand, from
(3.13b), (5.37e), and (5.371), we obtain that

B o(z, )] < f2 (14 Ce) (B2 (140)+ 152 Cy ¢) <26+ 022,
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which improves the Dsh part of (5.37m).
Next, we estimate Dh,5. Upon applying D to (3.13b), we derive

(0 + V2)Dhyo +DVhyos = 22 gDW, + 152DZ; 4 2(L52 W + 1522, )15 Dhs .

- T2
By appealing to the bootstraps (5.37e), (5.37f), (5.37g), (5.370), we deduce from the above identity that

|(Dhyz) 0 &(x,1)] < 125 (14 Ce?) (142 - 2Cup0a + C) e < 4Cqanae + C<2.

Taking ¢ to be sufficiently small, and composing with £ ~1 then improves the Dnyh part of the bootstrap (5.37n). In
order to improve the DD h part of (5.37n), we just note that

IDD1h| < eg?|DJ,| +&J,g” % |hy Dhyy | < e(1 + Ce?)4(1 + a) + Ce® < 4(1 + a)e + Ce> .
9.4. The V bootstraps. From (3.6), (5.37m), and (6.12) we obtain that

V] < (1+Ce?)% (Iio&‘(l +6r0 + 195 Ca, ) +3e(H52 3 k0 + CE))
< roe(14+10(1 + a)ro + 7%5C4,.) » (9.13)
upon taking ¢ to be sufficiently small. Next, the bootstrap inequalities (5.37) and the identities (6.7¢)—(6.7d), yield

|ID1V| < 5Cqatacverin(l — (03’52)_% +e(l- 60'52)_% (%CAN + 550614'?0‘) + Ce?

< &g (6Caata +5(1 + ) + 5C4.) , (9.14a)
D2V < 5Cqatacverin(l — éEZ)_% + CATE + 10k2¢e
< ek (6Cqatax + 10k + CZ\T) , (9.14b)

where we have used that kg > 1. It remains to estimate D,V = €9,V For this purpose, we appeal to (3.23), which
combined with the bootstrap inequalities (5.37) yields (for a constanat C; = C1(a, kg, Cdata) > 0)

’DtV’ <Ce®+ akpe(l — 6‘52)_% ((2 + a)ko + Ce + CAN)
< akoe(2(1+ a)ko + C4 ) (9.14¢)

by choosing ¢ to be sufficiently small, in terms of «, k¢, and Cgata. By combining (9.13) and (9.14), and choosing the
constant Cy to satisfy

Cy > 2(1 +27(L+ a)ro + 6(1 + ) Caara + BC + C;\T) , 9.15)

we have thus improved the bootstrap (5.370). We note that since C i, and C i, only depend on «, ko, and Cdata, and
therefore so does Cy.

9.5. The A bootstraps. The estimate for A ~ 18 rather direct to obtain, since we’ve already estimated the vorticity
Q=A,— %(WT + Z;) in (8.3). Indeed, by using (8.3), (5.37¢), and (5.37i), we obtain that

‘AN‘ < C8.3a)Cdata + Ko + Ce < (Cg3a) + 1) Caata + Ce (9.16)
where we have appealed to the bound Cyaea > ko, and recall that Cgs, = Cigaa(a) = 23+ae!8
taken to be sufficiently small, and if

. As such, if ¢ is

Ca, > 4(Cis30 +1)Cata + 1 9.17)
then
Ag| <3G, - (9.18)
Similarly, by using (8.3), (5.37f), and (5.371), we obtain that
|6AN| < C8.3p)Cdata + Caata + Ce < (Cgap) + 1) Caata + Ce, (9.19)
where Cg3p) = Cgapy(a) = 2(4620)w. Thus, if we also ensure that

Ci, = 4(Csan) + 1)Cata + 1 (9.20)

then N
IDA,| < 1Cay - (9.21)
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These estimates thus close the bootstrap assumption (5.37h). Note that both Cg 3, and Cis 3p) are explicit functions
of the parameter « alone, and thus the smallest number C Ay which satisfies both (9.17) and (9.20), depends on « and
Cdata alone. This parameter is henceforth fixed.

The estimates for AT and its derivative does not follow from the vorticity estimate, but it is established in a similar
manner, by appealing to Proposition C.1 and Corollary C.3. We start from (3.29b), which we multiply by J,:

(J, 00+ J,(V + aXg 2 h)ds — aX01)As = g4 (9.22)
where
Gh, = =959 2 J,(Wr —Z;) 2 —§0g 2 (Wr + Z; +2R,)J,2+5897 2 ([, Wy — J,Z0 — ho J,A )2
+ S LANW, —Z;) = J,(Ar)? = §T,(Wy = Z,)? = LJ,(Wr + Z,) (552 W, + 352Z,) . (9.23)
Using the bootstrap inequalities (5.37), we have that

laa, N, < S5 Canta +20(1 + a)rio(1 +2C4, ) + 250 Cana + 52C4, + 2520 4 Ce

< 4okoCyata + 20[(1 + Ot)lﬁo(l + 2CAN_) + B?QCAN + M =: C'(g‘24)7 (9.24)

upon taking ¢ to be sufficiently small. Here we recall that C A, Was already chosen (see (9.17) and (9.20)) to depend
solely on o and Cgjta, and so Co 24y in fact just dependens on «, k¢, and Cgaea. Then, since (9.22) takes precisely the
form of (C.1), with f = A, we deduce from the above estimate, from (4.11), and appealing to (C.3), that

||Z\THng < 4e'® AT('7O)’|L;O + 2022 Cloane < £(4e™® Cata + 2= Clony) =i eClo2s) (9.25)

(03 [e3

for some computable constant Cg 5, which only depends on «, k¢, and Cgata. Thus, if we ensure that
Ca, = 4C02s), (9.26)
where we note that Cj - has already been chosen at this stage by (9.17) and (9.20), in terms of c, K¢, Cdata, then
|A,| < ieC o (9.27)
Lastly, we turn to the DAT bound. We differentiate (9.22) to obtain
(1,0, + J,(V 4+ aSg~ 2 h,3 )05 — aX0;)DA,
= —DJ,0,A; — oD A, —DJ,(V + aXg~2h,3)dA, — J,(DV +aD(Sg~2h,2))d:A7 +Dgs (9.28)

::mDAT DAT ::qu\T
which thus takes the form of equation (C.11) for f = DAT, with suitably defined functions m = m Ar and g = qp Are
First, we note that
[

o, s, < L1041, + 2[0S, < Hteiizuse 929

As such, the parameter 3 in Corollary C.3 may be taken to equal 8 = 22(4(1 + a) + 2awkg), so that 3 = (e, ko). In
order to apply (C.13), we then use the bootstraps (5.37), the Sobolev embedding (B.2d), the geometry bounds (7.1),
and the initial data bounds (4.11), to estimate

l9pa, |, < C(U+Cay +Cay +Cq, +6°C )
+C([D* (W, 1, Z7)| oo + (14 C3 )P, e ) + D [[Dhsza ||
< Co30/(Ca,.)(Bs) , (9.30)

where C(9 30 is a computable constant that depends only on «, kg, and Cg,¢,. Using the above two estimates, we apply
Corollary C.3 to the evolution (9.28), estimate the initial data via (4.11) and deduce that

DA |, < (4e1%) s 2a) (5cdata + EM’%K&N)(B@) : (9.31)

Taking € to be sufficiently small, in terms of «, x¢ and Cqy.ra, we deduce that there exists a computable constant
Cio.32) > 0, with the same dependences, such that

IDA]|, .. <eCos(Ci,.)(Be). (9.32)
oS N
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Thus, if we ensure that
CZ\T > 4C(9A32)<CZ\N><BG> , (9.33)
then
IDA;| < 4eCy . (9.34)
We note that (9.27) and (9.34) close the bootstrap (5.37j). Moreover, we emphasize that the conditions (9.26) and
(9.33) on C Ay mandate that this constant is chosen to be sufficiently large with respect to «, kg, Cgata, but also with

respect to C Ay (which has been chosen already in terms of «, Cyata; cf. (9.17) and (9.20)) and Bg (which will be
chosen to be dependent only on «, kg, Cyata; cf. (10.74), and (12.92)).

9.6. The Z bootstraps. From (3.25c) we deduce that Z, solves the forced transport equation

(J,00 + J,(V + 205972 h,3) 0o — 2050) 2y = my, Zy + g3, - (9.35)
where we have denoted
my,, = =50 W — 15202, — SA; — $¥g B h g
and
g3, = 205972 (Zr + Ay)J,0 + aNg S A o+ (A — S 3 ha ) J, W, (9.36)
— (BeW, + 3507 ) Ay — (HOW, + 1592,) 0,2, + aXg 2 hy J,A . (9.37)

Since (9.35) takes the form of (C.11), with f = y4 ~ and « replaced by 2, the desired upper bound for y4 A~ Will
follow from (C.13). We note that since (5.37) implies |lmy [lre, < (1 + a)e~! (upon letting € be sufficiently

20(14a)
«

small), we may choose the exponent 8 appearing in (C.13) to equal 5 = §(a) = . Moreover, (4.11) implies

that ||i ~ (5 tin)llLee < Cdata. Thus, it remains to estimate the space-time L> norm of q3,.- From the bootstrap
inequalities (5.37) we deduce
gz, I, < 8a(l+ a)roCy,, + amogczw + 5 (Ca, +560Cdata) + HT‘X%CZ\N +Ce
< (1 + Oé)(l + 904)&0(:/‘:\/\/_ + %(CAT + 550Cdata) = 0(9_33), (9.38)

where Cg3gy > 0 is explicitly computable solely in terms of «, k¢, and Cgara. With the above estimate, we deduce
from (C.13) the pointwise estimate

12,] < (4¢18) 5 ( (- tn)] o + 1+L&c@jg)) < 9Cqara(4e1®) 5 (9.39)
upon taking ¢ to be sufficiently small. This justifies the first condition we need to impose on CiN’ namely
Cy, = 8Cuas(4e1$) ™5 (9.40)
which in turn implies the pointwise estimate
1Z,| < 1Cs,. - (9.41)
The estimate for DZ ~ 1s obtained by differentiating (9.35), which leads to
(1,0 + J,(V + 2a3g" 2 h, )0y — 2a3,)DZ,
=my DZy —DJ,0Zy — D(J,(V + 20589 2 h))0sZy + 20DS Zy +qp3,, , (9.42)
=mpz DIy
where
Uz, = Dmy, Zy +Dgy, . (9.43)

As before, it follows that DZ, solves a forced transport equation of the type (C.11). We start by using (5.37) to
estimate the stretching factor

Impz, NIz, < 1o+ 30Fa) 4 g 4 Samo < Slta)(liro) (9.44)

z,t — €

by taking ¢ to be sufficiently small. As such, we may take the constant 3 appearing in (C.13) to equal 8 = %(1 +
a)(1 + ko). In order to estimate dpz,.» as defined by (9.37) and (9.43), we use the bootstrap inequalities (5.37),
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the previously derived bound (9.37), the Sobolev estimate (B.2d), the initial data bounds (4.11), the bounds for the
geometry (7.1), and the improved estimate (8.21), to deduce
20(14«)

lapz, 232, < 2Caara(4e™®) ™ & (B2 (14 @)Caarae ™" + C) + C{(Bo).- (9.45)

z,t —

By taking ¢ to be sufficiently small with respect to «, kg, Cqata and Bg, we deduce from the above two estimates and
(C.13) that

. o 20(14a)
[DZ.| < (461%) Cama + gy (™) Cg (9.46)
where we recall that 3 = B(a, ko) = 22(1 4 a)(1 + ko). Thus, by further imposing that
o 20(14a)
Cap = 4((46"%) Caa + sl (4e1%) 5 1€, ,) (9.47)
we obtain
IDZ| < 1G5, (9.48)

which together with (9.41) closes the bootstrap inequality (5.37g). We note that the constant C; ~depends only on
Q, Ko, and Cyata, through (9.40) and (9.47).
It thus remains to estimate Z and DZ . For this purpose, (3.28b) yields

(L, + J,(V + 20597 2,3 )0y — 20501) Zr = — (0,2 + §5g Fhyoo J, + 3I,A)Zr +q5 . (9.49)

:Z’NLiT
where we have denoted
Gz, = 205,072 (Ar—Zy) +aBg 2 J,Ar 0 —$5g 2 hoo J,(Wr+2A,) +a,Z W, — LA W, . (9.50)

Thus, 27 solves a forced transport equation of the type (C.11), with « replaced by 2. From (5.37) we note that

Imy |, < 82Cy  + Ce < 2aC5 (9.51)
and thus by taking ¢ to be sufficiently small we may ensure that 5 = 1 in (C.13). Next, we estimate
lgz, =, < 12a(1 4 a)ro(Cy,, + Ce) + Ce < 12(1 + a)?koCy,, (9.52)
upon taking ¢ to be sufficiently small in terms of «, K¢, Cgata. From the above bound, (4.11), and (C.13), we deduce
12| < 4€"eCqara + 24" - 12(1 + )k Cy - (9.53)
As such, if we ensure
Cy. > 166" (Caaga + Z0EN 0y (9.54)

then we have the uniform estimate
12| < JeCy . (9.55)

The estimate for DZ., is obtained by differentiating (9.49), which yields
(1,0 + J,(V + 2a3g~ 2 h,3)ds — 20%8,)DZ,
= —my DZ; —DJ,Z, — D(J,(V + 2059 h,))DaZ, + 2aD81 Zy +qp3 (9.56)

=impy, DZT
where we have denoted
oz, = Z;Dmy_+Dgy_. (9.57)
Using (5.37) we first bound
g, iz, < 2020+ St 4 € < Sliretom) ©058)

so that the constant (3 in (C.13) may be taken to equal 5 = %(1 + a + akg). Next, by using the bootstraps (5.37),
the Sobolev estimate (B.2d), the initial data bounds (4.11), the bounds for the geometry (7.1), we obtain

lgpz, Iz, < C(Bs)e + CCz, < Cos0)(C3,.) (9.59)

z,t — Zy
for some computable constant C'g 59), which depends only on «, k¢, and Cgata.
From the above bound, (4.11), and (C.13), we deduce the pointwise estimate

|D27—| < (4618€)ﬁ€Cdata + 676(1—&—01(—&-04,8) (4618)ﬁ0(9.59)<C2N> s (9.60)
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where we recall that 5 = %(1 + a + akg). Thus, choosing Cir large enough to ensure

Cs. > 4(4e"¢)” (Coata + Co59(Cs,,)) » (9.61)
we obtain the uniform bound i
|DZT| < %sCiT, (9.62)
which together with (9.55) closes the bootstrap (5.37j). We note that since C(g s9) and <C2 N) only depend on «, g,
and Cy,ta, SO does CiT’ via (9.54) and (9.61).

10. THE SIXTH ORDER ENERGY ESTIMATES FOR THE TANGENTIAL COMPONENTS
From (3.35d), (3.35e), and (3.35f), we obtain the sixth-order differentiated (\IQVT, 27, AT) equations
L(Q0s + V,)DW + ag~2D,D°A, — ag™2DoDO7 - N (Q + W, + Z,) = D°R] + R +CF (10.1a)
%(Q8s + V3)D°Z, — ad,g~DsD°A, + a,g  2DoDO7 - M (Q + W, + Z)
—2aD%Z, 1 —2a(A, — Z,,)D®7,1 N + 20,9~ 2Dyh DyD®Z, + 20,9~ 2 Do (A, — Z,,)DoDOT - &

=D +RL +cT | (10.1b)
%2(Q8s + V3y)DOA, + ad,g 2D2DS — ag 2 (J,3,)DeDO7 - & — aDOA sy +(Q + W 4 Z,)DO7,; N
+aJ,g 2 D2h D:D°A, — ad,g 2 Doh (2 + W, + Z,)DoD%7 - & = DOF] + R] +C7 (10.1c)
where
RE = DS H(QA,s + Vs)W, + Z71DVDoW, + aD®g~2DoA, — aDa7 D8 (Wig™ 2 (2 + W, + Z,))
(10.2a)

¢, = x7H(DS, V,D2W,) + (D%, 271, (Qds + V)W, ) + (DS, g~ %, DA ;)
— (D%, Dyt Mg T (Q+ W, + Z,)), (10.2b)
and
RT =DO(£)(Q0s + Vd2)Zy + £J,0°VDZ, — aD (g% J,)D2As + aDom DO (W, 2 (2 + W + Z,,))
—2aD%((As — Z,)n) 7%, +2aD% g 2 D2hDoZ; + 2aD°(J,g~ 2Doh (As — Z,)N,)DaT”,

(10.3a)
] = (D°, %, (Qds + V2)Zr) + %#(D° V. D2Z,) — a(D°, g 2 J,, D2A7)

+ a(Ds, Do7* N J,g 72 (2 4+ W + Z,)) — 2a(DC, (Ay — Zy )Nk, 75,1 )

+20a(DS, J,g"2Dsh, DyZ,) + 2a(DC, J,g~ 2 Dok (A, — Zv )Nk, Do), (10.3b)

and
R] = £J,DVD,A; +DO(L)(Qds + VAa)A; +aD’(J,g7#)Da3, — aDam DO (Mg~ 21,3 )
+ar® DS (Wi (Q+ W, + Z,))
+ A D%(J,g7 2 Dah Do) — aDa7 D8 (Wi, 2 Dah (U + W + Z,)) (10.4a)
¢] = L7%(D%,V,DoAy) + (D, L7, (Qds + Vs)Ay)) — (DS, J,g~%,D23,)
—a(DC% g~ 2J,3,, Do - &) + a(D®, J,g~ 2 Dyh Da, A,)
— (D%, Ny J,g 2Dk (2 + W, + Z,), Da7") . (10.4b)

10.1. The D¢ tangential energy identity. In order to obtain the fundamental D¢ energy identities, we shall use (z,s)
coordinates where x € R? and s € [0, £]. We compute the following spacetime L? inner-product:

S
//Jﬁj% ((10.1a) J,DSW.; + (10.1b) DZ, + (10.1c) 2D°A )da:ds’ —0,
0 W 1Zr A+

where
B = ¥
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and 8 > 0 is a constant which will be chosen to be sufficiently large, only with respect to «, in (10.68) below.
Throughout this analysis, for notational convenience we will mostly omit the spacetime Lebesgue measure dzds’
from these integrals.

The goal of this section is to show that (10.1), a good choice of 5 = 3(«), and choosing ¢ to be sufficiently small
with respect to «, kg and Cyata, implies a differential inequality of the type

3 i, s e
H%Dﬁ(WTaZTaAT)(VS)HiQ / HJ4J d Dﬁ(WT’zﬁA ) HL2

< Cla)e( (10.5)

Ko HL2

ey o) [ G B0 2 A ) s

where C'(«) > 0 is a constant that only depends on «. The true inequality we establish, see (10.69) below, is a
bit more complicated because it turns out we need to augment the tangential energy estimate with the energy term
1 ~
1 1
&[S v - D079
mequahty ins e [0 €] shows that

Leaving this complication aside, if we were to establish (10.5), then a standard Gronwall

up HJ (JQ’2D6<W 2o AL (9|7 + /H““D%WWZT,A) )2 ds’ < C'(a)e()*8F,
sE e

for another constant C’(a) > 0 which only depends on «.. Upon multiplying the above estimate by x2%, noting that
cf. (5.37p) we have 1 < ngﬁ 728, and recalling that 3 = 3(a) we deduce that the tangential part of the bootstrap
(5.37r) may be closed as soon as K is taken to be sufficiently large with respect to «. This argument is made precise
in (10.8) below.

10.2. The integral 1 Wo . We additively decompose the integral 1 Wr as

IWT — IYVT + I;/VT + I:\))/VT + L\I/VT’

e = /0 S/;wJSJg(QaS + V9,)DW., DWW, (10.6a)
- = a/os/]ﬁjig—éJgE)Zf)ﬁi\T DSW.,, (10.6b)
L /Os/]ﬁﬁg%Jq(Q + W, +Z,)DoD%7 - & DOW,, (10.6¢)
W= - /Os/gﬁjiJg(Bf)'FwT +RY, +CF,) DWW, (10.6d)

10.3. The integral I Zr We additively decompose the integral I Z: ag
qu— — I]%T + 1227— + I??T + IZT + Ig‘r + 1621— + I72T + Igzr ,

% = /Os/zgﬂjiJg(Qas +V,)D%Z, D°Z, (10.7a)

IZ=—a /Os/jﬁjigquéﬁzﬁﬁiu D6Z. (10.7b)

I =a /OS/JﬁJSJgg—% (Q+W, + Z,)DyDO7 - & DOZ, (10.7¢)

I = 2 /S/jf,jiﬁ"’im D°Z, . (10.7d)
0

% = —2a //]5 —Z,)DS7,, W DZ,, (10.7¢)

12 =2a /()/Jﬁjang—ff)gh D,D%Z, D°Z., (10.7)

o S ~ ° ° o~ o~ ~ o
I% = 2a //gﬁj%Jgg*%Dgh (A, —Z,)DyD%7 - & DOZ, (10.7g)
0
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- //yﬂﬁ (D°F + R} +C3) D°Z,. (10.7h)
0

10.4. The integral I A, We additively decompose the integral I Ar as

N S VT G VI i N W
J IR (S (S (S [y Ay () D

R s ~. o ~. 0
= //%j%Jg(Qas + V,)D°A, D°A, (10.8a)
0
I =24 //]Bg_%j%Jgf)zBﬁiT DA, (10.8b)
0
o S ~ ~ ~ 3
I = 20 //jﬁg*%j%((fgzN)DgDGT-N DA, (10.8¢)
o Os 3 o ~ 3
I4AT = —2«a //jﬁjEAT71 DGAT7 (10.8d)
0
o S ~ ~ o
I?T =2 //Jffj% (Q + W+ ZT)DﬁTd N DGATv (10.8¢)
0
o S q 1 ~ ~ ~ o ~ o
IQT =2 //]Bj%Jgg—a D,h D,DSA, DA, (10.8f)
0
I =20 / / T3 1,972 Dah (2 + W, + Z,)D,D7 - v DA, (10.8¢)
o S O 3 ~ ~ o
A= - /O/]ﬁﬁ (B°FT + R} + CF) D°A, (10.80)

10.5. The exact derivative terms. For the terms involving a time derivative, we note that summing (10.6a), (10.7a),
and (10.8a), integrating by parts and appealing to (5.32), (5.28d), (5.30), and (5.33d), we obtain

W e g e = / / 722 (Qos+ Vo) (D w7>2+<6627>2+2<662\7>2)
0

_%HJ%(‘]‘?Q)%[N)GW 2”*74 D6Z +’|J4(JQ)2 D6A

)3 HL2 HL? HL2

j4(JQ)2D6W _ 1 ~74(JQ)2D62

HL2 3 S HLg - H%D%\T( ,0) ;

- 2! HL?F

+ /0/ 13Go ((56WT)2 +(DSZ,)? + 2(66,&7)2) (10.9)
where we have defined
Go = —1(QO. + V) (T3 J,) + L(VQy — Qo — DoV — 208(Z, + Ap)) T3,
At this stage, we record the pointwise bound
Go > —3(Qa+ V) (T2J,) —C(B)T 3], — 29QT3J,, (10.10)

=:Ggood

which follows from (5.15), (5.37), and (6.38).
For the terms involving a 9y derivative of the fundamental variables, we add (10.7d) and (10.8d), and integrate by
parts with respect to 9; (here, recall that 9,7 = 0) to arrive at

I# 41 :—a//jﬁj%al((ﬁﬁi )2+ (D°A,)?) //Egﬁc (B°Z,) + (DA, )?) (10.11)
0

where
3

G = —a(28 - 1)IT8, > a(B - 4) (1 - e Q- C)7* (10.12)

as soon as 3 > 3, in light of (3.20a), (5.37), (6.38), and (6.64).

_27
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For the terms involving a 0, derivative of the fundamental variables, we add (10.7f) and (10.8f), and integrate by
parts using (5.28c¢) to arrive at

I(;ZT + Ié\’ = a//jBJ%Jgg_%Bzh 52((5627)2 + (56'&7)2)
0

— / QupT 2,9~ Dok (B92,)? + (D°A,)?)

/ / G2 ((B°Z,)? + (B°A,)2)  (10.13)
where
Gz = aX?(Qz — Do) (T2 J,g 2D2h) > —C(B)eT %, (10.14)

and we have appealed to (5.37), (6.38), (6.64), and the bound J < J,. At this stage we also note that the bootstrap
inequalities imply

—a / QupT T, Dol (B°Z,)% + (D°A,)?)

S

> (2 (||MD627(.,5)||L2+HMD6AT IIL2)~ (10.15)

Lastly, we note that there are three terms with seven derivatives landing on the fundamental variables; these terms
combine to yield an exact derivative, which we then integrate by parts. Adding (10.6b), (10.7b), (10.8b), and recalling
that ¥, = 1 W ZT, using (5.28c) we have that

o o o S 1 ~ ~,. o ~ ° ~ . 0
JAALEY oy a//]ﬁjgg_fJng(D6AT (D°W,, — DGZT))
0

—o [ [@-Bauats i) BA, (B, -B°2,)
0

- a/@Jﬁg*%ﬁ J, D°A, (D°W, — D°Z,) (10.16)
Note that the available pointwise bootstrap bounds imply
a22(Q2 — Do) (7297 20,) | < C(B)T2J,, and  |aQyZg 2Q7!| < Ce. (10.17)

Summarizing the identities (10.9), (10.11), (10.13), (10.16) and bounds (10.10), (10.12), (10.14), (10.15), (10.17)
upon taking ¢ to be sufficiently small in terms of «, ko and Cgata, and taking 3 > 1, gives

B I+ I+ B+ 7+ I+ I + I + I+ 1
. 3 PR ) N L
> (3= Co) (I OW (9 + |25 D°21 ()
3 1
g od .
(17 E W, 0)7,

+//ﬁ Ggood—éﬂjéjg)(\56WT|2+|562T|2+2|56,&T|2>

3 1 .
)7 + 2] FHEQDA (9|7

3 1.
L2 Bz (L 0)7, + 2] LI BeA HLz)

Izz

3 1 3 PP
e / (1 2R BW, () 2, + [ L8 507, ()2, + [ LGB0, (.52, )as’
#2020 (162 (L, + 5 L)
0 x
S 3 3 1 __
- B [ (2GR0, ), + AR BR A5, ) as (019

where as usual C' = C' (ar, Ko, Cdata) 1s a positive computable constant. Note that Cis independent of [3.

10.6. The terms with over-differentiated geometry. Next, we consider the terms in (10.6)—(10.8) which contain
seven derivatives on the tangent vector 7 (or equivalently, the normal vector N).



84 STEVE SHKOLLER AND VLAD VICOL
10.6.1. The sum 152* + I;*. Integrating-by-parts in (10.7¢e) and (10.7g) we find that
2 4 12 — 20 / s/jBJ%(AT 2,807 - (B2, — Ty~ $Ban D012, )
+2a // 81 (T — Z,)NE) — Da(3T2 1,9 2 Dah (A, — 2N)Nk))f)67k DSZ,
+ 20 /O/ngﬁjfjgg*fDQh (A, —Z,,)D°7- N D°Z,

9 / Qi3 Doh (Ay — 2,57 - D52,
S

Z, 7, 7, Z,
=570 T 5o T 550 et 517 a (10.19)

At this stage we note that the first term in (10.19), namely I, 5217 .» contains over-differentiated terms, i.e. seven deriva-

tives on 27—, but that the remaining three terms are under control. Indeed, from (5.37), (6.38), (7.1h), and the fact that
J < J,, we have

_ 11
’ 5+7b| < 871ﬁ(%)ﬁ”D6THL% | J;é 2 DGZTHLis < 56(%)BK<BG ||J4{g2 DGZTHLg,S (10.20a)
. 11 Tt
|l S G ||D°*r||ms| TBOL, |, S KB L D2 (10.20b)
1. o
04l 5 2 17157 o | DG0152, (. 9)], 23 4) KB [ L1522 B2, (5,

(10.20c¢)
In order to handle the first term on the right side of (10.19), we use equation (10.1b) and (10.1a) to rewrite

20[(66i7—,1 —Jggfé [~)2h 62 5627)
= —ang_%f)gBﬁAT + ang_%Bg[N)GT NOQ+W,+Z) + %(Q@s + V82)562T
—2a(A; — Z,,)D°7,1 N + 20,92 Dok (A, — Z,,)D2DO7 - v — (DOF + R] + )
= % (Q0s + Vd)DW, + £(Qd, + V8,)D°Z,
—20(A, — ZN)D Ta N+ 2aJ,g 2 Doh (A, — Z,,)DyDO7 - &
~ (O°F] + RE + L) — (D°F + RT + 7).
Substitution of this identity into the integral I 52;7 > gives us the further decomposition

. g7 Z
‘[5+7,a - ‘[5—;7711,1' + ‘[5-71-7,(1,1'1' + ‘[5—;7,(1,1“ )

N s R . .
g = //ﬁJ%Jg(AT —Z,)D°7 - & (Q0s + V8,) (D°W, + D°Z,), (10.21a)
0

o S . . - o

Il a0 = =2 //Jﬁﬁ(AT — 2,,)?D°7 - & (DOT,1 - — J,g " 2Dah DoDOT - ) (10.21b)
0
s B = o ~ ~ ~
I5Z+7 ayiii =~ //JﬂJ%(AT —Z,)D%7 - w (DOF] + Ry, +C, + DR, + RI +¢7). (10.21¢)
0

As we shall see next, the first two terms terms in (10.21) have a good structure (in spite of them having terms with
seven derivgttives), while the forcing terms present in (10.21c) may be estimated directly (see Subsection 10.7 below).

The term 1, 5217@, ;; defined in (10.21b) contains perfect derivatives which may be integrated by parts:
. s 0 . R - P~~~
I3 i = —0 //JBJ%(AT —2,)*(01(D%7 - N)? = J,97 2D2h Do (D87 - A)?)
0
+ 2cx //]ﬁj%(AT —2,)°D%7 - & (D%7 - 7Ny T — J,g " 2Doh DO7 - 7Dan - 7)

— a// 81 ]ﬁ ZN) ) (62 — Qz)(Jﬁj%(AT _ iN)QJggi%ﬁzh))(ﬁﬁT.Nf
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+Q/Q2]/3 Z,)%J,9"2Doh (D 7’~N)25
+ 2 /0/.][3\75 (A; —2,)°D°7 -~ (DO7 - 7Ny -7 — J,g 2Doh DO7 - 7Don - 7). (10.22)

By appealing to (5.37), (6.38), (7.1h), and the bound J < 1, we conclude
1277 0] S €2 B(A)PK2(Bo)2. (10.23)

The term I, 52_7_7.@714 defined in (10.21a) requires that we integrate by parts the (Qds + V' 92) operator, and then appeal to
the DS-differentiated variant of (5.34b). Indeed, from (5.28d), and (5.34b), we may rewrite

Igl?,a,i == /07(56V.VT + 562T)ﬁ~7%=]g('&7 - 2N)(H?QBGWT + “7&562&
_ /OS/(E)ﬁ\ivT +D9Z,) s T2, (Ar — Z,0) (1E2W, + 1522, )n - Do
- /07(56\7VT +D%Z,) 5 T2, (Ar — Z)N (DS, (AW, + 1592,), vy
- /7(66WT + [N)GzT) z%aj% Jg(AT - 2N)Nk|[567 V]|52Tk
// (D°W, +D°Z,)(VQz — DoV — Qs) (EL T3 (A — Z)N - 667)
-/ [©, +8°2,)5°7(Q0 + Vo) (T (Ar — 2

+ /(DGWT + DGZT)Q(ﬁJny(AT — 2N - DGT)

S

_ /(Bﬁv"vT + BﬁiT)Q(ﬁj%Jg(i\T 2N 667) ‘0 : (10.24)

We have isolated on the right side of (10.24) the first term as the most dangerous term, with the remaining seven terms
being lower order. Using the available bootstrap bounds and improved estimates, we deduce from (10.24) that

. s 3 1. §gs
Bl 5 [ (1242050, + [ L4205 ], o

+52(§0)2ﬂK2<B> +eK(Bg) (- (Hj”g DW, |, +Hj;}';2D6ZT||L%S)

+et Gy (Hﬂ(i]ﬁQ DOW (-, e + ||t74 CAL: D°Z, (. ||L2)
+er(L )BK (HJW LQ)% Bovy, ( )l a + [Eattici 562T(~,O)HL§) . (10.25)

Summarizing the decompositions (10.19) and (10.21), appealing to the bounds (10.20), (10.23), (10.25), the Cauchy-
Schwartz inequality, and taking ¢ to be sufficiently small (at this stage, only in terms of «, kg, Cdata), for 8 > 1 we
arrive at

5 IF | < |12y il + G267 ()PP K3 (Bg)?

# O (| LGB (), + | T2 9,

+ C°€(||‘7427ﬂ)DGWT 07, + 1252, (o))

+ C/ || .74 Jg DGWT HL2 + ‘ j4 Jg D6ZT ||L2)ds/, (1026)

where 1, E'ﬁmm is defined in (10.21c), and will be shown to be dominated by the other terms on the right side of
(10.26).
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10.6.2. The sum I + 127 + I + I**. Integrating-by-parts in (10.8¢) and (10.8g), in a similar fashion to (10.19),
we find that

4 1A = 24 //gﬁﬁ (Q+ W, +2,)D°7 - n(B°As,1 — 7,9~ D2h DDA, )
0
S
9 // (01 (T H @+ Wr + Z,)ws) = D (T H 1,97 EDs0 (0 4+ Wy + Z,)w,) ) BOT DOA,
0
B Qa//ézyﬁjgjgg_%BQh(Q+WT+2T)66T'N D°A,
0

+20 Qo2 J 2 1,972 Dah (2+ W, +Z,)D°7 - v DOA,

S

A, A, A,
= I, + I5+7 v+ 557 15574 (10.27)

Note that the first term in (10.21), namely VA 5;7@, contains terms with seven derivatives on AT, but that the remaining
three terms are under control. Indeed, from (5.37), (6.38), (7.1h), (8.3) and the fact that 7 < .J,, in analogy to (10.20)
we have

I27,,] S eB(2) K(Bs) H‘“ 7t DAL, (10.28a)

II§;7c!<s LK (B[ ZEA DA, (10.28b)

| S et ()PK( 6>HL(§%Q’2 D°A, (., (10.28¢)

’ 547,d s)HLg'

In order to handle the first term on the right side of (10.27), using equation (10.1c), we see that
— QQ(BGAT,l fJ_qgf% th 5256;&7)
= —2aJ,g" 2 DD, + 2097 2 (1,35 )DaDOT - A — 222 (Q8s + V32)DOA,
—20(Q + Wy + Z,)DO7,1 -\ + 20,9 2Dk (2 + W + Z,)D2D7 - v + (D°F] + RE +C]).

Substitution of this identity into the integral defining 7. 5’)&;7 o 1n (10.27), gives us the further decomposition

_ A, A A, A,
I’+7a I5+7a 7 + I5+7a [ + 15+7a 111 + I5+7 a,iv + ‘[5+7 a,v

IESA—':Za,i =—2a /O/J,aJEJgg‘E(Q +W, +2Z,)D% - & D:D°E,, (10.29a)
A, ’ 3 -3 A 5 H S \\6 5 16
IT, 0= ; 25T29 2 (J Wy — J,Zy)(Q+W, +Z,)D°7 -~ DoD°7 - v, (10.29b)
S P ° o ~ ~ . o
I5A+7 aiii = —2 /O/ﬁngg(Q + W, +Z,)D%7 - & (Qds + VO,)DOA | (10.29¢)

Ir 0in = —20 //Jﬁﬁg‘%(ﬂ + W, +2,)2D57 - w (D71 N — J,g~2Doh DT &), (10.29d)
0
o S . o - .
55700 = //Jﬁj% (Q+ W, +Z,)D7- v (D°F] + R +CF). (10.29)
0

The first term in the above expression, 5 5 ;7 a.i» Tequires careful analysis since it involves seven derivatives on X,

(hence WT and ZT) We may however estimate the remalnlng terms by drawing an analogy with (10.21). Save for the
difference between g~ 3 (Q+ WT + ZT) and AT y4 ~ (these terms satisfy the same bounds in LS, even W1th one D

derivative acting on them), we have that 15;7 aiii (se€ (10.29¢)) is nearly identical to I 5+7 ai (s€€ (10 21a)), I 5+7 aiv
(see (10.294)) is nearly identical to 15;7 aii (see (10.21b)), and 1, 5+7 aii (see (10.29b)) is very similar to the Dg—part

of I, 52_[_7 aii (s€€ (10.21b)). To avoid redundancy, we do not repeat the steps which have lead to the bounds (10.21a)
and (10.21b); instead, we argue similarly and deduce that

a0l S E2B(4)%K2(Bs)?, (10.30a)

o+7 a,ii
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o+7auz / "j4(J Q)2 D6 s/)HdeS +EK<BG 6||J4J 2 D6 THLz

+5%(%)5K HMDGA Hm

+ 23 (4)PK(Bg HMDGA 0)|| 2 + 2" (:5)27K2(Bo) . (10.30b)

The forcing and commutator terms in [ él?,a,u will be shown in Subsection 10.7 below to satisfy similar bounds.

This leaves us with the most delicate term, namely /. élhm‘ (see (10.29a)). It turns out that while a good bound
for this term is not Davailabﬂle, this term completely cancels with a piece of the sum I :\,)N T+ 1 37. To see this, we next
consider the sum IQNT + Ig* , given by (10.6¢) and (10.7¢). Using (5.28c), we have that

° o S P 1 ° ° ~ o~ ~ . o
L 4157 = —2a //]ﬁj%Jgg_f(Q + W +Z;)DD7 - & D%
0
= Iy 4 L 4 I I (10.31a)

where the four terms arising from integrating by parts the 52 operator are defined as

Iet2e — 9q /O/JEJ%JQQ’%(Q + W, +2Z,)D07 . v D,DOE (1031b)
o - s . L . . _ .

I;/YI;'+ZT = 2« A/DQ (]ﬁj% Jggff(Q + WT + ZT)Nk)D6Tk DGET (10310)

1§Y5+2* = 2« /O/ézjﬁﬁJgg‘%(Q + W, +Z,)D%7 - » DOSS, (10.31d)

Lyt =2 /62J/3\7% J,975(Q+W, +Z,)D°7 -~ D°S,

(10.31e)

We notice that the term 1. :\Q/g +2r precisely cancels the term 2 5;7 a,i> A8 expected:

A, W, +Z, _
15+7az+l,u =0.

The remaining terms in (10.31) are bounded using (5.37), (6.38), (7.1h), (7.11), (8.3), and the bound J < J,, as

| 3, )ﬂK Be) (HJ4JzD6 ‘

.+ ~74J :poz 2|y ) (10.32a)

,Iw +z|<€2( 17K (B (HMDGWT !hﬁH%DGZT 9l2)  (10320)

Summarizing the decompositions (10.27), (10.29), (10.31), appealing to the bounds (10.28), (10.30), (10.32), the
Cauchy-Schwartz inequality, and taking ¢ to be sufficiently small (only in terms of «, kg, Cqata), for 5 > 1 we arrive
at

|I;’°VT + I§ + IZ\* +I§‘f|

o 3 1 o
<[ 0] + CE2B2 (1)K (Bs)? + Ce| ZHLBL2D0A, (-, 0)] |7,

0 [ (1D ) 05 + [ S, ) [0 + | TR ), s

+C’5(H‘ME‘]7,PD6WT )| .. + |2t Bz (. (9] 2 + [EsrAoL o Wy ||L2) . (10.33)
10.6.3. The integral I Ar . The only term with over-differentiated geometry that we have not yet considered is fid

defined in (10.8c). When compared to the I W and I} Z; terms which we have just bounded in (10.33), we expect 137 A

to be worst behaved because it contains a copy of J, 3., instead of J, 3. We start by integrating by parts the D,
derivative from (10.8c), and by using (5.28c), we arrive at

° S ~ ~ ~ o
I = —20 //gﬁjgg*%(ngN)DZDGrNDGAT
0
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= oz/os/jﬁjgg_é(,]g\ivjv - JgiN)f)ﬁT-/\/ D,DSA
+ 32 /Os/]ﬁjégé(JgVoVN — JgiN)(ﬁgj)BGT -~ DA,
ta / S/ﬁsg (g~} (I Wy — J, 2, ) ) DO DOA,
o / S/@M%gé (JW,, — J 2,,)D57 - n D°A,

+a [Quurte bWy~ 12,0B° T x B,
S

= I + I3 + I8 + Iy + 157 (10.34)

In analogy to (10.19)-(10.20), (10.27)—(10.28), and (10.31)—(10.32), the last thee terms on the right side of (10.34)
may be bounded directly (recall that 7 < J,) as

|13+ |18] S eB(2) K (Bq) [Ean DA, (10.35a)

8] < e () K(Bo) | L B BOA, (5 )| 2 - (10.35b)

The second term on the right side of (10.34) requires special care because we only have J 2 to be paired with 56AT,
but the former requires J % in order to be bounded suitably in L%s. The additional power of J i that we are missing
arises from the fact that the D®7 bound in (7.1c) in fact carries J ~i.As such, we obtain

D°A.||,, . (10.35¢)

‘l\
I FN®)

125] < ()P, Wy — J,Zoel| e [T~ 5DO7 ]| 12 || LEDOA

7'||L2 <€( )5K<Bﬁ>||

The only term that we are left to estimate in the decomposition (10.34) is I?;. For this term, we use the equation

(10.1a) to further rewrite the term over-differentiated term D, 5GAT. To be precise, we may derive the identity

A, A, A, A,
‘[37(1 ISaz+I3au+‘[3auz7

1?52,1- =« //Jﬁﬁg‘f(JgWN — J,Z,)(Q+ W, 4+ Z,)DO7 - & DyDOT - v, (10.36a)
0
. s » .
i == //ﬁj%(JgWN — J,Z,)D°7 - n (QDs + VO,)DW, | (10.36b)
0
S . . " . N
I i = //Jﬁj%(JgWN — J,Z,)DO7 - & (D°F] + Ry, +CF) - (10.36¢)
0

The bound for the I 3.0,4 18 similar to bounds which were obtained earlier. We rewrite

D87 - ADeDOT - & = 1D (D07 - A)? — 7 - Doa D7 - M(D®7 — g~ *ADODah) - T

and for the first term integrate by parts the 62 derivative. Using the bootstrap inequalities (5.37), the estimates (6.38),
and the bounds (7.1) for the geometry, we deduce

1157, S €°B(E)*PK(Bg). (10.37)

In order to obtain a bound for the I T .. term in (10.36), similarly to (10.21a) and (10.24), we need to integrate by

3,a,it
parts the (Q0s + V 0) off from DSW. ., leading to the identity
*[=6w E A > o 6\A —an69
o / / BOW, L 7% (LW, — J,Z,0) (L2 DOW, + 152D0Z,)
0

+ / / DSW., D%7 (Qds + V) (ﬁj%(JQVDVN - J_qu)Nk)
0

S

- [ 69, Q7 (W — 42, - B7)
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o

//06 rein T (I Wy — J,2,) (2W, + 1522 )x - (DS + g~ 17D°Dah)

//D6WTEMJ (J\W — J,Z )N (DC, (W, + 152Z.) )
—s—//DﬁWTﬁj’?(JgWN — J,Z,,)A%[D%, V]DyTk

0

- [0 (va: - Bav - Q) (
0

+/56V°\/TQ<ﬁj%(JgVDVN — L 2N - 667)‘0. (10.38)

Ziﬁ j%(JgVQVN - Jgi,\,)/\% 667)

At this stage, we denote the first three lines on the right side of (10.38) by M, Mo, and Mg, and note the existing
bounds and the initial data assumption (4.11) imply that

I?au Ml MQ_MS‘ <C€ )ﬂK<BG>‘ j4J 2D6 7—HL2 +6(1+O¢) ( )Zﬁcdata
T R R Y EECI A (1039)

It thus remains to estimate the three bad terms in (10.38), namely M1, My, M3. Concerning the second and third one,
we have

‘Mg—//DGWTN DO7 ks J, W (Q0s + Vo) T

3
2

11
< e(2)PK(Bg) || T2 DWW |, (10.40)

e3 (L )PK(Bg ||MD6W (10.41)

Ms + / DOW, v - DO7 by WA QT 2| | <
S

S)HLg ’

and the terms on the RHS of the above have an acceptable size. At this point we note that by the definition of 7,
QD+ V)T = —2QJ* .

Thus, we can write the left side of (10.40) as |[My — |\~/I2\ and the left side of (10.41) as M3 — I\7I3|, where we define

My = — 2 /O / DO, D07 WL QT (10.42)

My — — / DWW, - DO ks, W, Q7 2 (10.43)
S

Next, we try to manipulate the MQ term. We rewrite
S S
My = —2 //D6WT/\/~ DO ks (W, — L7)QT? — 29 //D6WTN~ b7 1, Qb
0 0
= M), + MZ. (10.44)
The second term in (10.44) is estimated using Cauchy-Schwartz, (6.38g), and (5.37k) as

5] < st [ IR W () | Ft - B ) 0 (1045)
Next, we consider the term M2 in (10.44). We apply D¢ to (5.34b), and obtain
N+ (Qs + V3,)DO7 = A* DS ((”Ta\iVT - %Z)N’“) — N [DS, VDo 7", (10.46)
which can be further manipulated to read
(Qds + V) (v - D°7) = HeDSW,, + 152D5Z, + (“—O‘WT +1527,) (W - Dn — 7- D7)
NF(DS, (H2W, + 159Z,),a%) — A*[DS, V]Do7". (10.47)

We deduce from (10.47) that

[ 142DOW,, + 152D8Z, — (Qd, + V) (n - DO7) < Ke?(Bg),

(PP
Lz,s
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and hence,
< K% (Bg)?.
(10.48)

’M’ i | (@ van) (- B°) - 15262, BTk (AW — £7)Q7

Note that we also have the estimate

G S ~ ° —~ . Q
ﬁ/g/%DﬁzTN. DO 7ok (W — B)Q7%| < B|| L22 4QD67_||L; [E=5E T||L2 1049)
From (10.48) and (10.49), we deduce that

) ~ o
s+ ke [ (@0 VO BT g (W 2

< 3L 4QD6THL2 ||‘74DGZT{|L2 + CK?e*(Bg)?. (10.50)

57

Thus, we are left to consider the following term (which we rewrite using (5.28d))

Y —— /0 S/(Qﬁs V) (v BT s (W — 18,)Q
= 2(111)5/7@«. D7)

+ yriye //N DO7)2 ks QT 2 (QBs + Vo) (J, W, — 127
b /0/(N- D)2 (S, W,y — 127,) 74 (@0 + Vae) (54:Q)

_ 27(1]?&)5 /0/(V(°Qg — DoV — QS)(N. 66T)2ﬁ(JgV°VN _ ng)QJ%

s (LW — 2J,)Q(Q0, + Vr) T *

S

S
D 1
+ 2(1-?—(1)8 //Q(N' DGT 225 (J WN ?JQ)QJZ 0
M/2//a + M///b + M//l + M///d + M/// + M/l/

_ 27(15?&)6 /Q(N. 66T)2T£5(Jg\iva _ ng)Qja

At this stage, we note that since (Qds + Vd5)J = — 2, and by also appealing to (5.30) we have
M5s = qmes //N DO7)? ks (—J, Wy + 2,) QT 2 (10.51a)

M, = Taaye /0/(N- DO7)2 b5 QT 2 (Qs + V) (J, W)

S
fﬁ//(AWDGT)ZﬁQJI(H“JWNJr e g Zy). (10.51b)
0

Appealing to (4.10), (5.33d), (6.17a), the identity (Qds + V32)Q = QQ + V9,Q, the bootstrap bounds (5.37), the
initial data bounds (4.11), the bounds (6.38) for the Q-related coefficients, the bounds (7.1) on the geometry, and the
improved estimate for (Q0s + V 02)J, W, in (8.44a), we have

W, >~ B — e [ |9 o7 ) 0 (10.522)
o 2

[MZ| + [M2a] < C=®B(E) K2 (Be)? + {3255 / |8 DO ()|}, a8 (10.52b)
M5/ | < 25(1 + @)e(:2)* Chia - (10.52¢)

In the last inequality we have used that ||Q(-,0)|| L < 1 4 «. On the other hand, (6.64) yields

W, 2 iz [ 196 B}y (10520)
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M///

2,e Z 20(1+o¢)82 (10.52¢)

|8 Bor(- )2,

We note here that the second term on the right side of (10.52a) is the correct “Gronwall term” that corresponds to the
energy given by (10.52e). Combining the estimates in (10.44)—(10.52), we deduce that

W > 2 [ TGO, o) [0 - e [ B0,

0 ;
—25(1+ a)e(2 )wcdatafc (* )2ﬁK2<B>
+ 40(110053/ ‘ QJﬂ4N D6 HL2
+m%ﬂ%WD6Q@*ﬁﬂ?/W§NW I8 (10.53)

The first and last term in (10.53) are Gronwall terms, while the second term is a damping term, which will be handled
by taking 3 to be sufficiently large in terms of a.

Next, we return to the |\7I3 term defined in (10.43). We estimate this term simply using (6.38g), the Cauchy-Schwartz
inequality, and the bound J < J,, as to obtain

1

Wy > =8 | LGB ()| | G DO (9)
1 ~
> || ZHEOLBW, (., 9)|[2, — ks | QG B (9L, (10.54)

We emphasize at this stage that < 5, so that the above bound is compatible with (10.18) and (10.53). Combining
(10.40), (10.41), (10.42), (10. 43) (10 53) and (10.54), we obtain

Ma -+ Ma > (3 + Co)| 242 B, (o)}, = € [ 13 B ()]0
342 / || ._74 (X‘:]ﬁQ D6W7~ ||L2d I 252 (1+a / || j4 DGZT HL2

- 25(1 + Oé) ( )Qﬁcdata CE (7)26K2<BG>

+ ke | 198 B0 08

+ ke [ B9, - B [aghe Bore ). 08y

In view of (10.39), it is left to obtain a good lower bound for the term M; defined in (10.38). We have that
s 3 ~ .
sz/W&MDW /W“”WWT iz 15021909

S

_ C/ .74 J( DGWT HL2dS + H -74Jg D627— HL2 )ds’ (10.56)
0

where we have introduced ,
Ghad = T2 (Qds 4+ Vy)J, . (10.57)

We emphasize that the first term on the right side of (10.56) is to be combined in (10.66) with the third term on the
right side of (10.18), which contains the damping factor Ggooq defined in (10.10). In particular, we emphasize that
(6.65) gives

Ggood + Goad = —(Q8, + V) (T 21,)+T % (Q0s + V,)J,
= %(—Jg(Qas FVR)T? + T2(Q0s + vag).fg) > L (10.58)

To summarize the bounds in this subsection, we combine (10.36), (10.37), (10.39), (10.55), and (10.56), and deduce
that

1 __ . S -
I > I — (5 4 Ce ||‘7427,3)2D6WT(.,5)H2L? n //ﬁGbad(DGWT)z
@ 0
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92
§~ °
e [P () 41529
[ (1 | T 5
0

a5 = 2 [ 1502 () [, 0

€

_ 34245002 / HJ4(J ,Q)? D6W HL2

—31(1+ a)e(E >2f’cdata — O (A )2K2(B,)?
7 "o
+ ke | 196 BT 08
1 ~ 2 . 2 2
|9 Do), - g [aghe Ber.)[},8 . 1059

+ 20(1+a)e?
will be shown in Subsection 10.7 to satisfy similar bounds.

The forcing and commutator terms appearing in FAA 3.0.i

10.6.4. Combining all the terms with over-differentiated geometry. Here we summarize the identities for the terms
which contain over-differentiated geometry. By combining (10.26), (10.33), and (10.59), we arrive at the identity

Ny oIy (S N (N A

\ ‘Ii?auz| —31(1+OZ) (
HLz —Ce (||MDG HL2 +|
HL2 + Hﬂ(z"i%Q)QD%T(wO)Hi;)

-
)QBCdata - C 262( )2BK2<BG>

_’ISA-;:Za,v’
G BoR, (9|12,

> _“[52—11—-7,a,iii|
3

(B4 )| T By

CE(HJ%(JQQ)% 56\,"\,7_ '70)HL2 + HJ4(J ,Q)2 D6

11
[7as’ + || 8= DAL (.57, )as

- [ (1 b HmW+W@F5ﬁASW
//Pﬂmdow e B () | | 6525 |08
-t [ GO () [0 - 20 8160z, ()
‘Umkw/\j4ND6 )3,
+ ke | DO 9, - e [aghy 5or( )|}, (1060

10.7. The forcmg and commutator terms. The only terms left to bound are: I, W- (cf. (10.6d)), Ig Zr (cf. (10.7h)),
. (cf. (10.21¢)), I5A+7 aw (cf. (10.29¢)), and I?’)Aa s (cf. (10.36¢)). These terms do not contain

87 (cf. (10.8m), 27, 4 oo
factors with derivative loss or with a deficient power of J, or J; as such, these terms are bounded directly using
Cauchy-Schwartz and the available estimates for the fundamental unknowns and for the geometry.

For instance, from (10.6d), (5.37p), and (6.38g) we have that

1) < s [0 W ()

(HJAI(J ,Q)% DOF7 (., ||L2 +| wcf . s/)HLg)ds/' (10.61a)

MRT ||L2 + ||

By the definition of F; in (3.36), and appealing to the 7 estimate (5.15), the bootstrap inequalities (5.37), the coeffi-
cient bounds (6.38), the bounds for the geometry (7.1), and the double-commutator bound in (B.16), we deduce

3
| %DGFTHLQ < | SR, 2, A ) iz +el5) K(Be) S (i) K(Be).  (10.61b)
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Similarly, from the definition of R\jv in (10.2), and by additionally appealing to (8.2) and (3.27), which gives the
estimate ||(Q0s + V(’)g)\IOVT||L§<5s < e, we deduce

3 1, 3 i~
|20 R, <24 KB + < BB, + | 502, |, ) £ 22K (BY).

Izz, S
(10.61c¢)
Lastly, using the definition of C\Fv in (10.2), identity (3.27), the aforementioned bounds, Lemma B.1, the Leibniz rule
and Lemma B.3, we may also obtain

3 1 3 1
(J T 1(1,Q7% 36\/ 1(2,Q7 76
[RaIAEy e SEGEPKEB)? e TFEVEDW |, 4 [T D0AL| S () K (Bs)
(10.61d)
Combining the bounds in (10.61), we thus deduce

Next, we consider the bounds for Ig’ and 18 7, which are nearly identical. From (5.37p), (10.7h), and (10.8h), we
obtain

2(2)PK3(Bg)? - (10.62)

ley
3 ~
S/H%WZ )] (roll EB°FT €,z + IFREC S 1| G5 ) o
4 [IG R (ol GO () + IS REC )+ | FCR 1)
(10.63a)

From the definitions of F and F[ in (3.36), the bootstrap inequalities (5.37), the estimate 7 < .J,, the bounds for the
geometry (7.1), the vorticity estimates (8.2)—(8.3), the double-commutator in (B.16), and the improved estimate for
D?Z,. in (8.22a), we deduce
3 ~
G s, + 5 5, < 250586 + O K ). 1053

HL2 s KQ

Similarly, the definitions of Rf and Rf in (10.3) and (10.4) furthermore allow us to estimate

HEﬂﬂRTHH < Ce(L “)PK(Be) + 2al|v - T —J, g~ 2Dyh - D2T||Loo HZB IDGZNHLz (10.63c)
||E~Z41RT||L2 < Ce(:2)PK(Bs) . (10.63d)

The term highlighted on the second line of the right side of (10.63c¢) is not necessarily small, and so it must be treated
with care. First, according to (3.18) and (5.37) we have that

I 7.1 = J,9 2 Daha - Do res, < g™ 2 D2, l|ree, + Ce < 4(1+ @) + Ce < 5(1+a).

Then, we note that if D® contains a single copy of Dy, or a single copy of D,, then by (8.22c), (8.22d), and the
inequality J < J,, we have that

|\2§151652N1|L2 <ﬁ(%)ﬁHJ%JfDG(JgZN)HLi + Ce(4)7K(Bg) (10.63e)
| 5502020 < LI GHDZ | n +Co(2) K(Be) (10.63f)

On the other hand, if D¢ = D6 then by estimate (11.2b) below we obtain that
2osz%DGzN||L2 < Ce(%) K(Bs). (10.63g)
By combining (10.636)—(10.63g) with (10.63c), the bootstrap assurnpt10n (5.37r), and definition (5.36g), we obtain
[Ean Ryl < Ce(o)K(Bo) + 2t || & DﬁzTHLz +6(1+a)(2)7Bs. (10.63h)

We emphasize here that the last term on the right side of (10.63h) does not contain a factor of K. This fact is crucial
for the proof: we can absorb this term not because it has a helpful power of ¢, but because it is missing a damaging
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factor of K. Lastly, using the definitions of C; and C}( in (10.3) and (10.4), and by appealing to all available bounds,
we obtain

Hzﬂ 1CTHL2 <C€( 1”2!* r(D% %,D:Z;) HLi,s

< 32(1+a)HJ4 D67 THL2 +Cs4( )5K(B6> (10.63i)
|5l < Co + 4| (B, 47, D)) DIz,

< 32(1+a),,y4 DSA 7'HL2 _,_064( )ﬁK<BG> (10.63j)

In the last inequality in both (10.631) and (10.63j) we have appealed to (B.19) with m = 6, and note that the most
dangerous term comes from ¢ = 2; this is the cause of the £% term, instead of the usual ¢. Upon combining all the
bounds we have obtained in (10.63), we deduce that

| < 35(1;;&)2/0 ! j4 D6 ||L2dS +35(1+a)/ H

+ 10ae (- )2ﬂ|32+csz( -)2PK?(Be)* . (10.64)

‘h
& ks

T '7S)HL§ S

At last, the terms I5_;7 aiii (defined in (10.21c)), I?Jr? o (defined in (10.29)), and I?a 4 (defined in (10.36¢)),
may be estimated using the forcing and commutator estimates that we have just obtained in (10. 6lb) (10.61c), and

(10.614d) for WT, (10.63b), (10.63h), and (10.631) for ZT, and (10.63b), (10.63d), and (10.63j) for AT We record the
bounds

’5+7am < /H‘74N DS 7( )| 1 (DGFT+RT+CT+D6FT+RT+CT) )| .2 ds’
< ﬁ/ | Q‘74N DS7( ]|L2ds + Ced(4)2PK2(Bg)? (10.65a)
Branl <€ [ I6hn- 507 |\L2||L§<DGFT+RT+cT> )]0
< ﬁ/ HQZ#N- DS7(-,s )||L2ds + Ce¥(L)PK? (Bg)? (10.65b)
Bl £ 25 [ 15 D7) |5 (B + R + C) )]y
< Tres / |9 a0 BT, o)} d8' + O=(2)2K? (Bo)?. (10.65¢)

Combining the estimates (10.62), (10.64), and (10.65), we may summarize the forcing and commutator bounds as

|IW | + ’IZ | + |IA | + | 5+7 a, zu| + }Ié—itﬂa,v‘ + |ISAT

aiii|

1+a /HJ4 DSz, s’)||L2ds’+ 35(1E+a)/0 Hj4 DCA. ( HL2

1M)Es/ 1 g;N DS 7( ||L2ds +10ag(2)2BE + Ce? ()% K*(Bg)?. (10.66)

10.8. Conclusion of the six derivative tangential energy bounds. It remains to merge the identity (10.1), the lower
bounds from (10.18) and (10.60), the estimate (10.58), the fact that Ggooq > —15,"—6‘1\7 %, and the upper bounds from
(10.60) and (10.66), we obtain

3 1
0 (&~ Co)| 242 B Iy, + (5~ Ce (HMD‘SZT I|I7, + 2] Z5E 22D, (), )

o A 5 a L jag o
(34 O (| LEBW, ()2, + LTG50, (0|2, + 2| TR BRA, (. 0))2,)

0z

+ (e o) [ LB ) 0
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S 1 1 1 1
+ (g2 — Cep) / (1557052 (5|7, + || Z#=D%Ar (-8 1. ) as’

(D s e sy [\ 2507 ()7, + | GHBR (], )

- (| 2G|, + | TR0, (5 [, + LA B9 [, )

- 280 [(| 2G50, ) ], + | LGB )], )

—31(1 + a)e(£)* e, — 10ae(£)*’B] — Cet (L -)*PK?(Bs)*

st [0 LGOI, () 0

+ ke [ 1960 B0 ) 0

+ ke[ B9, - B [aghy Bor( )}, (1067

where C = C (a, Ko, Cdata) is independent of 3 (and ¢, as always).

At this stage, we choose § = SB(«) to be sufficiently large to ensure that the damping for 66(2T, AT) is strong
enough, i.e., so that

4a(B—3)  4(1+a)  25%°(14+a)  35(1+a)? >0
5e B £ B £ B ae .

More precisely, we choose (3 to ensure equality in the above inequality; namely, as
Boi= 3+ 20 (44 257 4 BFe)), (10.68)

With this choice of 8 = f,, we return to (10.67), choose ¢ to be sufficiently small in terms of «, kg, Cyata, and use
(4.11) to bound the initial data term. After re-arranging we deduce that

53| J‘LX)]%)ZDG(WTvavAT HL2 m| %%;N D6 S)||2LQ
s [ B W 2 A0 + e [ 1%t Do) a8

< |lé§%QiD%muwzmAT Hm

+ma+w(>%Qm+mm<F%§+cwﬁ<V“W®>

wote [T, 2 A ()}, + ) [ S B 0
< 33(1 + a)e(2)2P (4, + 10ae(2) 20 B2 4 Ce? 2 (L) 2P K (Bg)?
Cl(“)/ | B, 2, A ()2, ds” + 02(“)/ |95 B () 7008, (10.69)

where C4 (o) = W + (342 + 2 500%) and Cs () = % are two constants that depend only on

«. By inspecting the first line on the left side and the last line on the right side of (10.69), we observe that we may
apply Gronwall’s inequality for s € [0, ¢]. More precisely, there exists a constant

Co >0 (10.70)
which only depends on «, and may be computed explicitly from (6.38g), (10.68), and (10.69), such that

3
Sup ‘ j4Jg D6(WT7ZT7AT / | j4]g D¢ WTuZT7AT

s€[0,€]

+% zl[lp HzBaN DO7( S)HZLg /H Eﬁ‘aN D7 ( S)Hiids

< Cae(2)?e (Cdata + B2+ Ce? K2<B6>2) . (10.71)

HL2 HL2
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At last, we multiply the above estimate by f@-?ﬁ «, appeal to (5.37p), drop the energy and damping terms for » - DST
(since these were bounded already in Proposition 7.1), use the inequality J < .J,, and recall the definitions of 8377(5)
and 153377(5) to deduce that

 sup E2(5) + D 1 (e) < Qs (Clayy + B + O (B0)?)

s€[0,e]
< (eK)?B2 - ¢, 420 (CmﬁBa +Cet B ) . (10.72)
Upon defining
K := 8 max{1, c245a}, (10.73)
where [, is as defined in (10.68), and ensuring that
Bs > max{1, Cqata}, (10.74)
and e sufficiently small in terms of «, K¢, Cgata, We deduce from (10.72) that
e sup &2,(s) + D2 (e) < L(eK)?BE, (10.75)

s€[0,¢]
which closes the “tangential part” of the remaining bootstrap (5.37r).
11. IMPROVED NORMAL-COMPONENT ESTIMATES FOR SIX PURE TIME DERIVATIVES

We now consider a new set of sixth-order energy estimates for Z, and A, which involve only time, or “material”
derivatives. The bounds in this section, estimate (11.2b) to be more precise, were used in Section 10 to bound the
20(V - Ty —Jgg’% Dahn - Do7)DOZ,, contribution to R; (see (10.63g)), and are used in Section 12 to bound the

2?"‘51 J, DSZ A contribution to R’Zv (see (12.37)). Except for these remainder terms, the bounds in this section are not
used anywhere else in the argument.
We define the operator e-rescaled ALE transport operator in (x,s) coordinates by

D =¢(Qds + V) = Ds +VD,.
With the above notation, the goal of this section is to establish:

Proposition 11.1. Under the standing bootstrap assumptions (5.37), assuming that € is sufficiently small with respect
to «, ko, and Cyara, we have

bl[lp ||J TiD0(Z,, A (- HLz / HJ4J D%(Z,, A\)(- ]|L2ds§eK2<Bg>2, (11.1)
s€([0,e

where the implicit constant in (11.1) only depends on a, kg, and Cyata.
Before turning to the proof of the above estimate, we record a corollary which is used throughout our proof.

Corollary 11.2. Under the standing bootstrap assumptions (5.37), assuming that € is sufficiently small with respect
to «, ko, and Cyata, we have that

|75 J2DSZ ||, o S €7 K(Bs), (11.22)
|7D8Zy . <|[|T3ZDEZu ]|, S eK(Bs), (11.2b)
where the implicit constant depends only on o, ko, and Cyata.

Proof of Corollary 11.2. We note that for £ > 2 and sufficiently smooth functions f, we have

@kf Dkf Z( ) Evk 'LDsz 7.f

=0
k—2k—i—1 1 j+1+n
~ iy . - -
+ey D D DDt Y ekimgas [] DODIV, L)
i=0 n=0 ;=0 la|=k—i—1—n,|B|=n =1

for suitable combinatorial coefficients ¢y ; n j.o,3 = 0. Identity (11.3) with & = 6 shows that 562,\/ — BSZV
consists of a sum of terms with at most five derivatives on DyZ,, times a power of £ which is at least equal to
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one. These terms are already bounded by (8.22a), by (8.22d) (with 3 = 0 and @ = 1) which for instance gives

|72 2D,D5Z,, |12 < 25-Bs, and by (8.22f). Using the triangle inequality, the bounds for V" established in (7.11)-

(7.1m), and the 1nterp01at10n bounds in Lemma B.3 to treat the non-endpoint cases, it is then clear that (11.1) implies

both (11.2a) and (11.2b). O
Corollary 11.3. Expansion (11.3) implies that we have the bounds

19"l 2 <2l[D*S|,5 +C*K(Be)By, 0< k<6, (11.4)

|78 < 2D+ KB ([0 4= B, ). ab =0, (11ab)

1T 17D | e 2 < 2T TD || ey + CFKBa) (1D 0)] o +7H D] 2 ) o @b >0, (11d0)

where we use the notation in (B.12).

Proof of Corollary 11.3. For simplicity, we only give the proof of (11.4a) when k¥ = 6, the most difficult case. Due
to (5.370), the first line of (11.3) contributes at most (1 4 Ce?) ||6’“f||L%s to the upper bound. In order to deal with
the second line in (11.3), note that the V estimates in (5.370) and (7.11) imply that ||D7V/|| L=, S €K(Bg) for all
0 < j < 3. As such, by also appealing to the Poincaré-type inequality (B.2a), we see that the second line of (11.3)
only has a nontrivial contribution when 7 = 0 or ¢ = 1. For these special cases, we use the interpolation inequality
(B.9), to obtain
_ 1
19°7] 2, < (1+ C*RBADIIDOF 0 +C= D (IBFI,5 By 5 += 75 B) (K (Be)) 7
i=0
The bound (11.4a) with k£ = 6 now follows from the -Young inequality.
The bounds (11.4b) and (11.4¢) follow since the L . bound on D3V implies

|75, < (14 KB [T+ CellBaf DV
[T T D f e p < (14 CPK B[ T I Df| e 2 + CElD2fDV 10 2.
We conclude the proof of (11.4b)—(11.4c) by appealing to (B.2d), (7.11), and to (6.73) with r = 0. U

The remainder of this section is dedicated to the proof of Proposition 11.1. The proof of (11.1) is based on an energy
estimate for A A~ and y4 ~ (see (11.9)), in which the JHVDV ~ evolution is used passively as a “constitutive relation”. The
proof consists of several steps, which are then finalized in Section 11.6.

In preparation, we write equations (3.24b), (3.25a), and (3.26a) in (x, s) coordinates as

(QOs + V) (J,Wy) + aSg2J,D2A, = GY | (11.5a)
L(Qds + Vr)Zy — ag~ 2 J,DoAy — 202, +20g~ 2 DohJ,DsZ, = giN, (11.5b)
2(Qds + Vo)A — $97%J,D2Z5 — aB 1 +ag EDshJ, Doy + $g72Da(J,Wy) = GY (11.5¢)
where
GN = 98975 (J,\Wy + J,Zy — 2J,A)D3h — S (J, W, — J,Z,)A,
— (oW, + 52Z,) LAy — (oW, + 152Z,) W, (11.62)
G) = 297 (I, Wy + J, 2y — 2J,A,)D3h + 20972 (2, + Ay)Dad, — (152, W, + 1527,2,) 2,
1+

+ & ($A(IWy =, 20) = (oW, + 3522, ) LA, — (HeW, + 1522,) 0,2, ), (11.6b)
GY = —2g 3, (W, — Z,;)D3h + ag 2 (3Zx + Ar)Dad, — (W + 17,2, +2J,A,)A
+ ok ((J W+ J,Zy — 20,A0) (S52W, + 1522,) — S (J, Wy — J,2,) (W, — 27)) . (11.60)
Next, we let D6 act upon equations (11.5b) and (11.5b) to obtain that
%(Q@s + V@g)’}SGiN — ag_%Jgﬁgi‘SGAN - 20/}56i,\“1 +2ang_% 62h52£‘562,v
= :56gfzv + cfi‘Q (11.7a)
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%(Qds + VO)DOAy — 29721, DoD%Z, — DA, +ag 2DohJ,Da®OA + L9 2DoD%(J, W)

::oﬁggfwf{, (11.7b)
where the commutator terms are given by
Cji\/ = —%[[’)56, JEXDZ, + a[D8, g2 J,]D2A — 20D, g 7 Dok, ]DoZ,y (11.82)
ey = 105, 1,5 DA, + ¢[0°% 972 J,]D2Zy — a[D°, g7 2DshJ,]D2A . (11.8b)
Our goal is to compute the spacetime L? inner-product:
/S/z%“j? ((11.7a) D57, +(11.7b) 20°A , )dxdr =0, (11.9)
0
J2n JAn

where 8 = (B(«) > 0 is a constant whose value will be made precise below, see (11.33). For convenience, we will
abbreviate ¥, ~28+1 = 5

11.1. The integral 32, We additively decompose the integral 320 as

R R RE

o S - .
3t :/ T2 (Q0s + Vo) (99Z4)?) (11.10a)
7 ’ S 3 1 .~ ~po ~ o
3 = —a//Jaﬁg‘fJgD@ﬁAN %2y, (11.10b)
0
3% = —2a//35ﬁ56?m D°Z,, (11.10¢)
0
. s o .
I = a//JﬁJ%Jgg’%Dthz((CDGZN)2), (11.10d)
0
% = _/O/Jﬂj% (2°Gy + &) D2, (11.10¢)

11.2. The integral JAn. We additively decompose the integral JAn as
/JAn, — NATL + jAn + fJSAn + 34'&71 + jén _|_ j(;A" ,

fin // ’2*275 (Qds + V) ((D°AL)?), (11.11a)
= —a //ygszg :D,®%Z, DA, , (11.11b)
3 = —204/0/153596%,1 DA, (11.11c)
T = a/os/gﬂji’Jgg562h62((56.&N)2), (11.11d)
= —/Os/g,Jg (996 + ¢)) DA, (11.11e)
Ihn = a/os/jﬁjigéﬁﬁ)G(JQWN) DA, . (11.119)

11.3. The exact derivative terms. We note that using (5.28) we may integrate by parts certain exact derivative terms
present in (11.9), so that analogously to (10.9), (10.12), and (10.14), we have

R e R T /e jﬁn
//j;;[i (Qds + Vo) (L(D6Z,)2 + (D0A,)2) — a//jﬁj 7,97 1Dy(D°2, DA,

fa//yﬂﬁal((féﬁim“" + (D°AL)?) +a//yﬁﬁJgg*fDQhDQ((coﬁzNﬁ+(@6AN)2)
0 0
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S 5~
26% 1536 5 [6R  [6 A
— 2« //35\72 (DZy[D°, 0125 + D°AL[D ,81]]AN)
0

= IS 29, + [ TR

3 1
Al ﬂ(ggfgp D°Z,(-,0)

Ol

_ HJ4(QJ)2©6AN

HL2 HL2

[ 6 5201 A SR o [[52 A Ba
0 0

ta / Qup T2 J,9 2052, DA

S

/62‘%\7%%97%52}1((662/\/)2 + (66AN)2)
20 / S/N% (D52, [D°,0,] 2, + D°A,[D°,0,]1A,) (11.12)
where we introduced the coefficients
Gl = —a(28—1)T3%, —L(Qa+ V) (T3 )
+a¥?(Qa — Do) (3,72 J,9 2 Dah) + 3(VQa — Qs — DoV — 208(Zy + A, )) T2 T,  (11.13)
G = —a(28 - 1)T35, —(Qds + Va) (T2 J,)
+a¥?(Qq — Do) (3,72 J,9"2Dah) + (VQo — Qs — DoV — 2a8(Zy + A;)) T2, . (11.14)

We note at this stage that for 8 > 1, analogously to (10.9), (10.12), and (10.14), using the lower bound in (6.38g) and
choosing ¢ to be sufficiently small in terms of «, kg, and Cyata, the following lower bounds hold:

G > (a(B— §) + o) (& — 2,7,Q 0% - BEQUT? + LA 78 (11.15)
G > (a(B - )+ 52) (& - 2:2,Q 7% - BEQJ gt + L2 gi (11.15b)

The sixth, seventh, and eight terms on the right side of (11.12) are bounded by appealing to (10.17). In order to
estimate the ninth (and last) term on the right side of (11.12), we observe that expression (11.3) and the commutator
identity (5.24) also implies

[D5,D :_5Z<) —i)D1V(eV)>'Dy(DLD3 I f)
4 5—1 i . . _ j+1+n~ _
—e> Y > DIDytf et > ChimiapD1 [[ DDV,
1=0 n=0 j=0 |a|=5—i—n,|B|=n =1

Note in particular that for all terms in the above commutator, we have at least a D, present on f. Since in the sixth
term on the right side of (11.12) f is either A or Z,, we may appeal to the DSA,, and D,D?Z,, bounds in (8.21d)
and respectively (8.22d), to the pointwise bounds on (DgA A DgZ ) 10 (5.37g), to the V' estimates in (5.370) and
(7.11), and to the interpolation inequality (B.9), to deduce

Moo

(092, D°A)|| . K(Bg). (11.16)

% / / PTH(DOZ[D, 0112 + DOAL[DY, hJAL)| S (L)) Zh
0

By combining (11.12) with (11.15), (10.17), (11.16), and taking ¢ to be sufficiently small in terms of «, K¢, Cyata
(noton 3 > 1), we arrive at

j%n +j?n+j§n+j§n +j§n _1_313’:’\71 +/JZH +’J4An
3 1
> (4= Co)|| T2 (D97, D°A ) (-

3
401(5—2)/ | ‘773 ®6ZN7®6AN)

3 1
i - 18 B2 A 0

)05

- s [MY TG G2, BoA ) f,0

1+a)5
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_ 653(%0)2ﬁK2<B > (3(1+a) Cﬁ //‘.72225 % )2 + (56&}\/)2) 7 (11.17)
where C' = é’(a, k0, Cdata) > 0 is a constant.

11.4. The integral 36 In order to estimate the J " term defined in (11.11f), which we note contains the seventh
order derivative Dy®°(J,W ) = £D,D5(Qds + V@g), we apply Dy to (11.5a) and find that

5256(J9V°\/N) = fasﬁg*%Jgﬁgés;&N - aeEg*%Jg52|[55, BQ]IAN
— aeDy®% (g 7J,)D2A, — as(DyD®, S92, DoA ) + 5523559\% :
Substitution of this identity into the integral Jé" in (11.11f) shows that
o S E ~a~_ o ~ .o S ~ ~ ~ ° ~ . o
ha—— //Eg_lj,;]%JgDSCDE’AN DOA, — a’e //]ﬁzg_lj%Jng[[©57 D,JA, D°A,
0 0
S S
— a2 //][,g’%j%DgiDg‘(Eg’%Jg)DgAN DOA, — aZe //Jﬁg*%j%((ogz)fﬁ,zg*%,fg, D.A,) DA,
0 0
S N - o
+a€//JBg_%J%DQCDSQ\J}V/ DA,
0
=: Tgn, + Jgn + Ten + T + Ton . (11.18)

The key terms are J5", and J5" , because these terms involve objects with seven derivatives: 5%55;& ~» and respectively

5235552(52 h). We deal with these over-differentiated terms first.
Using (5.28) and the fact that [Da, ©] = eD2V Do, we rewrite

jé‘;;i = g2 //Zjﬂg_IJ%Jy(Qas—l—V@g)((Bg@SAN) +a%e //Eyg T,V (D2D%A )2
0

o / / BoD A, DOA(Qo — Do) (Spg ' TET) + a2e? / Qg T, DsD
0

ﬁsﬂ|*2ﬁﬁ<%>“@5AN Iz

ez tgtont s 5 o),

2 5 //225 DQQJAN) -« 5//D2©dAN® AN(Q2 — Dg)(E‘]ﬁgflj§Jg)

+ a%e /QQE]ﬁg J? JD2®5AN®6AN‘ (11.19)
where
G =329 T L,(DaV +VQ — Q) — S (Q0s + V) (Sg9 1T 2 ,)
> -G+ (0)TH, 4§32 T 4 e (o - )
> —C(L+(8)) T2, + 3527172, Q 4+ Loy g E
> -C(L+(8)T%,. (11.20)

In the second-to-last inequality above we have appealed to the bootstraps (5.37), the bounds (6.38), and (6.64), have
assumed that 5 > 1, and have taken ¢ to be sufficiently small with respect to «, kg, Cqata (but not with respect to 3).
As such, by also appealing to (11.4b) with f = DyA, and a = %, b = 0, and with (8.21¢)—(8.21d), we have

e [ [ 6. (0D%Ae) 2 2O (2 + (3) ()17 1B Bah
; ,
> —Ce¥(1+ Ce(B))(2)*PK(Bg). (11.21)

In order to bound the fourth term on the right side of (11.19), we use (11.4b) with f = BQAN anda=3,b=0,in
conjunction with (8.21c)—(8.21d), to deduce

//D2©5AN9 AN(QQ - D2)(ZJBQ «7 ']

Oé€

< Ce(+ /Hﬂ@ﬁAN )| (K (Bo) + <K (Bg)2)as
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< C/ B2 DGAN ||L2ds +Ced (L =)2PK2 (Bg)?.
Similarly, to bound the fifth term on the right side of (11.19), we use (11.4¢c) with f = EQAN and a = %7 b=
conjunction with (8.21b)—(8.21c¢), to deduce

HL2 e2K(Bg) +£2K2(By)?)

/szyﬁg 17%J,0,0°A,D AN’ ’ < Ce¥( ||%©6AN

<02H““(QJ””©6A S5 + CEEPR B2 (1123)

Thus, by combining (11.19), (11.21), (11.22), and (11.23), we deduce

T 2 e HLLQRED, A5}, - e 2R B, AL( O
O] [EAICTALE LY Wg S5 - c/\ LA (8| }d8 — C=*(1+ Ce(8)) () *K? (Bq)?
e - Y W F-0 WOR
— Ce¥(1+ C=(B))(2)*PK(Bg) . (11.24)

In the second inequality in (11.24) we have appealed to (4.11), the bootstraps (5.37), and to (11.4c) with f = 52,& N>
a=b=0. .

Next, we turn to the other delicate term in (11.18), namely 32,72- Recalling (11.6a), (3.24b), and (5.32), we may
write

D.D°G

= eD2D*(Qds + V1) Gy

=259 (S Wy + J,Zy — 2J,A,)DoD'Ds (g(152W, + 1522,))

—¢2(D2hsg 2 — A;) DoD? ((JQVDVN)(%AT — 2%g 2D3h) + aXg 2 J,DoAy — S (A, + XgTiD2R)J, 2,

+(3+”‘WT+1 aZT)JANJr(H‘“WTJr ZT)JWT+aEg D hJAT>

—e9%g 2 (J,\Way + J,Z5 — 2J,A;)DaD*(D2VD2h) — 2 (D2h%g ™2 — A;) DaD(J,Z,)

+aD3h DyD° (zg—% (J,Zx — Jgi'\T)) +2(D2D% B8 (W, + J,Zy — 2J,A;),D3n)

— Dy®° ((3+“WT 107 ) A+ (oW, + 507, WT)

+ 2D2h[DyD°, 29 2] (J,W,y — J,Zy) — 2[DoD, AL (J, Wy — J,Z,) . (11.25)
The precise form of the above expression is not relevant. Its important features are: the term which previously con-
tained too many derivatives, namely D,®°D, (D2h), has been rewritten in terms of factors with at most six derivatives
on them. In the above expresswn six derivatives land on either the geometry (these terms are bounded due to Propo-
sition 7.1), or on y4 ~ and A ~ (these terms we are currently writing evolution equations for, or they contain at least on

D1 or D2, in which case they are bounded via (11.4), (8.21), (8.22)), or on the tangential components (WT, ZT, A )
(which require one-less power of J,, and are bounded using (5.37r) and (5.37s)). Using (11.25), and by appealing to

the bounds (5.37), (7.1), (7.23), (8.21), (8.22), (8.50a), (11.4), (B.13), (B.16), we may thus bound the Jg\; integral in
(11.18) as

i

< 2046/{0 / ||j D, gN HL2| QGAN ||L2

<C€ ﬂK BG /H B 536A/\/‘ HLQ

< C3(1)2PK(Bg)? + 58/ | Z+25A, (11.262)

5/)HQL§ s
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Here we single out the term %JQWNJ% 52355137 arising in %j%|[52355, AT]](JQVDVN — JgiN), as the only term
responsible for the factor of K(Bg) in the bound for D2©5gvf{ ; one may verify that all other terms in (11.25) contribute
at most a factor of eK(Bg).

In a similar fashion, we may bound the remaining (easy) terms 32’;7, 36A , "b % in (11.18) as follows:

983+ 138 + 28] < 22K ) [ 1GR9

< Ce3(A)2PK2(B)? +cg/ | ZED% Ay (s, s (11.26b)
where the implicit constant depends only on «, kg, and Cyata.
In summary, from the (11.18) and the bounds (11.24) and (11.26) we deduce the lower bound
3 2 O PGSR - 2 DALy
— Ce¥(1+£(B))()*PK*(Bg). (11.27)

11.5. The forcing and commutator terms. Returning to (11.9) and the decompositions (11.10)=(11.11), it remains
to estimate the forcing and commutator terms 3?" and 3?” , defined in (11.10e) and respectively (11.11e).

For the contributions from the commutator terms defined in (11.8), by appealing to Lemmas B.1, B.3 and B.5,
to the boostraps (5.37), to the bounds on the geometry in Proposition 7.1, the improved A A estimates (8.21), to the
improved y4 ~ estimates (8.22), and to the bounds (11.4), we obtain

|sF e,

< 4I=D(,T )

3

s Wz~>(°’iN||L2 ﬁzk JRETHETHDHZ |, + Cel5) K (Ba)

< SULte) Zig67 | 4+ € BZ |@4 FD2(J,5 ][ NP DZu|| 5 + C=(5) K(Bq)
3 ~ o ° IS o
< S| 507, +CKGE) (). (1289
and in a similar fashion
Hﬁ@NH < OULte) g4 L | +CK(E)?(Bs). (11.28b)
STA e, = Mz 6

For the contributions from ©° acting on the forcing terms defined in (11.6b)—(11.6¢), we need to be quite careful,
especially the contributions from D6(.J,W ), D6D2h, and DD,.J,. For these terms, we use that identities (11.52)
and (11.6a), along with the bootstraps (5.37), the bounds on the geometry in Proposition 7.1, the improved A N €S-
timates (8.21), to the improved y4 ~ estimates (8.22), to the bounds (11.4), and the Moser inequality (B.13), imply

Hﬁf;56(ng°vN)HL§§ < e||T1D%(Qds + VO2) (S, W) |
< O“SHZg_%JgHLg‘;H\7%6562'&NHL§_S + a5|‘|[55, Eg_%Jg]][N)QANHLi ot 5”3559\%”% S
< eK(Bs). (11.292)

By additionally appealing to the 52 differentiated version of (5.32), which gives (Q0s + V(')g)[N)%h = —52 Vf)gh +
DohD3h(LECW - + 1597 ) + g(1£2D, W, + 152D52Z, ), we may similarly obtain

||j1965§h||L2_5 =& 71D°(Qas + Var)D3h|| . S e*K(Bs). (11.29b)

and by using the D, differentiated version of (5.30), which gives (Qds+V d2) D, J, = —DyVD, J,+ ”?a D (Jg\iVN) +
159Dy (J,Z,), we have

|72, || o = ]| T*D(QDs + V2)Da,[| . S K(Bs). (11.29¢)
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Using these above estimates in (11.29), the bound (11.4), the product and commutator lemmas bounds in B.13
and B.16, we may derive from (1 1.6b)—(11.6¢) the bounds

3 ~ . o
[Ex=: G, < T!%@"‘zNHLg +CK(%)” (Bo) (11.302)
| 5°GY |5 < HIEEDPA -+ CK(E) (Bo). (11,300
Inserting the bounds (11.28) and (11.30), into definitions (11.10e) and (11.11e), we arrive at
|92 | 4 [ofn | < 1000+a) /||~74 (D°Z,, D°A)(-, ]|L2ds +CeK2 (1 )27(Bg)?, (11.31)

with C' = é’(a, k0, Cdata) > 0.

11.6. Conclusion of the proof of Proposition 11.1. At this stage we gather the identity (11.9) and the lower bounds
(11.17), (11.27), and (11.31), to derive that

3 1
02 (4 - Co) | 2GR (B2, B0A (9}, — [ LG @520, %A 0,

3 <
n (4a(§€—1) _ 100(i+a))/ Hj4 (@ N7© A/\/‘) HL2
0
33(af+1)+2502(1+q) g1 (QJ )3 6

- et 1) ZNQR (507, B0AL) (.5 [},08

— Ce(1+3(8)) (1)K (Be)? + (22 — CB) / / Th(L@02,)2 + B°Ay?). (1132
In view of the above estimate, we first choose 3 such that

207D —100(1+a) & B=f =200 4 (11.33)
and then, for this fixed S,, we choose ¢ to be sufficiently small, in terms of «, ¢, Cgata, Such that
(1;0 > Cii1.32)8a, and 1+ Cluiane® (Ba) < 2, and Caize < 3

With this choice of 8 = f3, and ¢ sufficiently small, we return to (11.32), appeal to (4.11) and (11.3) in order to bound
the initial data term (recall that at s = 0 we have J = J, = 1), and deduce (since Bg > Cgata by (10.74))
1+a

3 1 ~ o
&G4 (252, DA, ) (- [0 (1352, + (B%A,))

)2z +

< C=(L)2K2(Bg)? et S0 b / | ZH9mE (567, D5, (11.34)

(I+a)e HL2

for some constant C' which depends only on «, xg, and Cqata. To conclude the proof of (11.1), we apply the Gronwall
inequality to (11.34) for s € [0, ], then multiply the resulting bound by /-;g , and appeal to (5.37p) and (6.38g).

12. THE SIXTH ORDER ENERGY ESTIMATES FOR THE NORMAL COMPONENTS

12.1. The sixth-order differentiated equations for (J,W,, .J,Z,., J,A,/). From (3.35a), (3.35b), (3.35c) we write
the sixth-order differentiated (J,W ., J,Z,., J,A /) equations in (x,s) coordinates as

L(Qd, + VA,)DO(J, W) + g 2D2D%(J,A ) — ag~2A, DD
~ 2972 (J,Wy + J,Zy — 2J,A;)DoDO7 - = DORY + RY +CX (12.1a)
LJ(Qds 4+ V3)DO(J,Zy) — E(J, Wy — J,2,)DS(J,Z,) — aJ,g 2 DD (J,A L) + ad,g~ 2 A, DyDS J,
+ 90,975 (L, Wy + J,Z, — 2J,A,)DD07-n — 22D,D%(J,Z,) — 22, (Ay + Z,)D, DT - &
+207,D,D%, + 2aJ,g” 2 D2hDaD(J,Z,) + 2aD2D°7 - N J2g 2 Doh(Ay + Z;)
— 20,97 2D3hZ, DoD%J, = DORY + RY + ¢4, (12.1b)
17.(Qds + V3)DO(J,Ay) — & (J,W,y — J,Z,)DS(J,A ) + ag~2.J,D,D%(J,3)
—ag#(J,£)D2D%J, + ag~ 2 J25,DoD07 - & + 2DiDO7 - N(J,W + S, 2, — 2J,A)
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—2D;D5(J,Ay) + 2D:D°J,A, + aJ,g”2D2hD2D8(J,A L) — aJ,g” 2 DohAD,D%J,
— 2D,DO7 - N J,g " 2Doh(J,Wy + J,Zx — 2J,A;) = DOBY + RY + ¢4, (12.1¢)
where the forcing terms F), EV, F are defined by (3.36), while the remainder and commutator terms are given by

R = 57DV D, (J, W) + DPE7H(Q0s + Va) (J, W) + aD®g~ 2 Da(J,A L)

—aD%(g 2 A\)Dad, — 2D% (g7 2 (J, W,y + J,Z — 2J,A;)n;) Do, (12.2a)
C\?V[ = ((565 2_15 (QaS + Va?)(‘]gw/\/’))) + 2_1(667 Va SQ(JQVDVN’))) + a((ﬁﬁa g_%v BQ(JQAN)))
— (DS, g 2Ay,Da,) — $(D% g~ (J,W,y + J,Z, — 2J,A;)n;, Do), (12.2b)

for (12.1a), and
RY = £71,DVDa(J,Zy) + DY (S71,)(Qds + VI2)(J,Z) — DO (&(J, W — J,Z4))J, Zx
- 0556(‘]997%)62(‘];7AN) + QEG(quiéﬂN)BQ‘]g + %66 (‘]ggié(‘]gvovN + ‘]92.’\/' - 2JqAT)Ni)62Ti
— 2?&56 (JQ(AN + 27—)Ni)617_i + 20&66 (Jgg_%f)gh) BQ(JgiN’) + 20556 (ngg_% [N)Qh(AN + 27-)Ni)|:~)27'i
—2aD%(J,g~2D2hZ,)DaJ, — 22D, J,D°Z ., (12.3a)
CY = (D%, 271,,(Qds + Va)(J,Zx)) + E71J,(D, V., D2(J,Zx)) — (D%, &(J, W, — J,Z,), J,Z4)
+a(DC, J,g7%,Da(J,Ay)) — a(D, J,g A, Dsl,)
~ 2(D°, J,g7 2 (J,Wy + J,Z5 — 2J,A)n;, Do)
- 2?(1((667 ‘]g(AN + 27’)'/\/737 BlTi)) + 2?(1((66’ z-/\/’v 61‘]5)) + 20[((66, ‘]ggi%Bth 62(‘]92!\/’)))
+ 204((66, ngg_%BQh(AN + 2T)Ni7 BQTi)) - 2a((56a Jgg_%BthNv 52‘]51)) ) (123b)
for (12.1b), and
RY = 271J,D°VDy(J,AL) + DS(S71,)(Q0s + Vo) (J,AL) — DO (&5 (W — J,Zx)) J, Ay
+aD%(J,g72)Da(J,Ex) — aD® (972 (J,3,4)) D2, + aD®(J2g~ 23, n;) DoDO T
+ 2D (J, Wy + J, 2, — 2J,A,)n;)D1 7% + aD®(J,g~ 2 DohD2)Da(J,Ax) + aD®(J,g~ 2 Dah) A Do,
— 2D5(J,g" ED2h(J, W, + J,Z5 — 2J,A;)N;)Da7’ — 2D, J, DA, (12.42)
cy = (D%, 271, (Q0s + Vo) (J,Ay)) + 571 J,(D, V, Da(J,Ay)) — (D°, &= (J,Wy — J,Zy), J,AL)
+a(D%, J,97%,D2(J,34)) — a(D% g~ %(J, ), D2J,) + a(DC, J2g~ 53, n;, DD 7))
+£(D°, (J,Wy + J,Zy — 2J,A,)n;,D17') — 2(D°, Ay, D1J,) + oD, J,g~ 2 D2hD2, Da(J,A L))
— 2(D%, J,g"2Doh(J,W, + J,Z — 2J,A; )N, Da7?) + (D, J,g~ 2Doh, AyDal,) (12.4b)

for (12.1¢).

12.2. The DS normal energy identity. We compute the following spacetime L? inner-product:

S
//Jﬁﬁ ((12.1a) J,DS(J, W) + (12.1b) D®(J,Z,) + 2(12.1c) DS (J,A ) )da:ds’ =0, (12.5)
0 IWn IZn TAn
where
Js = Dasas

and 8 > 0 is a constant which will be chosen to be sufficiently large, only with respect to «, in (12.87) below. For
notational convenience we will mostly omit the spacetime Lebesgue measure dzds’ from these integrals. We proceed
to the analysis of each of the three integrals in (12.5).
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12.3. The integral I Wn, We additively decompose the integral 1 W as

Note that the integral IXV ™ is missing since there is no pure damping term in the 56(Jg\iv ) evolution (12.1a).

W = Vn g W g PV W g W

I = /O/zlaj J,(Qds + V) DO (W) B*(J, W),

M Z g / S/N% 7,9 102D (J,Ay) D°(J,W,.)

% g /O S/]B J4J,g7 A DyD0, DO, W),

I =g /O/m J,97 % (J,Wae + 1,2y = 27,A7)D2D 7 D (J, W),

' = —%//JBJ%Jg(f)ﬁFw” + Ry +Cy) D°(J,W,0).
0

12.4. The integral I Zn, In analogy to (12.7), we additively decompose the integral Zn g5

%n

7,
I

Y ARy Ay Sy SRRy N SRy SN SN S
- / / L T8 ,(Q0, + VOa)D(J,2,) DO (J, )
0
S
2 S 3 TS (2
- *//#UQWNfJgZN>ﬁ’|D6(quN>| :
0
- —a / / g b T80, DD (A ) DO (J,2)
0
) 3. 13 N 67 6075
=« ]/3‘72 Jgg 2AND2D Jg D (‘quN)?
0

S . R . . o _ .
=3 //JﬂJ%Jgg‘%(JgWN +J,Z, — 2J,A;)DyD57-n D8(J,Z,),
0

S
=2 [ [1710,:00,2,) (12,

S . . . - L~ — . .
=2 //gﬁﬁ J, (A +Z5) (D1D6T-N —¢eJ,g 2Dsh D2D6T~N> D%(J,Z,),
0

= Q?Q//]ngif\f(ﬁlﬁfs‘]g ~eJ,g7 Dah DoD%, ) D°(J,2,),
0
S

—20 [ 17409 10hB0%(,2,) B2,
0

s ~ ~ o
= —/()/jﬁj%(D6F5V+R§V+c§V) DS(J,Zy).

12.5. The integral I An. We additively decompose the integral I An as

IA" _ I'lAn + IQAn 4 I?n + If’n + I?n + IﬁAn =+ I7An + Ign + IgA" + IIOn ,

A,
I

A

—2 / / L T3 ,(Qd, + Vu)DO(J,A ) DY, Ay)
0

= [0 20 F B AL
0

—20 [ [15 878 00:0°0,8.) DAL
0

=2« //]ﬁgi%j%(JgiN)BQBGJg 66(J9AN)7
0

105

(12.6a)
(12.6b)
(12.6¢)
(12.6d)

(12.6e)

(12.7a)
(12.7b)
(12.7¢)
(12.7d)
(12.7¢)
(12.7f)
(12.7g)
(12.7h)
(12.7i)

(12.7)

(12.82)
(12.8b)
(12.8¢)

(12.8d)
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i =20 [ 17007185200 B (LA, (12.80)
i -2 [ [L7B.5°0,A) A, 1280
JA /OS/]BJS(JQV'VN +J,Zy —2J,A) (5156T-N —eJ,g"Dah 5256T~N) DS(JA.), (1289
=2 [0 R (B:50, —rg 1. D5') (A, (12:8h)
" =2a /Os/yﬁjiJgg—%Bzhf)gBﬁ(JgZ\N) DS(J,Ay), (12.8i)
e - /0 S/Jﬁ TR +RY +)) DO(T,AL) . (12.8))

12.6. The exact derivative terms. For the terms involving a time derivative, we note that summing (12.6a), (12.7a),
and (12.8a), integrating by parts and appealing to (5.32), (5.28d), (5.30), and (5.33d), we obtain

IYV',L + Izn _|_ I/&n

://g;2§ (Q@s +Van) (|B° (W) + D87, 200" + 2D (1,4, )
0

= %| MD(S(J WN HL2 2”‘74 = Q DG(J ZN ||L2 + HJ4 % Q)2 DG(‘] AN ||L2
LR uprwﬂﬂﬁwuu ol - ETT ol
s ~ o ~ o
+//ﬁco(yo6(ngN)| +[B0,2)[* + 2D (AN)[") (12.9)
0
where we have defined
Go = —1(Q0s + V) (T2 J,)+1(VQa — Qs — DoV — 208(Z, + A1) T2 J, .
At this stage, we record the pointwise bound
Go > —3(Qds + V) (T3 J,) —225QJ,T % - C(8) T, (12.10)

= Ggood

which follows from (5.15), (5.37), and (6.38).
For the terms involving a 0y derivative of the fundamental variables, we add (12.7f) and (12.8f), and integrate by
parts with respect to 9; (here, recall that 0, 7 = 0) to arrive at

2 4 1A = _a//Jﬁj%al(;SG(quN)|2+ 1557, A,)[%)

//m (IDS(J,Zx)[* + [D°(,AN)[*) (12.11)

where

N\w

Gii=—a(28-1)J?T1 > a(f - $)(E - 7o hQ - )T (12.12)

as soon as 3 > 2, in light of (3.20a), (5.37), (6.38), and (6.64).

iy 2 bl
For the terms involving a 0, derivative of the fundamental variables, we add (12.7i) and (12.8i), and integrate by
parts using (5.28c) to arrive at

Py
S ~ o~ ~ o ~ o
= a//jﬂj%Jgg*%DQh D2(|D6(JQZN)|2 + |D6(JgZN)]2)

:—a/ngBj J9” 2D2h(\D6JzNy +\D6J2N

)|+ [ sz 570 20)
(12.13)
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where
Gy = a2 (Q2 — D2) (3T 2 J,g72Dah) > —C(B)eT ?J, (12.14)
and we have appealed to (5.37), (6.38), (6.64), and the bound J < J,. At this stage we also note that the bootstrap

inequalities imply

—a / QuinT b J,g™ 3 Doh (|D8(J,24) | + |DO(J,24)|*)

S

. 3 1 . 9
> wﬁ(”“%’#o%um(-,s)||L§ +| 7“;’7{906@] A)( ||L2) . (12.15)
Finally, we have the pure damping terms 122" and IQA”. Summing (12.7b) and (12.8b) yields
12Z"+1§n://wc3 D9(J,Z)|* + DS (J,AN)[%) s (12.16)
0
and by using (5.37), (6.38g), and (6.64), we choosing ¢ sufficiently small, we have that

Gy = —a(J, Wy — 1,2,)7% > {278 - 2QJt,. (12.17)

There are three terms with seven derivatives acting on the fundamental variables, and once again, these terms
combine to produce an exact derivative, which we then integrate by parts. Adding (12.6b), (12.7¢), (12.8c), employing
the identity 3, = AW, — 1Z,;, using (5.28¢) we have that

o o 3 S o~ ~ o ~ o
s tpr i =20 [ [ag7 0705 (6°,A4) B°5)
0
s o~ < ~ o ~ o ~ o
= o / / (Qu — Do) (g~ 274 7,)D%(J, A ) (B (J,W,) — D(J,Z,))
0

- O‘/]ﬁQQ.g_%j%J966(J9AN) (66(J9WN) - BG(JgiN)) s

(12.18)

These two integrals are bounded in the usual way by appealing to (10.17).
Summarizing the identities (12.9), (12.11), (12.13), (12.16), (12.18) and bounds (10.17), (12.10), (12.12), (12.15),
(12.14), (12.17), upon taking ¢ to be sufficiently small in terms of «, kg and Cyata, and taking 8 > 1, gives

IYVn +Ilzn _|_IA77, +Izn +]An +IWn _|_Izn +IA71 +IGZ77, +16An +Izn _|_IA77,

;_° <H~74(JQ)2D6JWN

3 1 3 1
(3 | DO (1,20 ()7, + 2| FEEE DO (LA 1)

][}

(HMDG(JWN ,0) ||L2 i ||MD6(J Z)( ||L2

2| 2L 50 A (02,

L3

+ //Ziéﬂ (GEOOd - éﬂji‘]g) (‘BG(JQV.VN)F + |56(J92N)|2 + 2|66(J9AN)|2)
0

o) | oa) (1250 (s 2,0)( Z105(J,A /
+( e T 105> o (H s D" (J, ||L2 +[ %D )G HL2) s
S e 5 ~ o
- (16(?5-5;)5%) + 33+2;2502)/ (||“74(§%7Q)2 DG(JgZN)(wSI)Hng + ||J4(2eriQ DS(J,A)(:, ||L2) ds’

_ 250"‘ / HJ4(J ,Q) 2 D6<J WN) (12.19)

) 1z08

where as usual C' = C' (a, Ko, Cdata) 1s @ positive computable constant. Note that Cis independent of [.

12.7. The terms with over-differentiated geometry. Next, we consider the terms in (12 6)—(12. 8) Wthh contam
seven derivatives on either 7 or J,. Specifically, we shall study the integrals I, W, 15 W I s Zn I -, Is , and n 2

I 5A", I ?", I Q . Various grouping of these integrals shall combine to produce important cancellations and thereby yield
the desired bounds.
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12.7.1. Important geometric identities.

Lemma 12.1. For a function f(x,s), we have that

//f/\/ DQDGTD"‘J‘<33K2 2 (740 +ellT 1], ) . (1220

/ D7 BuD0 | +
0

Proof of Lemma 12.1. Using the identities (3.11) and (3.18), we have that
D®DyJ, = Lg2Dy(w-DO7) — J,D2hDy(n D7)
— 1g37.Dyv 7-D%7 + La-DO(g2 ) &-Dy7 + (DS, g% a7y, D1 73)
+ J,DohT-Don T-DO7 — A-D8(J,Dohn) ar-DyT — (DC, J,Dohi, Do) (12.21)
Hence, integrating-by-parts using (5.28) and (12.21), we find that

//fNDﬁTD2D6 :_7// (fg?) (7-D°7) —7//Q2—D2 )(f J,Dah) (n-DO7)?

+%/§2fJgD2h(N-D6T)2 —g//fMDGrgir.DlN 7-D%7
s 0

S - — — S — ~ .
+§//fN-DGTN-D6(g%N) N-D1T+%//fN-DGT((D67g%N¢,D1Ti))
0 0

S S
+//fN-D6TJgD2hT~D2N T-D6T—//fN-DﬁTN-D6(JgD2hN) N-DoT
0 0

—//fN'EGT((667JQBQhNi,E)QTi)). (12.22)
0

To conclude the bound for the first term in (12.20), we appeal to the bootstraps (5.37), the estimates (6.38), to the
bounds (7.1g)—(7.11), and to Lemmas B.3-B.5, to obtain

([ 13050752501 € 7451 K01 + (171, + 7B "B

4" zfnLgc,sK?e%Ba ] 2 (B0

Since J < 1, this concludes the estimate for the first term in (12.20). The bound for the second term follows similarly
since (5.28c¢) gives

S
//fN~D2DGTD6Jg:—//fN DS7 D,D%J, // Do f N-DST + f7 - Doar7-DO7) D,
0

—|—//Q2fN-D67’ DS, —/@fN-DﬁT DS,
0 s

Using the bootstrap inequalities (5.37), the estimates (6.38), and the bounds for the geometry (7.1), we deduce
//fN'SQBGTBGJ( //fN DGTD2D6
0

+ Ol T2 ] e €K (Bo) + CIIT 2 1] °K(BS)
This concludes the proof of the lemma. ]

(12.23)

+C||T*Ds £ . 2K B)”

Lemma 12.2. For a function f(x,s), we have that
/ fA-D;DS7 DO ‘

Proof of Lemma 12.2. From (2.12) and (3.11) we have that
D17 = Ng 'D1Doh = eng ' Da(g? J,) = eng~ 2 DaJ, + g 2 Dok, Do . (12.25)

K (Bo)2 (|74 DS o, + 11T fless,) - (12.24)

/f/\/ DS7 DyD%J,| <

Applying DS to this identity and then taking a dot product with A/, we derive
N-DiDOT = eg~2D,D8J, + eniDO (w9 2)Dad, + eny (D%, A9 %, Do ,)
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+ 9~ 2DahJ, A -DaD®7 + D% (g 2Doh, )N -Da7 + eni (D, g~ 2DohJ,, Da7i) . (12.26)

Hence, integrating-by-parts in the first term arising from the above expression (using (5.28)), we find that

1800780, = 4 [ @878 8% - 3 [QuraH8%)°

+//fNi66(Nig7%)52Jg BGJg +//fNi((66,Nigié,62Jg)) BGJg
0 0

S

+//(fg—%52hJ9)N-62667 DS J, +//f D%(g~2DyhJ,) A Dot DO,
0 0

S
+//fm((D6,g*%D2th,DQT,;)) D6J, . (12.27)

‘We note that the fifth term on the right side of the above expression is precisely an integral of the type bounded earlier
in (12.20), except that f is replaced by fg~ B Dth

Using the bootstraps (5.37), the estimates (6.38), the bounds (7.1), the previously established estimate (12.20), and
the Lemmas B.3-B.5, we arrive at

L [ 1051887 80| £ 174 Bl 22(Bal? + 17 ez, Bl

(17301 o, + T2 1] )oK (B (1228)

The bound for the first term on the left side of (12.24), now follows from the above esgmate and J < 1. In order to
bound the second term on the left side of (12.24), we integrate by parts with respect to D; (using (5.28b)), so that

//f/\/"SGT D,DSJ, :f//f/\/ D,DS7 D°J, // (f ~i) D87, DS,
0

The first term on the right side of the above identity was already previously bounded, while the second term is bounded
from above by ||72 Dy f| poe3K(Bg)2 + ||7 2 f|| L £7K (Bg)2. This concludes the proof of the lemma. O

12.7.2. Bounds for the forcing, remainder, and commutator functions. We first bound the forcing, remainder, and
commutator functions associated to the equation (12.1a). By the definition of F}) in (3.36), and appealing to the 7
estimate (5.15), the bootstrap inequalities (5.37), the coefficient bounds (6.38), the bounds for the geometry (7.1), and
the double-commutator bound in (B.16), we deduce that

3 1 3
[ 2GR BR | < LR W A2 LA+ o(5)° (Be) S (2B (12290
Similarly, from the definition of Rov[ in (12.2), and by additionally appealing to (8.44), we find that
1 3 1 R .
|G RN L [ TEE B 2.+ () (Ba) S ()7 (B (12.290)

Lastly, using the definition of C\J}v/ in (12.2), identity (3.24b), the aforementioned bounds, Lemma B.1, the Leibniz rule
and Lemma B.3, we may also obtain

H.74(J ,Q)% CJ}/HLgs < (%)6(8@. (12.29¢)

To give a more detailed explanation of how we arrived at (12.29¢), we examine a typical commutator term, namely:
(D6, 271 (Q0s + V) (J,W,)). Using (3.35a), for k = 1,2, 3,4,5 we have

D*(Q0s + V2)(J, W)
=D"(~ ag #¥Ds(J,Ay) + ag SA Do), + 9T EN(L W + J,Zy — 2J,A)Da7 N + EFVy) '
Using (5.37), (7.1), (8.21), (8.22), (8.50a), (7.17), (B.9), and (B.13), we obtain the bounds

||Eﬂ T D6 E ! (Q65+V82)(JOVOVN)))HL§S

~ ~ ° o 3 ~ ~ ~ o~ o o
< (P ISBE s [DP W) o +CGETST DD E DB DU, + C=(:4)"(Bo)
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o 3 ~ ~ ~ o~ ° o
< C(1)P||D5(J, W) ||L§’S +C(%)'szzlHD4*’“D(JQE*1)||L$HD’“D(JQWN)||L§S + Ce(L)P (Bg)

@,

< C"(%WBG» (12.30)

The bound (12.30) is typical of how the most difficult terms in (12.29c) are estimated.
We next consider the bounds for the forcing, remainder, and commutator functions associated to the equation
(12.1b). A straightforward application of (5.37) and (B.13) shows that

[ DR . S () K(Bs). (12.31a)

Using the definition of R/i\/ in (12.3), we shall prove that

[ 1RN||L2 < O )PK(Bg) + 1022|| ZE D°(,Z3)|| - (12.31b)

€ =B

Lastly, using the definition of C/i\/ in (12.3), identity (3.24b), the aforementioned bounds, Lemma B.1, the Leibniz rule
and Lemma B.3, we may also obtain that

|50 S (4)7K(Bo) (1231¢)

To prove (12.31b), we write R’ = (R — 22D, J,D°Z,,) + 22D, J,D°Z,,. From the bounds (5.37), (6.38), and
(B.13), we obtain that

|55 (RY = 22B1,6°2.) | S ()°K(Bo) (12.32)

In order to estimate 2% H AT D1J D62NHL2 , we consider the three cases that (a) D¢ = D;D?, (b) DS = D,D?, and

(c) DS = D6 For case (a), from the bound (8. 22c) we have that
[ D1D02N||LZ < || T D8 (J,2,) ||L2 +Ce(:£)PK(Bs) (12.33)
Then, using (5.371) and (12.33), we have that

2| D102y < 2[Br ] | T DD L]

< 4(1j“>||§j%66(Jq2N)||L2 +Ce(2)PK(Bs) - (12.34)
For case (b), it follows from (8.22d) that
st 10202y ||}, < Al TiD 2|z, + Ce(5)K(Bs) < O K(Bs),  (1239)
and hence using (12.35), we find that
2a||2ﬁ -D1J,DoD zNy|L2 < C(2)PK(Bs) . (12.36)

Finally for case (c), from (11.2b), we also have that

2aH

S 1D1J DSZNHL2 < C(2)PK(Bs) . (12.37)
Combining (12.32), (12.34), (12.36), and (12.37) proves the inequality (12.31b). A similar decomposition of Cjzv
yields (12.31c).

The bounds for the forcing, remainder, and commutator functions for the A, -equation (12.1c) are obtained in the
identical fashion as for the Z ,,-equation, and we have that

57 1D6FN||L2 < C(£)°K(By) (12.38)
[ IRNHLQ < C(%) K(Bo) + 012 G T 1D (LA 2 - (12.38b)

[ 1CNHL2 < C(:2)°K(Be) . (12.38¢)
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12.7.3. The sum I;;V" + Ig" + Ié\". We first note that by using 3, = %(VOVN — Z,), we have that
N - S 1 o o . — - N
V4 15 = —a //gﬁﬁ J,g7 2 (J W,y + J,Z5 — 2J,A;)DyDO7-8 DO (J, 3. (12.39)
0

For the integral /. 5\" in (12.8g), we use integration-by-parts; in particular, with (5.28b) and (5.28c), to obtain that
) ) ) Y Y (12.40)
=2 /Os/jﬁjg(JgVoVN + 2, — 2J,A D5 N (6166(JQAN) —eJ,g" Dsh 5256(J913N)) ,
iy = -e /0/ (51 e Bzhf)g) (jﬁj% (IWoy + J,Z — 2JQZ\T)M) DS7; DS(J,A,),

I7A,c = _a/os/Jﬁjg(Jg\iVN +J,2y — 2J,A;)(Q2 — Dy) (Jgg_%ﬁzh) DS7-n DO(J,A,),

i = a/Jgg—%SQh@ 1T? (I Wy + J,Z, — 2J,A,)D07-x DO(J,A,)
’ s

First, let us observe that by employing the bounds (5.37), (6.38), and (7.1), we have that
|2 ] < ()P (Be)2. (12.41)

+|I7c

7,

To study the integral Iég, we use equation (12.1¢) to substitute for < (Dl DS(J,A,) —eJ,g2Dyh Dy 56(JQAN))
and we find that

IR = I+ R I i T+ T+ I8 i T i T8 i
Hii=o / / 1 T3 0,97 (W + 7,2 —2,A-)D0T D2D°(J,3), (12.422)
Ié*a 0= //W T2 (W, + J,Z — 2J,A)DO7-A J,(Q0s + V,)DO(JA,), (12.42b)
17 p //W T (JWy + J,Z, — 2J,A)DOT- N (2J W, — 2,2, )DS(J,Ay), (12.42¢)
1¢a v = a//ﬂﬁﬁ(JgWN +J, 25 — 2J,A)DOT N g7 % (J,3,)DaDC, | (12.42d)
o //]/3‘72 (JWy + J,Z — 2J,A)DS7-A g~ 223, DD 7 - v, (12.42¢)
=2 /O/Jﬁj§ (W + J, 2, — 27,A)2D07-x J, (D1D6T N —eJ,g"2Dyh DoDO T - N) , (12.426)
I?\{Z,m =-2 /7%72 AW, + 1,2y — 2J,A)D°7 N (51 DS.J, — ngg*%52h 5266Jq) ) (12.42g)
ffa viii //J/ajz JW, + J,Zy — 2J,A)D°7n (DR + RY +¢Y). (12.42h)

Again, using (5.37) and (7.1), we see that

|15 isi| < ()PP K (Ba)®. (12.43)
By additionally using (12.38), we also have that
| < (4 )25K<B )2, (12.44)
Next, using exact-derivative structure and integration by parts, and appealing to Lemmas 12.1 and 12.2, we have that

|12 | [0 |2 ] 112 il S (2)2PK2(Bg). (12.45)

7,a,iv

| 7,a,v111

Let us next explain the procedure for bounding the integral I. 7Aa .- We integrate by parts with respect to the operator
(Q0s + V02) and use (5.28d) with (5.27), (5.30), and (5.34b) to find that
IA

T,a,4i T

= I?a L8101 + I'7Aa ,i12 + I'7Aa ,413 + I'7Aa ,ila + I'7Aa 5 + I'7Aa ,ii6 + I'7Aa a7 0 (1246)
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By = [ [ ST 00+ 220 - 2080 DO (oW, + 1522,)) - B(J, Ay ).
0
o S q ° o o o o ~ ~ o
I;{gm = //E%j’ (B2 g Wy +1520,2,) (J,Wy + J,Z,y —2J,A;) D°7-~ D°(J,AL),
0

Lo /0 / 7,(Q0 + Vo) (e T (JW + J,Z — 20, )v7) DO7; DS(J,A)

H S ~ o o o o o ~ ~ o
I iia = //Jg(DzV + Qs — VQ2) 55 T* (JW + J,Z5 —2J,A;) D7~ DO(J,A ),
0
o S . . . . . . . . ~
Iﬁg)iis =— /O/ﬁf J,(J Wy + J,Zy — 2J,A;) D°(J,A) (D°VDat + (DS, V,Da7)) N,

P = / 20,72 (W + J,Z — 2J,A;) DS7-~ DO(J,A L)

7,a,ii6

S

7,a,ii7

) fa - / %Jgj% (J Wy + J,Zy — 2J,A;) DTN 56(‘]”'&’\[)‘0 '

By using (4.11), (5.37), (6.38), and (7.1) together with (B.13) and (B.16), all of the seven integrals above are directly
estimated and we obtain that

a,it

|12 ] S (2)2PK2(Bg)2 (12.47)

through I An

7,a,v110°

As we have shown in (12.43)—(12.47), the integrals IA"

7.a,i

defined in (12.42b)—(12.42h), are

bounded rather directly. In contrast, the integral I;\”;’i defined in (12.42a) cannot be bounded, but rather requires
a cancellation to occur. In particular, employing integration-by-parts for this integral, we will arrive at a cancellation

with the sum I;,N” +1 g" given in (12.39). By once again using (5.28c), we have that
I7A,:Lz,i = I7A,Z,i1 + I7A,Z,i2 + 1?,2,2-3 + I?,Z,u )
17'&:277;1 - a//‘]ﬁj% Jgg_%(‘]gv‘v/\f + Jgil\/ - QJQAT)5256T'N E)6(‘]9202./\/’) ’
0
o Sr N N N . - o
I7A727i2 =a //D2 (]Bj% J.qgié(“]gwl\f + ‘].LJZ-N' - QJQAT)Ni) DGTi D6(Jq2/\f) )
0

A S o o o o ~ ~ o
. =—a /O/QQJBJ% J,g7 2 (J, Wy + J,Z, — 2J,A)D67-n DO (J,3,),

(12.48)

I, = / Q2,97 % (,Wix + J,Zxc — 2J,A7)D75 D°(J,2)
v s
The first term in the above decomposition precisely equals — (1 ;,N 4T g ™). Therefore, we sum (12.39) with (12.48)

and find that ) ) ) )
L I+ I = I

741,2'2

T S (Y (12.49)

a,i3 a,i4

Using that 3, = (W, — Z,), the bounds (5.37), (6.38), and (7.1) show that

[ |4 [ s+ | T | S e(2)PK(Be)? - (12.50)
Combining (12.41), (12.43)~(12.47), (12.49), and (12.50), we arrive at
|V 12 1 I | S ()R (Be)?. (12.51)

12.7.4. The sum IXV” + IZ" + Ié:\". Summing (12.6¢) and (12.7d), we define I4W"+2" = IXV" + Ii", and again using
(5.28c¢), we obtain that

Wn+Zn _ TWn+Zn W +Zp W +2n,
Iy = Ay Ay A

[XV:&JJH - /O/JBJ%ANBGjJQ g_%J05256(J92N)a

I¥y+ = 2a / / (Bs — Q) (Tt 1,9~ H A0S, DO, $0),
0
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Iy =20 / Qo T2 1,9~ 2AD%J, D°(J, )
The bounds (5.37), (6.38), and (7.1) show that
[Ty + [Tt | S e(£)% (Bg). (12.52)

sC Ko

S

In order to estimate the integral IX‘{Z*i” , which contains a term with seven derivatives, we shall again make use of the
equation (12.1c) and substitute for ccg™=.J,D2D(J,32,) to obtain that

Win+Zn _ Wn+Zn Wi, +2p, W, +2n, Wi, +2n, Wi, +2p, W, +2n, W, +2p Wi, +2p,
Ijntin = [intn 4 ] +1 +1 R A +1 +1

4,a,i 4,a,ii 4,a,iii 4,a,iv 4,a,vi 4avii T L4000

By =2 [ [ T AR, Q0.+ VOB AL). (1253
I = Q/OS/SMJSANBGJQ (5, W, — $7,2,,)D(J,Ay), (12.53b)
Byl = [ [ast 0 B0A Ba((8%)7). (12:53)
I = —2a /O S/J,gﬁg‘%inTZ\NB% D07 - v, (12.53d)
Ijntim = 2o /Os/jgjglf\N56Jg (5156(JQZ\N) —eJ,g72Dsh 5256(JQAN)) , (12.53¢)
I =2 /Os/JﬁngN(JgWN +J,Zy —2J,A-)D°J, (61567’ N —eJ,g”2Dyh DyDO7 - N) ., (12.53f)
Ifntin = -2 /Os/]ngAi/ (51 —eJ,g 2Dsh 52) ((56Jg)2) : (12.53g)
Lt = 2/07}1‘72»&,«56(]9 (DSFY +R§f +Cﬁ[). (12.53h)
The eight terms preosent in (12.53) may all be bounded directly, except for Iigﬁ)i”, which must be cancelled with a

contribution from IQ”, see (12.60) below. Indeed, from (5.37), (6.38), (7.1), (12.38) we deduce

W 420 Wi +20 4\28/p \2
|I47a,ii | + ’14,a,'uiii < (HO) (Bs)” - (12.54)
By also appealing to Lemmas 12.1 and 12.2 we have
W, +2n, Wi, +2p, 4 \28 K2 2
L |+ 1| S G )* K3 (Be) . (12.55)

By furthermore integrating-by-parts the exact derivative structure via (5.28b) and (5.28c), we deduce

[wir [+ I < 660 (Be)? (12.56)

4,a,ii1 4,a,vit Ko

Lastly, for the first term in (12.53), we integrate-by-parts using (5.28d) and appeal to (5.27) and (5.30), obtaining
W +Zp 4\2p8 2
1057 S ()™ (Bo)?. (12.57)

4,a,1

This concludes the bounds for the straightforward terms in (12.53).
We next use (5.28b) and (5.28c¢) to write Ig\" as

An. _ 1A, A, A, A,
Igm = Ig + Iy + Ise + Iy,

Iég =2 //JBJ%ANE)%Q (5156(J9AN) —eJ,g”2Dyh 5256(J9Z\N)) , (12.58a)
0
. s, . _ ] RS . - ~ )
Iy = —%//(Dl(]ﬁj%AN) — eDy (T2 J,g~ 2 Dsh DQ(gﬁAN)))D6Jg DS(J,AL), (12.58b)
0
Iég = —2a //]gJ%ANJgg_%BﬂL Q.D%J, DS(J,A,), (12.58¢)
0

Ipn = Qa/jﬂﬁi\NJgg—%Em@ﬁﬁJg DS(J,A,) (12.58d)

S
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For the last three terms above, by appealing to (5.37), (6.38), and (7.1), we deduce

3] + [Ten] + 15| < (=)* (Be)? (12.59)
while for the first term we note the cancelation structure obtained by adding (12.53e) and (12.58a):
L\ﬁzjn + ISA,Z =0. (12.60)

From (12.53), (12.58), and (12.60) we thus obtain
Intn 4 Igi\n — [t g [intin [ | piedin y pnidn | pinsie  plide fé,}; n Iég . Ié;; 7

4,a,1 4,a,1t a,iit 4,a,1v 4,a,v1 a,vit 4,a,v111
which may be combined with the bounds (12.52), (12.54)—(12.57), and (12.59) to deduce
|L\1/Vn + Lfn + I’8A‘7L < (%)2B<BG>2- (12.61)

12.7.5. The integral If“. For the integral L’f\” defined in (12.8d) we first integrate-by-parts the D, derivative. Using
(5.28c¢), we have that

I = I+ I+ I

iy =20 [ [170 02050, ¢ 5°Ba(1A).

Ii’zl =2a /05/(52 - Qz)(JBJ%g_%JngN)[N)GJg DS(J,A,),
It = 2a/52jgg‘%ﬁJg§N56Jg DS(J,A,) s

We bound Ifg and Iig in a straightforward manner by using (5.37), (6.38), (7.1), and the bound J < J,, to obtain

125 + 112

~

< ()% (Bg)? . (12.62)

For the integral [ ig, we use equation (12.1a) to substitute for ag‘é 5652 (J, A ). This leads to an additive decompo-

sition for I; which we write as

An _ An An An An
Iy =140+ 140+ 1y + 1y

4,a,1 a,ii a,iit a,iv’
. s _ " .
Tiai= _2/ / S5 T3 (J,3,)D%J, (Qds + V) D (W), (12.63a)
A 50 3 o 19 -~ ~ 2
s =a / / »THLE) g HAD((B°,)7), (12.63b)
0
fi\a = a//Jgﬁ(JgiN) g (I, Wy + J,Z, — 2J,A,)D8J, DoDO 7N, (12.63¢)
0
o S - .
I = 2//JBJ%(J92N)D6J9 (D°RY + Ry, +Cy) - (12.63d)
0

The last three terms in (12.63) may be estimated directly. Indeed, from (5.37), (6.38), (7.1), (12.29), and the inequality
J < J, we deduce

Iyl S (57 (Bs)* (12.642)
by additionally integrating by parts the 52 term via (5.28c) we obtain
I ) S ()% (Be)?, (12.64b)

and by also appealing to Lemma 12.1 we have
A, 4\28 2
‘14,a,iii’ S SK(KO) (Bg)~ . (12.64c¢)

We now focus on the integral I, f‘,g ; defined in (12.63a) which produces an anti-damping term. By once again using

integration-by-parts via (5.28d), we see that,
Ly i = J0 0y Ty Iy S I I
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Jhn o /O /ﬁj (J,31)(Qds + V3u)DO T, B (W),
S g /0 7212[“73(Q85 + V)(J,3,)D0, DS (I, Wy,

Jhn = 2/7(Q85 + V) (5

i = 2//mj (J,£3)(Qs = VQz + D2V)DC, D8 (J,W,y) ,

L) J%(J,25) D°J, D°(J,W,)

)

Jhn = /ZQBJ2JWND6J D°(J, W)

g = [ 872,800, 5°)|

B o[ oo i),
. s e 3 > \6 7 N6 A
Jo = //szs (Q0s +V82) T2 (J,2,5)D°J, D*(J, W) .
0

Most terms in the decomposition (12.65) are estimated handily using (5.37), (6.38), (7.1), (8.44a) as

e e
1
< e+ i 2GRSy ) 08

and by also appealing to (4.8), (4.11) and (6.43) with s = 0, we have

T8 < (L 4+ C) 2 (1 + Ce)(2) P Chapy < H2(2)PCE,.,

The remaining terms, namely Jf‘ n, J? n and JGA ", need to be handled carefully. The integral Jf ™

115

(12.65a)

(12.65b)

(12.65¢)

(12.65d)

(12.65¢)

(12.651)

(12.65g)

(12.65h)

(12.651)

(12.66)

(12.67)

produces an

anti-damping term that must be combined with the last integral on the right side of (12.9). Using (5.27), (5.30), a short

computation shows that
Jhn = J1 n o T T
175 DS TW V|2
Jl a ﬁjQ (Qﬁs + Va?)‘]g |D (JgWN)‘
0
o S E ° ~ o ~ o
T =13 / / s T (J,W,)DO(J,Z,)D°(J,W.y)
0
A, _ 1 8,3 n6 A 2
Jl c _/O/WJ2 (JQZN)(D (JQWN)) )
o S - . - - . .
Jhn = 9 //ﬁj%(JgEN)(DGVDng +(D°,V,D2J,)) DS (J,W,).
0
Using (5.37), (6.38), (7.1), and Lemma B.5 we deduce
IR+ 0] S ()2 (B6)? + Ke(:2)2(Bo)? S ()% (Be)?

Moreover, by Cauchy-Schwartz and (5.37¢c) we deduce

2 s 3 3 L
il < 22 D2 | D W

[z’

whereas

A :/O/ﬁcbadmﬁug\imf

(12.68)

(12.69a)

(12.69b)

(12.69¢)
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where the anti-damping term Gpoqg = J 3 (Q0s+V ds)J, is precisely the same as in the case of the tangential derivatives
(see (10.57)). This last term will be combined with the damping term Ggoog present on the right side of (12.19). For
this purpose, precisely in the same way as for the tangential derivatives (see (10.58)), we record the inequality

Ggood + Gbad > 1E& NP (12.69d)
which follows directly from (6.65).

Among the nine terms in (12.65) it thus remains to consider the integral J3An (which produces a new type of
damplng and energy norm which are displayed, respectively, in the integrals J3 and J£’g below), and the boundary
term J6 ™ (which i is to be dealt with by a careful apphcatlon of the e-Young inequality). It is important to make an
analogy between J3 and J6 , respectively the terms M, an M3 Wthh have prev10usly appeared in the tangential

energy estimates, cf. (10.42) and (10.43). Our treatment of the terms J3 and J6 closely resembles the analysis in
Subsection 10.6.3.
Concerning Jgﬁg, we note that by the definition of 7 in (5.18b), and upon using (5.30) and (5.27) to rewrite
DO(J, W) = 12 (D%(Qd; + Vda)J, — 152D5(J,Z,))
= 12-(Qd, + V02)D®J, + 12 (D°VDalJ, + (D%, V,D2J,)) — 1=2D%(J,Z,),
and finally, integrating-by-parts the material derivative using (5.28d), we arrive at

Jgn B _% //%j% (JgWN)56Jg 56(J9WN)
= J3;; +J§ +J32 +J§\d +J3" +J§ +J3" +J§‘h+J3l , (12.70)

€

) .
T = 2(1ia)%/%j2(_JgWN+ 13 7)|D%,

o s 9 1 ° ~ 2
J;Z = 4(1104)6% o/%j 2(_JQWN+%J9)|D6J9| )

,C 2(1+a) e

J?’:g = Q(HQ)E // (Qds + V) (

u L o
J3% = oriray s //% (Qs + DoV — VQ2) T2 (J, W, — 127 DS,

Jhn = 3 1 /E& T*(Q0s + V) (J,W,, — 127 156Jg2

)jz(JWN |D6

1 A = 2
J?/jf = 2(1+a)2/ﬁ«72(JyWN - 1.J,)|p%,

T :f@//zzﬁj 57,08, DY(J,W,),

I =~ [ [ et b~ 80)8%, (BVBal, + (B°,V,5a1)).

JQTZL = 2(1+a)8 //Ezﬁj JWN 13J)D6J DG(J Z_N’)

As in the tangential case, the point of the add-and-subtract of the term 1?3Jg is to allow for the applicability of (6.64),
which yields (in direct analogy to (10.52d) and (10.52¢))

J?’Z 1+a) 2 H QJ4 D6 )Hi% ) (12.71a)

An -1 2
']3,b = 40(?:—04) 513 /O H Q‘gﬂ - D6Jg('7sl)|’L§ds/ . (1271b)

For the remaining terms in the additive decomposition of .J. A”, using the bounds (4.11), (5.37), (6.38), (6.64), (7.1),
(8.444a), and the identities (Q0s + V32)Q = QQ + V32Q and (5.30), to obtain the bounds

o s 1, s =g (2
J?f\c = 2(1+a)e//22ﬁ~7 (QDs + Va) (J, W) [D°, | - 33((11%))5%/O/%jz(ngN)’qu
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3209813 //Ew\ﬁ’DGJ’ 3132 //Ezﬁj J‘DGJ‘

> (5-Co)d [ [ ST Boa) - 4332 &[98 0 (12710
|| 4 T | < 40250 4eCH5) // - J% (D%, (12.71d)
|| < iy O M(2)%e,,, < “*“(K(,)”Cﬁata, (12.71¢)
8] < 1 i, [ 195 B0 (.5 | Z BB M) )],
< b [ 19250, ||des+3392 J IR B ) 08
(12.7lf)
| T8 S eK(2)% (B)?, (12.71g)
31 < % [IE B U2 |90 )] 08
< sk [ 9B}y + 2 B 2009}, a27m)

The bounds in (12.71) complete our estimates for the nine terms in the decomposition of J?".

It remains to bound the term Jg? ™ in (12.65). This term requires a special application of the e-Young inequality,
akin to (10.54) for the tangential estimates. More precisely, by (5.37c), the lower bound in (6.38a), (6.38b) and the
bound J < J,, we have

787] < e 1 o Hng—fﬂoﬁuwN 9.3
< B TR0 ()9 + e D09 127

Again, we recall that the fact 22 < £ allows us to close the energy estimate.
We summarize the bounds in this subsection, namely (12.62), (12.64), (12.66), (12.67), (12.69), (12.71), and (12.72),
together with 7 < J, and e-Young, to obtain

A > —é(i)26<86>2 — 80te) (39262

Ko
2 N14a) [|7E = s 2
+ [ S, = ) [P UM = 02220000 [ gh501 2,9
Q7 %N D67 2 20%4500%+100-250°+<C(8) 1 [ Q7 } D67 (- NI ds’
+ 20(1+a) =% (592 — (I+a) A 1% ,(9)] 1298
1 ~6 2 o s 1= 2
40(1+a) 53/ HQ2134 J; ’S/)||Lgds/+ (8—0(,8)6)5%/()/%j2fD6J9|
B A G B W (5, - 250 [T B ) e a273)
12.7.6. The integral 12". We next study the integral 172" in (12.7g). Using (5.28), we have that
a8 —I7"+Izb+1'7”g+f7zd7 (12.74)

It = 2 / / 2 T30, (A + 2,057 (B — e, 2D D2)DO(J, Z,),
J%g =2 /0/(51 —eJ,g72Dah D) (3572 J,(Ay + Z,)n;) D7,D8(J,Z,)

IFr =2a //gﬁﬁjg(Z\N +2,:)(Qz — D2)(J,g” 2Doh) DO7-A D8(J,Z,,),
0
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7 = 42 7R s 1= = s

172;;1 = —2a/]5Q2J2 J,(Ay +2Z;)J,g 2Dyh DS7-N DO (J,Z,) i

With this additive decomposition, only the integral 172,3 remains over-differentiated while the integrals I7ZZ, I7Z7"c/, and

172'& can be directly estimated using (5.37), (6.38), and (7.1), as

23]+ ]+ ] Kl B 1273

e
replacement yields integrals possessing either “exact-derivative” structure or a derivative reduction which arises from
terms containing the operator (Qds + V' 0d2). Using (12.1b), we proceed with this substitution, and find that

For the interesting integral, namely 1727"(;, we use equation (12.1b) to replace 2% ([~)1 - 5qu’% [~)2h 52) DS (J, 2/\[) This

F =y L (12.762)
L = /O /Elﬁj J,(Ay 4+ Z,)DOT-n J,(Qds + V3,)D8(J, 2, , (12.76b)
12— /0 /E—J (A + Z,)D57-x a(I Wy — 1,2,)D%(J, Z.) (12.76¢)
1 = —a a5 b+ 2080 x 10 30D AL). (12.764)
2 —q /O S/JB THI,(Ay + 2,)D0-w J,g~ 2 A, D,D0 (12.76e)
=g /OS/JBJS J,(By + Z)DOT N J,g7 2 (W, + J,Z, — 2J,A,)DoDOT -, (12.76f)
g =-2 /OS/ME (J,(Ax +27))° D7 (D1 — g™ 2 J,D2hD2) (D7) -, (12.76¢)
i =2 /os/wg J,(Ay +27)2,D°7 - (D1 — g~ 2J,D2hD5)D° J, (12.76h)
tb = [ o a e+ 2000w (%R + RY 4} (12760

A few of the terms present in the additive decomposition (12.76a) may be bounded directly by using (5.37), (6.38),
(7.1), and (12.31):

|L27| + |L2"| < Ke(£)%P(Bo)?. (12.772)

ko

By additionally exploring exact derivative structure, which requires integration by parts of either D, via (5.28b) or D,
via (5.28¢), we may also bound

|L§n + |L§n < KEB(%)2ﬁ<Bs>2- (12.77b)
Using the geometric lemmas in Lemma 12.1 and 12.2, we may directly establish that
’LZ,L n ]L% < K2€2(%)2ﬁ<56>2. (12.77¢)

The remaining two terms, Lf" and L§” require special care. For the L%” integral, we integrate by parts the (QJs +

Vd,) derivative using (5.28d), and use (10.47) to rewrite the over-differentiated term (Qd, + Vd,)(x - DT). We
obtain

Zn Zn Zn Zn Zn
Ly = Ly, + Ly, + Ly + LTy
L= [ by + 2,050 02,0 (M2 BW, + 15252,
0
+ (MW, + 1592 (v DO — 7 D7) + w*(DC, (H2W - + 152Z;), wF) — w¥[D°, V}]ﬁﬂ’“)

£ty =~ [ [1Q0.+ vow) (ke gt Ay + 2,)) 807w B, 20,
0
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L, = / / (VQ2 = D2V = Q) 572 J; (A + Z,)D°7-n D°(J,Zy),
0

S

thy= [ SRR+ 200w B2

From the above decomposition it is clear that no over-differentiated terms are present in the Lf" integral, and as such
we may use (5.37), (6.38), and (7.1), to deduce
|LT| S Ke(:2)*P(Be)*. (12.78)

The last integral we need to consider from (12.76a) is L% this term requires further refinement in order to contend

with the over-differentiation. To that end, we now use equation (12.1a) to substitute for the term ag_% [~)2 56(.]9 A N )s
and we obtain the further decomposition of this integral as follows:

Zn _ 7Zn Z, Z, Z,
Lym = L37, + Lg%, + L37, + Lg%y,

L = /O /ﬁj J,(Ay +Z,)DOT-NJ,(QD. + V35)DO (J, W) , (12.79a)
L3 = —a /07.%«73 J,(Ay +Z;)D°7-ng™ 2 J,A DD, (12.79b)
L5 =% /Os/ﬂﬂﬁ J,(Ay + Z7)DO7Ng ™2 J,(J, W, + J,Z, — 2J,A,)D2D0 T, (12.79¢)
Lg,"d =— /Os/jgﬁjg(Z\N +2Z,)D%7-n J, (DY + R + ). (12.79d)

The term L?:l in (12.79a) is nearly identical to the term L%" defined in (12.76b): the only difference is that D¢ (J, y4 ~)
is now replaced by 66(J_9V°\/ ~)- As such, the bound for Lg’; is the same as for L%”, namely (12.78). For the term L?Zj;)

in (12.79b) we appeal to (12.20), in addition to (5.37), (6.38), and (7.1), while for the L;Z)”; term in (12.79¢) we note
the exact derivative structure involving 52((N . 667')2), which is dealt with as usual by integrating-by-parts the D
term. Lastly, for Lé”& term in (12.79d) we additionally appeal to (12.29). Putting this together leads to

Z, 4\28 2
|L5"| < Ke()*(Be)” . (12.80)
Combining the bounds in this subsection, namely (12.75), (12.77), (12.78), and (12.80), we obtain
Z, 4\28 2
17| < Ke(:2)* (Bg)® . (12.81)

12.7.7. The integral Ié“. Using (5.28c) we may rewrite the integral defined in (12.8e) as
I = Ifn 4 Iy + Ion + 12,
A s 3 o~ 1~ ~ o
=20 [ [5740,8,60x 7100 AL).
0

. s ) . _ .
2y = —20 [ [Balu gt g 48 )BT DA
0

. s . ) S _ X
Iy: 2“//35Q2J%JQQ‘EETDGT-N DS(J,A,),
0

A‘ll
I5,d

—2a/3362J%Jgg_%203766T-N EG(JHAN)

S
The integrals 1, ég, I ég, and [, ég can be estimated directly by appealing to (5.37), (6.38), and (7.1) as
A An An
155 | + [T5n] + [ I5n| < Ke? ()P (Bs)? .
On the other hand, the integral I é’; contains an over-differentiated term. We notice that I, é:‘l is nearly identical to the

integral Lg” in (12.764d): ZDJT is replacing J, (A N+ iT) These terms however satisfy the same bounds, even at the first
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derivative level, in view of (5.37). As such, we may bound 7, ég in the identical fashion as the integral L%” (cf. (12.80))
and obtain

18] < Ke(:£)* (B)?
Putting together the previous two estimates we thus obtain

2)2P(Bs)? . (12.82)

12.7.8. The integral 182". We next study the integral I, SZ", defined in (12.7h). By comparing the integral /. 82" with I. 72"
(as defined in (12. 7g)) we notice two differences. First, the lower order term —(J, A N+ J iT) in 172 ", is replaced
in light of (5.37).
Second, the differential operator D, — e, L9~ 3DshDs acting on D7 - win I7 "™, 1S now acting on D6J in I ™. These

terms satisfy nearly the same bounds in view of (7.1a), (7.1h), and (7.1i), with only one difference: the bounds for the
sixth order derivatives of .J, are worse by a power of (Ke)~! than the sixth order derivatives of 7. As such, it is clear

by the term Z, in IZ". These terms, and their D derivatives, satisfy the same upper bounds in L7,

that by repeating the decompositions and the bounds in Subsection 12.7.6, we arrive at a bound for /. g" which is worse
than that for I7Z"' (see (12.81)) by a power of (Ke)~!, namely

< () (Be)?. (12.83)

To avoid redundancy, we do not repeat the argument which proves (12.83).

e

12.8. The forcing and commutator terms. We now turn to the bounds for the remaining integrals I3'", Ity Il in
(12.6e), (12.7j), and (12.8]), respectively. In order to estimate these integrals, we use the definitions for the forcing
functions in (3.36) together with the definitions of the so-called remainder and commutator functions in (12.2), (12.3),
and (12.4). Bounds for these quantities were obtained earlier in (12.29), (12.31), and (12.38). Using Cauchy-Schwartz,
the bound J < J,, and (5.37r), we deduce from the aforementioned bounds that

|13 < (%) (Ba). (12842
Similarly, using (12.31) we also have that
1< [ LB Uz, HH(HZ%W Mgs +IFRY )y + 0 ()] )
< 4(1+a)/ ’ J4 D6 JZN Hdes/ +C°’(Hi0)25K<B6>2. (12.84b)

In the same way, using (12.38) we obtain the bound
s [ gonh
Summarizing the bounds (12.84a), (12.84b), and (12.84c) we thus deduce that

< 4(1+a / ||j4 DG JZN,JAN)

HIE

||L2 ds’ + C(:2)*’K(Be)” . (12.84c)

1+ e |+ || <

||L2ds’ + C(£)*K(Bg)? . (12.85)
12.9. Conclusion of the six derivative normal energy bounds. We return to the energy identity (12.5), with the de-
compositions (12.6), (12.7), and (12.8). We collect the lower bounds (12.19), (12.73), the estimate Ggood > — %j% R
the upper bounds (12.51), (12.59), (12.81), (12.82), (12.83), (12.85), and the initial data assumption (4.11), to obtain

(B 2CE, — C(L)PKE (B)?

0>(7_CE)HJ4(JQ)2Dﬁ(JWJWJZMJAN HL2 Ko

i (1;a Ce 5 / | 74Jq2 DO (W, J,Z, J,AL) (-, HL2

n (Q(L%) 4 9o _ (16+252)(1+a / | %2 DY(J,Zx, J,AN) (-, ”LZ

_ (Lﬁ—%) +33 42 250° + 397 + 500°) / [EATCLLUFR TS SN WIS

(14+a) HL2

QJ4 D6

2 2 2
,wi/{wmg}

1
20(1+a 7” ||L3, 1+a e3 B HLg
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it [ IS0 + 8- 0@k [ [ S (1236)

where C' = CD’(oz7 k0, Cdata) is independent of 8 (and ¢, as always).

At this stage, we choose 3 = () to be sufficiently large to ensure that the damping for D6(.J,Z,, J,A ) is strong
enough, i.e., so that

a(B-1
(B=2) 4 92 (16+25%)(1+ ) > 0.

More precisely, we choose [ to ensure equality in the above inequality; namely, we have that

Bo = 2D (16 4 252) —

With this choice of 5 = f3,, we return to (12.86), and choose ¢ to be sufficiently small in terms of «, kg, Cyata- After
re-arranging we deduce that

ot (12.87)

LN TR\, 2,0, A )13 + zorkesy 21 2B, 9|
N 1&3/0|%DG(JWN,J2N,JAN 7248 + moray & / 9805 7,05
< 20k (842002 4 O(4 )25 K2 (Bg)?
/Hjélé{saQ 5O (T, W T, Zors ) ()5 +53/ | 900, ()08, (12.88)

where C' is a universal constant (in particular, independent of «, kg, Cgata), and C is as usual.
By inspecting the first line on the left side and the last line on the right side of (12.88), we observe that we may
apply Gronwall’s inequality for s € [0, ¢]. More precisely, there exists a constant

€ >0 (12.89)
which only depends on «, and may be computed explicitly from (6.38g), (12.87), and (12.88), such that
52}3{1}”];‘5 L B0 W, I, 2o, T, A (- S+ / [E<EAL USRS SN W12 )]s
# & s [ + 5 [ g0 9 pas
< e L(A)%e (cdata + CeK2(Bg)? ) . (12.90)

At last, we multiply the above estimate by 11(2)5 «, appeal to (5.37p), drop the energy and damping terms for BGJg
(since these were bounded already in Proposition 7.1), and recall the definitions of Sg’ (s)and Dgy () to deduce that

e sup E2u(5) + D ple) < €ad? (Chyyy -+ C=K? (B5)?)
s€[0,¢] /
< Biea i (S + Cek2 B9 (12.91)
6 6
Since Bg > 1 (cf. (10.74)) and since K was already defined solely in terms of « (cf. (10.73)), upon ensuring that

1
Bs > 4€34% Cyata » (12.92)
where 3, is as defined in (12.87), and taking ¢ sufficiently small in terms of «, kg, Cgata, We deduce from (12.91) that

€ sup EéN(s) +527N(€) < 1B, (12.93)
s€(0,e]

which closes the “normal part” of the remaining bootstrap (5.37r).
Indeed, we note in closing that adding (10.75) and (12.93) gives

e sup E(s) + Ds(e) < 1B, (12.94)
s€(0,¢e]

which closes the bootstrap (5.37r).
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13. DOWNSTREAM MAXIMAL DEVELOPMENT

In this section we give the proof of Theorem 4.7. We continue to use the notation in Section 5.2. Consider the
level-set {J,,; = 0}. This is a hypersurface parameterized by the graph (z2,t) + (23 (22,t), T2,t); see the definition
of 7 (x2,t) given in (5.12). In this section we consider the Euler evolution in the spacetime geometry which is on the
downstream side of the hypersurface {J,,; = 0} (namely, for z; > x}(z2,t)), and which is bounded from above by
(a small modification of) the parabolic hypersurface {.J, = 0}. On the upstream side (namely, for 71 < x}(x2,1)), the
spacetime we consider is bounded from above by the cylindrical hypersurface {7 = 0} = {J, (2} (x2,t), v2,t) = 0},
which is the same as the top boundary considered in Sections 5-12 (see Figures 13 and 14 below).

FIGURE 13. Consider the function .J, = J, (71,2, 1), as defined by (5.7), with J, as in Figure 11.
The bounding box represents the zoomed-in region |z1]| < ZE, |zo| < %, and t € [—tfin, thin]. In
magenta, we plot the surface {x1 = x7(x2,t)}, which separates the downstream side (to the right)
from the upstream side (to the left). In orange, we plot the surface {(z,t) € T? X [tin, thin]: 71 <
xi(wa,t), T (w2,t) = J, (27 (xa,t),22,t) = 0}, which represents the future temporal boundary
(“top” boundary) of the spacetime considered in this section on the upstream side. In red, we plot
the surface {(z,t) € T? X [tin, tfin]: ¥1 > 2} (22,1), J, (71,22, t) = 0}, which represents the future
temporal boundary of the spacetime considered in this section on the downstream side.

13.1. Flattening the top of the spacetime. For (x,t) € T? X (tin, tfin], we define
Fenant) = | 2E0ERD, wi@h) <o < i),
Jo (27 (22), 22, 0), 1 > 27(22),
where 2% (25) is defined in terms of the function wo(z) as

m'i(a:g) = {331: x1 > 2y (22), Dywo(z1, 22) = —% . (13.1)
We also define J, (2, tiy) := 1 for all = € T2.

Proposition 13.1 (2% is well-defined and .J, < J)). The function T > x5 — ' (x) given by (13.1) is well-defined
and differentiable, and satisfies

ah(z2) — af(za,t) > &, |Ooa(2)| < 240¢, (13.2)
pointwise in (x2,t). Moreover we have that
J, < J,. (13.3)

Proof of Proposition 13.1. In order to check that J, is well-defined, we need to verify xti (x2) > a7 (x2,1), pointwise
in (15, t). We recall the assumptions on wy () given in Section 4.2. To show that # (z5) — 2} (x4, 1) > 17 » uniformly
in ¢, we first recall from (6.53) that |2} (22,t) — Y (22)] < CK(Bg)e?, so that it is sufficient to show x% > zy +

£. Using (4.10), ((vi)), and (13.1), we have that & < |Dywo(a? (22), 22) — Dywo(zY (z2), 22)| = |2} (z2) —
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zY (22)[[|01D1wol| e < %\x'{(xg) — zY(22)|. Since by assumption z? (z5) > Y (x2) (see (13.1)), we deduce
ah > oy + 10
Next, we show that xti (z2) is well-defined. Note that from ((i)), ((vi)), the continuity of Djwjg, and the intermediate

value theorem, for every xo € T there exists at least one Y (z2) < Z‘%(l‘g) < 13me satisfying Dywo (21, 22) = %

To establish uniqueness, we first define .’Ei(l’g) as the smallest value xl > xY (x2) such that Dywo(x) = —1F, and
then show that for 2y € (2 (2), 137¢], we must have Dywo(z) > — 1% Since :v%(gcg) —zy(z2) > 55 > e%, from
assumption ((viii)) we know that for all z; € (2% (), 137¢] with Dlwo( ) < —1, we must have D2w(z) > &%,
showing that as 1 increases, Djwq () strictly increases from the value — - when T = (Eti(ffz) until it reaches the
value —= at some point z; = x{ (). Additionally, ((viii)) implies that for x1 > { (72) we have that Djwg(x) >
fg. thls is because if Dy wq(z) wanted to dip below the value f%, then it would need to decrease as a function of 1,
but ((viii)) implies that Dywg(z) can only decrease in 1 if Dywg(z) > —%. Therefore, Dywg(z1, 22) > —% for all

x> xti (z2), giving uniqueness.

Next, we establish the second bound in (13.2). By implicitly differentiating the relation D, wo(xﬁ (22),x2) = —%—g,
we obtain that (92:1:% (x2) = fsgigif’u”}g(zﬁ(xg), x2). The numerator of the above fraction is bounded from above
by 2, in absolute value (due to (4.10)). The denominator is estimated by noting that via the mean value theorem,

Iﬁ xr —$\/ xT Iu xr —m\/ T
Diwo (s (a2),72) = Diwn(ey (rg). ) + ST EL Ddug(of, ) = L Dhuo(of,w0) 2 55 - 5,
for some @ € (zY(22), " (x2)). Here we have used the previously established estimate z* (z5) — ) > 10+ the
fact that by definition D?(zY (22), acg) = 0, and the fact that at all points 2/ in between z} and 2% we have that
Dywo (), xg) < f% (in fact < — ) and thus by assumption ((viii)) we know that D$wq (2}, 22) > % This shows

that D2wg (% (22), x9) > 35- and therefore |0y (2)] < 240e, as claimed.

Lastly, we establish (13.3). That is, we need to show that 0 < J, (1, 2, t) — J, (2% (22), 29, 1) = J, (x1,32,1) —
J, (2% (x2), 22, 1) whenever #1 > 2% (x); here, in the second equality we have used (5.7). In turn, this fact follows
from assumption ((viii)) and Corollary 6.2, as follows. From the mean value theorem in x1, the bound (6.24b) with
i = 1, and the considerations in the second paragraph of this proof, we have that .J, (1, 2, t) — J, (2 (22), 22, 1)
cannot vanish for z; € (xﬁ(mg) z{ (z2)]. Butif 21 > a] (x2) then necessarily (wo),1 (#1,22) > —4 and since
(wo) 1 (2 (22), m2) = — oL, we have that J, (21, 22, t) — J, (2} (x2), 22, ) cannot vanish due to (6.24a). O

The only issue is that while the map x; Jg(xl, xo,t) is Lipschitz continuous, it is not C' smooth. As such,
we need to consider a variant of .J,, denoted by .J,, which is H% smooth in space and time in the set {(z,t): t €
(tin, thn), x2 € T, 21 > 23 (x2,t)}. It is convenient to introduce

o) L (z2) =af(22) + 155,  and 2l _(22) = 2f(22) — 155, (13.4)

where xﬁ(@) is asin (13.1). Then, we let Jg(ac7 tin) = 1 and for (z,t) € T? X (tin, tin] With 71 > 27 (22,t) we define

Jy(x1,29,t) = T, (21, 22,1) zi(22,t) <11 < x?y,(fﬂzﬁ
(21, x2,1) := ¢ a smooth connection satisfying (13.5b), xi_(@) <r < x§7+(az2) , (13.5a)
(21,29, t) = T, (2 (22), o, 1), x§,+(x2) <y,

where the middle branch in the definition of Jg is taken to satisfy the properties
0< N (x,t) <21 +a)e 2, |90 (x,1)| < 250(1 + )e™t,  J(a,t) < J,(a,t),  (13.5b)

for 1’%77(1'2) <z < x§’+(ac2) <z>la:1 - x§ (72)] < 1g55- Note, in particular, that Proposition 13.1 and the last
condition in (13.5b) imply that J, < J,.

Remark 13.2 (Jg is well-defined and Jq < jg). In order to see that a smooth (space and time) connection as claimed
in the middle branch of the definition (13.5a) is even possible, we first discuss the condition 0 < 0O (‘3tjz,(x1, X, t),
which is equivalent to the fact that for every fixed (x2,t), the map x1 o (:rl,xg,t) is monotone increas-
ing. For this purpose, we first note that since the third branch of (13.5a) is independent of x1, we have that
D10 (x1+(x2)+,:1:2, t) = 0. Second, we check that 8,0,J; (xl _(x2)7,x2,t) > 0. To do so, we observe that
x’i’_(zg) > xy(22) + 45 — 1005 = 21 (z2) + e%, and hence we are in the range of x1 for which assumption ((viii))

applies. Moreover, for any |x1 — x (z5)] < by (13.1) and (4.10) we know that |(wo),1 (x1,22) + =] <

— 1000’
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To55 E% = Wlog’ and hence (wo),1 (1, 22) < 21075 + 5005 < —% < —é. Hence, assumption ((viii)) im-
plies that (wo),11 (21, 22) > e~ %, Combmmg this information with (6 24f), we deduce 010, (xl _(z2) 7, x0,t) >
1+°‘(w0),11 (gcg _(x2),m3) — Ce™! > Lag 5 —Ce ! > tag ~%. Third, we verify that 0,.J (xl _(®2),x2,t) <
a,J (. +(w2),m2,t). In light of (5.7) and of (6.244), this znequallty would follow from (wq),1 (a:1 _(x2),22) <
(wo),1 (xﬁ (z2),x2) — 2Cy,. But by the mean value theorem and the previously obtained (wo),11 (z1,32) > &%
we have (wo), (2} (22), 22) — (wo) 1 (l‘%}i(fﬁg)?{ﬁg) > 1050 "€ ° = Too0E ° > 2Cy, assuming € is sufficiently

small. These three points show that the first condition in (13.5b) (the map x1 8tj;(331,x2, t) is monotone in-
creasing) is permissible. Next, we discuss the second condition in (13.5b), namely alatj;(acl,x27t) < 2(1 +

—2

a)e™ 2. This condition is easy to ensure because ﬁlatZ(x§7+(z2)+, x2,t) = 0 and by (6.24f) and (4.10) we have

19,0,.J; (;vl (@), xa,t)| < 12'£3|\D2w0||Loo +Ce < (14 a)e2+Ce ! < 2014 a)e~2 Next, we discuss
the thlrd condition in (13.5b), namely |020;J, (xl,xg, t)] < 2(1 + a)e~2. Again, using (6.24f) and (4.10) we have
1820, (;vl _(w2) 7, w2, t)| < H2(IDy D2w0||Loo +C<(14+a)e ! +C < 2(1+a)e L. On the other hand, by the
chain rule and (13.2) we have that |9,0,.J, (z* (@)t wa, t)| <0204, (28 (22), 22, 8)| + 1018, (2 (22), 2, )| -
0228 (22)] < (1 + a)e! + O)(1 + e Yoot (x)]) < 241((1 + a) 14 ) < 242(1 + a)e L. Lastly, we
discuss the fourth requirement in (13 5b), namely the fact that J J This requirement is already satisfied for
xﬁ (r2) <z < x§,+(m2) since Jg(ml#(xg), x9) = Jg(l'g,+(1'2)7 1‘2) and 8t(“)1(j:, —J,) > 0. Using this fact, and that

by construction we have .J, (x{_(m), x9) = jg(x{_(xg), x3) it is straightforward to verify that the bound J, < J,

may also be ensured to hold for acﬁl’_ (z2) < 1 < 2 (22).

Then, with Jg defined as in (13.5a), for (z,t) € T? X (tin, tfin), we define

I (z% (2, t t < z¥(xa,t
H(J?l,l'g,t) = og(xl(x% )a‘TQv )7 Z1 _Ii(x% )a (136)
J,(x1,x2,1), 1 > x5 (z2,t),

and we let J(z,t;,) = 1 for all z € T2. It is important to observe that J has limited Lipschitz regularity across the
hypersurface {x1 = 273 (22,t)}, but that it is H® smooth on either side of this hypersurface. We also note that in the
upstream region 1 < z7(x2,t), we have that J(x,t) = J(x2,1), as defined in (5.14).

Remark 13.3 (Properties of J on the upstream side are the same as those of 7). We note that (5.14) implies the
equality J(x,t) = J, (x5 (w2,t), 22,t) = T (z2,t), for all 11 < x}(z2,t). As such, all the properties of J which were
established in Sections 5 and 6 directly carry over to properties of J in the spacetime {(x,t) € T? X [tin, tsin] : I(, ) >
0,21 < 27 (x2,t)}. To avoid redundancy, these estimates will not be re-proven in this section.

Remark 13.4 (The spacetime {J > 0} terminates before t,). We note that for consistency with the rest of the paper,
the spacetime {J > 0} is designed to terminate before ts,. To see this, note that in the upstream region this fact was
already established (see Remark 13.3), while in the downstream region we have J < J,, since Jg < J,. By the proof
of Lemma 6.5, for all x € T? there exists t.(x) < tin with J,(x,t.(z)) = 0. Hence, for all x € T? there exists a time
th(x) <t () < tn such that J(x, t*(x)) = 0.

Remark 13.5 (The spacetime {J > 0} captures the downstream maximal development prior to tpeq). The
spacetime {J > 0,1 > x5 (x2,t),t < tmed} coincides with the spacetime {J, > 0,x1 > x5 (x2,t),t < tmed}, 50
that by studying {J > 0,21 > 27(22,t),t < tmed}, we are indeed analyzing the full-maximal development on the
downstream side, for times t € [tin, tmed|- T0 prove this fact, since J < J, = J, in the aforementioned spacetime, we
only need to show that if t < tmed and x1 > x5 (22,t), then J(z,t) = 0 = J, (z,t) = 0. To see this, recall that for
t < tmed We have that J,(z,t) = J,(z,t). If we additionally impose 1 < mr{’f(xg), then by (13.5a) and (13.6) we
have that §(x,t) = J, (x,t) = J (x,t) = J,(x,t), so that § vanishes if and only if .J, vanishes. On the other hand, if
x> x§7+(m2) and t < tmed, then J cannot vanish at (x,t). Indeed, by (6.24a) and the definition of x* (x3) in (13.1),
we have that J(x,t) = J,(af(x2), 22, t) = J,(2}(x2),22,8) > 1+ (t — tin) 252 ((wo) o1 (2} (22),22) — Cy) >

1 — (tmed — tin) 5% (902 + Cy,) > 1 — 25(55 +eCy,) > & if € is sufficiently small. By the mean value theorem and
the bound (9.2), this also implies thatfor x{_(xg) <z < x§7+(x2) and t < tmed, we have J(x,t) = J (z,t) >
Jg(xg (z2),x2,t) — 1000 A > 103% > %. As such, J also cannot vanish in this region, completing the proof

OfH:()éJg—OwhentStmed



THE GEOMETRY OF MAXIMAL DEVELOPMENT FOR THE EULER EQUATIONS 125

FIGURE 14. Consider the functions J(z1,x2,t), as defined by (13.6), J,(x1,72,t), as defined
by (5.7), and J,(z1,x2,t) as in Figure 11. The bounding box represents the zoomed in re-
gion —T < z; < 7e, |@g| < %, and t € [—tfin,tan]. Left: in blue we plot the level-set
{(z,t) € T?X[tin, tein]: (1, 22,t) = 0} which is the future temporal boundary (“top” boundary) of
the spacetime P* defined in (13.7) below. This spacetime is the one analyzed in this section. In ma-
genta we plot the surface {z1 = x7(x2,t)}, which separates the upstream from the downstream side.
Right: we focus on the downstream side. In blue, we plot the level-set {(x,t) € T2 X [tin, tfin] : 21 >
xj(x9,t),d(x1,22,t) = 0}. As in Figure 13, in magenta we plot the surface {1 = z7(z2,t)},
while in red we plot the surface {(x,t) € T? X [tin, tfn]: T1 > 2} (22,1), J,(71,22,t) = 0}. We
emphasize that the blue and red surfaces, which correspond to {J = 0} and {.J, = 0}, respectively,
coincide for times t < tmeg. Only for t € (tmed, trin] do the sets {J = 0} and {J, = 0} differ, with
the ordering given by J < J,.

For downstream maximal development, we use the spacetime set given by

Phi= {(z,t) € T X [tin, tin): I(21,22,) > 0}, (13.7)

We define our spacetime “flattening” transformation by
q: P [0,e) (13.8a)
s =q(x1,xa,t) ::5(173(:1:1,1:2,75)) . (13.8b)

We have that q(x1, z2, tin) = 0, so that the set {s = 0} corresponds to the initial time slice {¢ = ti,}, or, the past
temporal boundary of P%; meanwhile, the future temporal boundary of P* is flattened to the set {s = ¢}. We note
that in the upstream region z1 < z3(z2,t), the map q = q(z,t) defined in (13.8b) is precisely equal to the map
q = q(z2,t) defined in (5.18b). Only in the downstream region x; > x5 (z2,t) do q(z,t) and q(z2, t) differ.

The inverse of q is defined by

q ' T? x [0,€) = [tin, thin) (13.9a)

t=q '(z1,22,5), (13.9b)

such that t = q~!(z1, 22, q(21,22,t)) for all (z1,72,t) € PF, or equivalently, that s = q(z1, 72,9~ (21, 22,5))
for all (z1,72,s) € T? x [0,). In (13.9), we are once again abusing convention: it is the map (x1,2,s) —

(w1, @2,t) defined from T? x [0,&) — T2 X [tin, tsn) Which is the inverse of the map (z1,22,t) — (z1,22,5) =
(z1,22,9(x1,22,t)). The fact that such a map is well-defined is established in Lemma 13.8 below.

13.2. Change of coordinates for the remapped spacetime. Given any function f: P¥ — R, we define the function
f:T2x[0,¢) — R by

flz,s):= f(x,t),  where s=q(z,t). (13.10)
Then, by the chain-rule and (13.8b), we obtain that

~ ~

O f(z,t) = Q(z,s)0s f (z,5) , (13.11a)
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Oif(z,t) = (0; — Qi(z,9)0) f(z,5), i=1,2, (13.11b)
where for compactness of notation we have introduced the functions
Qla,s) = —5(8t3)(a:,t)’ (13.12a)
t=q~!(z,s)
Qi(z,s) = E(@ig)(x,t)) for i =1,2. (13.12b)
t=q—1(a;,s)
Note that Q; = 0 for 2y < a7} (22,t)|t—q-1(s,5)- We also define
Qz,s) == Q(z,s) — V(2,5)Qa(x,s) = —£(8,d + VdaJ)(x,1) et (13.12¢)
=q~1(x,s
and R ) - ) -
Q - 85Q7 Qs == asz Ql - aSQl 5 Q2 - aSQQ . (1312(1)

With the above notation, it follows from (5.21) that the spacetime gradient operator in (z,¢) variables, namely D =
(€04, €01, o), becomes the gradient operator D associated with the (x, s) coordinates, which is defined by

D = (Ds,D1,D2) := (¢Qds,2(01 — Q185), 85 — Qu) . (13.13)
Therefore, D f(z,t) = Df(x,s), and the components of D commute:
[Ds, D2] = [Ds, Di] = [Da,D1] = 0. (13.14)
For any y € N3, D" = D°D}*DJ?, and
(D7 f)(x,t) = (D" f)(x, s). (13.15)
From the identity Q0s + Vs = %65 + VBQ, we note that material derivatives are mapped into (z, s) coordinates as
(O + V) f(x,t) = (Q0s + V) f(2,5) = (1Ds + VDo) f(2,5) . (13.16)
It also follows from (13.14) and the second equality in (13.16) that
[(Qd: + Vy),D*]f = [V,D*]Daf = —D*V Do f — (D*,V,Daf). (13.17)
With the notation in (13.10) and (13.13), the definition (13.8b) implies the following identities for 5 and 55
Jz,s)=1-35, DJ=-Q, DiJ=Q, D2J=0Q,. (13.18)

The identities in (13.18) will be used implicitly throughout the section.

13.3. Adjoint formulas. We define

Ty (22,5) = 27 (22, t)l1=q-1(z,s) - (13.19)
Note that by construction we have Q1 (z,s) = 0 forzy < @} (22,t)|i—q-1(x.s) = Z} (22,), and so it follows via (13.18)
that

D13(7} (22,5), 72,5) = Qu(F}(22,5), 22,5) = 0. (13.20)
Using the notation in (13.19), we define
I'(s)= |J (@i(z2.,5),22,9) (13.21)
s’€[0,s]

and hence (13.20) implies D1J = 0 on T'(¢).
For energy estimates we shall work on the union of the following two sets:

PL(s) == {(z,5) € T2 x [0,5]: &1 > T} (22,5} (13.22a)
P (s) = {(x,5) € T> x [0,8]: 21 < T} (x2,5)}, (13.22b)
Ph(s) = PL(s) UP (s). (13.22¢)

With (13.21) and (13.22), we see that ’Pi () UT'(g) = T? x [0, €] is the entire spacetime set, but energy estimates will
be set on P (s) U Pi (s), thus avoiding differentiation across I'(s). We similarly consider the associated time-slices

Xi(s) = {x e T%: z; > T} (22,9)}, (13.23a)
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Xt(s) = {z € T?: &y < T (22,9)}, (13.23b)
Xi(s) = XE(s)UXE(s). (13.23¢)

Using the notation in (13.22) and (13.23), throughout this section we shall use the following notation for norms: for
0 <s < e, we denote

||F("S)HL2 = HF(»S)HLEE = ||F("S)HL2(XEE(S))’ (13.24a)
[Fllpeerz = sup [[F(,5)l 2x8 o)) - (13.24b)
| T s€[0,¢] ‘L2(Xi(s))
”F”LEs = ”F”L?(Pi(s))? (13.24¢)
1PNz, = 1Pl e ot - (13:24)

In view of (13.38a), the same comments as in Remark 5.3 (regarding equivalence of L cand L2 +» respectively LZ°
and LZ%) also apply to the norms in (13.24).
Next, we compute adjoints of the differential operator D (as defined by (13.13)), with respect to the L? inner product

on Pft (s). We claim that

D! = —Ds — Qs + £Q(ds — o) , (13.25a)
Df = —Dy +eQ1 — eQu6, | (13.25b)
D = —Ds + Q2 — Qu6s, (13.25¢)
(Qds + V)* = —(Qds + V) — Qs + Q(ds — 8) + VQz — DoV . (13.25d)

We note that from the definition (13.12), we have Q (z,s) = Qi(z,s) = 0 for z; < % (2,s) and so the identities
(13.25) precisely match the previously established formulas (5.28) in the upstream region. The identities in (13.25)
follow from (13.13), and from (13.27), (13.31), and (13.33), which we establish below.

We first consider D7. From (13.13), we have that

By = {0 m<Ti@s), (13.26)
(01 — Q10s) x1 > Ti(xa,s).

By also appealing to (13.20), it follows that'®

T7(2,5")
/ D, F G dzds’ —5/ / / (01 — Q10s)F G dzdaads’ +6/ / / 01 F Gdxidxods’
Pui (s) —7 J T (x2,8") —r
= 5/ / FG yl,IQ, )

*5/11 F@ldeldIst 78/ / / QlGastlildl’QdS/
PL(s) —m (z2,8")

=— / FD,G drdryds’ + 5/ Q1 G Fdaydaods’ — 5/ QG Fdzidzs,
P (s) PL(s) x4 (s)

y1=77 (z2,5") "
dxgds

y1=27 (T2,

(13.27)

where we have used (13.~12d) to write él = 0.Q; and (13.12b) to conclude that Q; (z,0) = 0. This proves (13.25b).
Second, we consider D;. Employing the fundamental theorem of calculus, we obtain the identities

/ / F(z,5)G(z,s)dz dry = / / F(z,s)G(x,s))dzdzs
—m J T (x2,5) —nJT (xg,s)

ISOur computation in (13.27) makes use of the equality (FG)(Z} (z2,s') ", z2,5") = (FG)(Z} (z2,s’) ™, z2,s’), which holds whenever the
trace of F'G on I'(s) from the domains Pt (s) and Pi (s) exist and agree. Note that I'(s) is contained in the spacetime P defined in (5.17), and
that we have established the existence of a unique H"-class Euler solution in P with uniform bounds in the norms (5.36) for the H7-class initial
data specified in Section 4.2. We observe that by increasing the regularity of our initial data to H* for k& > 8, then our argument would yield a
unique H¥-class Euler solution in P with uniform bounds in the (k — 1)-order version of the sixth-order norms in (5.36). In particular, in applying
the trace to the functions F' and G in (13.27), we can assume that we have sufficiently regularity for the cancellation of the two-sided trace to hold.
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- 0577 (x2,8)F (77 (x2,s), 2,5)G(T] (z2,5), x2,5)dxe,  (13.28)

—T

T3 (z2,5") T1(T215)
/ / F(z,5)G(z,s)dz dry = / / F(z,s)G(x,s))dz dzs

+ 85561 (x2,8)F (27 (x2,s), x2,s)G(Z] (x2,5), T2, s)dxs .  (13.29)

—T

The 0577 (x2,s) present in (13.28)—(13.29) may be computed from (13.11a), (13.12a), and (6.49), as

9401, .
Q( 8t.’171<$2, )‘f =q- 1(3« 5) 6(-”1&5) (8181]2)(xl(xQ’t)’t)’t:qfl(m,s) . (1330)
From (6.54), (6.61), and (13.38a) below, we may deduce that |0sZ5| < e, so that this term is finite. This allows us to
add together (13.28) and (13.29), which shows that the two integrals evaluated along I'(s) cancel each other, and upon

integrating in s deduce that

/ F(z,s)G(x,s')dz1dxs
(s")

8555’{ (3?2, S)

s'=s

= / 0s(F(z,5")G(z,s))dz daads’
s=0 Jpi(

By setting G = ECAQG, we have that

/ D.F Gdz dzads’ = ¢ / (AQFdeldmg‘ - / F D.Gdzdzods’ — ¢ / Q. FGdz1dasds’
P (s) xh(s) 0 PL(s) Ph(s)
(13.31)

which proves (13.25a).
Third, we consider D5. By repeating the computations leading to (13.28) and (13.29) but with 0s replaced by s,
we find that

/ 9o (F(z,s")G(x,s))da1dzeds’ = 0. (13.32)
Xi(s)

Letting G = Q.G we find that

/ DyF G = —/ F52G+/ chF—/ / (QuG F)(z,s)darday . (13.33)
PL(s) Ph(s) Ph(s) —m ST (2,9)

and thus (13.25c¢) follows. Identity (13.25d) is a consequence of (13.25a)—(13.25¢), since Qs + 1782 = %65 + V62.
Finally, we note that by virtue of the cancellation of the “boundary” integrals evaluated along I'(s), the sum of the
identities (13.28) and (13.29) shows that

d

— F(z,s)dx = / OsF(z,s)dx . (13.34)
ds [yt (s) Xk (s)

Remark 13.6 (Dropping the tildes). For notational convenience, we shall once again drop the tildes from all the
variables in (x,s) coordinates. Dropping tildes on the fundamental Euler variables and on the geometric variables is
done in direct analogy with Remark 5.2. Notably, we shall denote jg, 5, J, simply as J,,d,J,. This identification is
made throughout the rest of theis section and no ambiguity may arise because we shall still use the notation D for the

spacetime derivative operator in (z,s) coordinates. As such, D f means that f is viewed as a function of (z,s), while
Df means that f is viewed as a function of (z,t), where t = q~'(x,s).

13.4. The L>-based energy norms. For downstream maximal development, with the notation in (13.24) we define
the energy norms by

E3(s) = E3 1 (5) + (Ke) 2E3 1 (s) E3(s) = €2\ (s) + (Ke) €3 (s) (13.352)
E2 . (s) = | IEDS (L, W, 1,2, LA 9|5y E2,(s) = || JFD (Wi, J,Z,, J,AL)(-5)|| 7, (13.35b)
gﬁT = H34J2D6(WT,ZT,A s Hsz E;T (s) = HJ; DY (W, Z,, A )(,s Hsz (13.35¢)

and the damping norms by
Di(s) = Dg p(s) + (Ke) DG 1(s) , Di(s) = D3 o (s) + (Ke) D3 1 (s) (13.36a)
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DGN /H34J2D6(JWN,JZN,JAN Hizds’, D5N( /HD5 JW ., J. 2y, J,AL) ||22ds’, (13.36b)

D3 () / |35 J2DS (W, Z,, A,)||2,ds, D2 (s) / D> (W,, 2, A, ds’. (13.36¢)

where once again K > 1 is a sufficiently large constant, independent of ¢, chosen at the end of the proof, solely in
terms of « and kg (see (13.55) below).

13.5. Bootstrap assumptions. We continue to use the same bootstrap assumptions as in (5.37), but instead of as-
suming that these bootstraps hold in the spacetime P (cf. (5.11)), we now assume that these bootstraps hold in the
P* spacetime (cf. (13.7)). As such, in this section all pointwise bootstraps are assumed to hold for (z,t) € P, or
equivalently, for all (x,s) € T? x [0, ¢) via the flattening map q (cf. (13.8)), and for the energy and damping norms
defined earlier in (13.35) and (13.36). We continue to follow the convention in Remark 13.6 and drop the tildes from
all fundamental Euler variables, all the geometric variables, and on the flattening coefficients.

To be more precise, the working bootstrap assumptions in this section are that

(\I‘JV7 Z,A, J,, h,V, %) satisfy the pointwise bootstraps (5.37a)—(5.37q) in P* < T2 x [0, ¢), (13.37a)
&6, Dg. &5, Ds, |D°D1hl|,, . [|D°D2nl|,, . [[DOT,||,., satisty the energy bootstraps (5.37r)—(5.37u). (13.37b)

Here (W Z.A, J,, h,V, %) are defined according to the flattening (13.10), and the energy and damping norms are
defined in (13.35) and (13.36), respectively. Since the bootstraps (13.37) in this section are the same as the boot-
straps (5.37) used in Sections 5—12, save for the different weights in the L? norms (see (13.35) and (13.36)), we shall
sometimes (more frequently for the pointwise bootstraps) make reference to (5.37) instead of (13.37).

As in Sections 5-12, the burden of the proof in the current section is to close the bootstrap assumptions (13.37),
i.e., to show that these bounds hold with < symbols instead of < symbols. To avoid redundancy, we do not repeat the
arguments of how bootstraps are closed when the proof is either identical to that in given earlier in Sections 5-12, or
if it requires infinitesimal and straightforward adjustments. Instead, we focus on the proofs of those bootstraps which
are different because of either the x1-dependence of q manifested through the fact that D =+ D1 (see (13.25b)), or
because of the fact that the weight J used in the energy estimates satisfies D 1d # 0 (see (13.18)). The remainder of
this section is dedicated to closing the bootstrap assumptions (13.37).

In the process of closing the bootstrap estimates (13.37) we make use of the functional analytic framework in the
flattened domain developed in Appendix B, with the modifications described in Section B.4. We shall also utilize
the pointwise estimates for objects that naturally flow along the 1-and 2-characteristics, as developed in Appendix C,
keeping in mind Section C.1, where the modifications due to the q flattening map are discussed.

13.6. Consequences of the bootstraps updated estimates for downstream maximal development. Many of the
bounds established in Sections 69 are direct consequences of the bootstrap assumptions, the functional analytic setup
in Appendix B, and of the L°° estimates from Appendix C. We emphasize that many of these arguments apply as is in
the geometry of the downstream maximal development, except that we refer to the bootstraps (13.37), to Section B.4,
and to Section C.1. Examples include: the bounds for the diameter of the support in Section 6.1, the bounds for the
ALE flow in Section 6.2, the pointwise bounds for (W, Z, A) in Section 6.3, the pointwise bounds for D¥(.J,W ) and
Dng when 0 < k < 2 from Section 6.4, the properties of 5 (x2,t) and of the curve of pre-shocks in Section 6.6,
the damping properties of .J, and J from Section 6.7, and the closure of the bootstrap for the fifth order derivatives
(cf. (5.37s)) discussed in Section 6.8 (here we only use that J = 1 — ?). These arguments are not repeated here. In
fact, because these bounds are the same, throughout this section we abuse notation and make reference to equation
numbers from Sections 5-6.

The only estimates from Section 6 which require a substantial modification specific to downstream maximal devel-
opment are the bounds for the remapping coefficients (CA), Q,Q;,Q, Ql) defined in (13.12). The analysis in Section 6.5,
or more precisely, the bounds from Lemma 6.3, are to be replaced with the estimates obtained in Lemma 13.7 below.

Lemma 13.7. Assume that the bootstrap bounds (13.37) hold on P*. If € is taken to be sufficiently small with respect
to o, ko, and Cyata, then the functions (Q, Q, Q. Q. Q;) defined in (13.12) satisfy the bounds

Ore) _ GeCy, < Q < 401(1 + @), (13.38a)
20ke) < Q <402(1+a), (13.38b)
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0<Q <5lp ), (13.38¢)
0<Q<Be Ly g (13.384)

|Qz| < 1500¢, (13.38¢)
Q2| < 1500, (13.38f)
Qs 1Q] < 2-250%Q=" + C. (13.38g)

hold uniformly for all (z,s) € PL(¢).

We note that the lower bound in (13.38a) matches that in (6.38a), up to an inconsequential O(¢) term. All other
bounds precisely match those obtained previously in (6.38), including the all-important lower bound for Q in (13.38b).
The bounds (13.38c) and (13.38d) are new; their key feature is the > 0 lower bounds for both Q; and Q1

Proof of Lemma 13.7. For z1 < w}(z2,s), the functions (QQ1,Q2,Q,Q,Qs, Q1, Q2) defined in (13.12) exactly
equal the functions (Q 0,Q2,Q,Q, Q57 0, Qg) defined in (5.22), because J = J (recall the paragraph below (13.6)).
As such, for these values of z1, all the bounds established earlier in (6.38) continue to hold. Thus for 1 < 7 (z2,s)
no proof is required. Next, we consider the region 21 > 27 (x2,s).

We start with the bound for Q which is defined in (13.12a). In light of (13.5a) and (13.6), we first consider values of
21 such that 25 (ze,t) < x1 < CC{_(ZEQ). Here, via (5.6), the fact that € > 0, using (6.24d), and the fact that the map

21 — Dyjwo(x1,22) is monotone increasing (at fixed x2) at least until it reaches the value of f% (see the paragraph
below (13.1)), we have that

Q(SL’,S) (at3> Z, t ’t q—1(z, s) = ( J) ’t q=*(z,s)
> — 452 (Drwo(w) +£Cy,)
> 7L(D1wo 951 T2),x2) +5CJt)
> S -eC,) > Mgl _etec, . (1339

In identical fashion, for x; > :l}ji +(a;2), by using the third branch in (13.5a) we have that

Q(a,s) = —=(0id) (2, 1)],_g — 140 (Dywg(ah (22), x) +£Cy,) > FTUFA) _clrac,  (13.40)

z,5) —

It thus remains to consider values of x; such that $§7— (x2) < 71 < x'{ + (22), which represents the middle branch

of (13. Sa) In this region, by construction we have that 0,J = 6tj° is monotone increasing in x; (see (13.5b)), and
hence Q is monotone decreasing in x;. Its minimum value is thus attained when x; = x’i +(9c2) a point at which the
bound (13.40) was previously established. Thls concludes the proof of the lower bound in (13.38a). The upper bound
in (13.38a) is obtained by computing —eo”'t ., which by its definition in (13.5a) and by (13.5b) attains its maximum
in the region x7(z2,t) < z1 < ng(:cg) In this region, we conclude via the last bound in (5.8) and the fact that
(=0, J,) < H2(1+Cy,), via (6.24d).

The bound (13.38b) follows from (13.38a) and (13.38e), since |Q — 6| < |V|Qa| < Ce2.

Next, we turn to the bounds (13.38c) and (13.38d) which concern 1-derivatives of the geometric flattening coeffi-
cients, Q; and Ql. The definitions (13.12b) and (13.6) yield

Qi(z,s) = e(019)(x,t) = (81 (x, 1), where t=q Ya,s), (13.41a)
in the region of interest, {z1 > z7(z2,t)}. We first note that the definition of Jg in (13.5a) yields
(&) (2,t) =0, for x> x§,+(x2). (13.41b)

For the middle branch in (13.5a), namely |x; — x%(x2)| < we use the first two inequalities in (13.5b), which

g
1000°
may be integrated in time (since xﬁ does not depend on time) to show that

t
o, (x,t) :ali(x,tin)+/ (8,01 (, ¢')dt’
~— tin

=0
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t
= / (8,01.T) (a,t") At € [0, (thin — tin) - 2(1 4+ a)e 2] C [0,5¢71]. (13.41¢)
tin
It remains to consider the 04 -derivative of the first branch in (13.5a), which concerns z] < z1 < a:li_ (22). For these
values of x1 we have that ﬁljz = 0O1J,, while (4.10) and (6.24b), imply

101, |20, < (tsin — tin) 552 (| D2wp | oo + C?) < 2L 4 Ce < 2. (13.41d)

z,t — 22 e

This gives the desired upper bound For the lower bound, as already noted in Proposition 13.1, for z; € [a} (22, 1), 2% (z2)]

we have that Dywg(z) < — < —1, and therefore D?w(x) > £ (due to assumption ((viii))). With this informa-
tion, (4.10) and (6.24b), now 1mply

AT, (x,8) > (t — tin) 5E& (D2wp () — Ce?) > (t — tin) 5EE (65 — Ce?) > (t —tin) 12278 > 0. (13.4le)

22 22
Collecting the bounds in (13.41), we have thus established (13.38c¢).
Next, we consider the bound (13.38d). From (13.12) and the chain rule we have that

Ql(a: s) = (8t613)(x q 1(x,s)).

Inspecting the proofs of the bounds in (13.41), and upon referring to (6.24f) instead of (6.24b), we may deduce that
0 < 9:01d(z,t) < 2(1 + a)e2, for all 21 > % (wa,t). Using the lower bound for Q obtained in (13.38a), the proof
of (13.38d) now follows.

Next, we turn to the proof of (13.38e) for

Qx(w,5) = 555(%8) (2,97 (w,9)) = @(52(7;)(1‘&_1(%5)),

for 2, > a3 (xx, t). For the first branch in (13.5a), we use (4.10) and (6.24b), to deduce |(95.], ) (x, )] = |(DaJ, ) (x, )| <
(thin—tin) 552 (||D1 Dawo | oo +Ce?) < %Jrész < 3. For the middle branch in (13.5a) we appeal to the second bound
in (13.5b), Wthh may be integrated in time to yield |(82,)(, )| < 250(1 + a)e ™ (tsin — tin) < 510. For the last
branch in (13.5a), we note that for all ; > mg’Jr(xg) by the argument in Remark 13.2 we have |80, (z1, 22, t)| =
1020, (2} (w2), w2, t)| < |8:02, (2} (w2), w2, t)| + |02’ (22)]|0:01 T, (2} (x2), 22, 1)| < 242(1 + a)e~ . Integrat-
ing this bound in time, similarly implies |(9s.], ) (z, t)| < 242(1 4 &)~ (tgin — tin) < 510. Using the lower bound for
CA) obtained in (13.38a), the proof of (13.38¢) now follows.

Inspecting the arguments in the previous paragraph, and refferring to the bound (6.24f) instead of (6.24b), we may
deduce that |920;.J, (z,t)| < 250(1 + a)e? for all 2y > x*(x2,t). Since Qu(z,s) = 6(;5) (0;029)(z,97 (z,5)),
using the lower bound for (AQ obtained in (13.38a), the proof of (13.38f) now follows.

Lastly, the estimates in (13.38g) are obtained by repeating the proofs of (6.38d), and (6.38f), except that these proofs

simplify in downstream region. For instance, when compared to the Qg expression from (6.50), in the downstream
region we have from (13.12) and the chain rule that

Q(,s) = s (20:) (.07 (2,9))

When compared to (6.50), the terms which involve an D?.J, denominator are absent. Given that we have already
bounded Q from below in (13.38a), repeating the same arguments as in the proofs of (6.38d) we obtain the bound for
COES claimed in (13.38f) and (13.38g). The bound for Q claimed in (13.38g) follows from the é)s, Cob, and Q, estimates,
since |Q — Q| < |V]|Qq| + [0,V [[Q] S <. 0

For the sake of completeness, we also record here an analogue of Lemma 6.5, showing that the map q is invertible.

Lemma 13.8 (The map q is invertible). Assume that the bootstraps (13.37) hold and that ¢ is sufficiently small with
respect to o, ko, and Cyata. Then, the map q defined by (13.8) is invertible, with inverse q~* defined by (13.9).

Proof of Lemma 13.8. The proof is nearly identical to that of Lemma 6.5. The fact that the equation s = q(z,t) =
£(1 — J(x,t)) has at most one solution ¢ € [tin, tsin), for every fixed s € [0,¢) and = € T2, follows from the fact that
0q = —c0,d = Q> 2(1;“) > 0. The fact that the equation s = q(z,t) = (1 — J(x, t)) has at least one solution
t € (tin,tan) for s € (0,¢), again follows from the intermediate value theorem because J < J, in the downstream
region (see the first paragraph in Remark 13.5). The case s = 0 is trivial, yielding ¢ = t;,. ]
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13.7. Identities in the downstream coordinate system. With respect to the coordinates (z,s) given by (13.8), with
the transformation (13.10), and upon dropping the tildes (see Remark 13.6), we have the following fundamental
identities, which are translations of the identities in Section 3 into (z, s) coordinates (see also (5.30)—(5.35)):

(Q0s + Vo) J, = 2 W, + 15272, (13.42a)
(Q0s + V) = -9, (13.42b)
(Qds + V32)Doh = g(LE2W, + 152Z,), (13.42¢)
ID,% = 3J,(Wy — Zy) + 2J,Dh(W, — Z,), (13.42d)

DoX = 193 (W, - Z,), (13.42¢)

(QOs + V)L = —aX(Zy 4+ A,), (13.42f)
(Qs + V)22 = 2085 2%(Z,, + A,), (13.42g)
(Q0s + Vo )v = — (W, + 1522, 7, (13.42h)
(Qs + V)T = (H2W, + 1527, v, (13.42i)
%(Q8s + Vs)Q = 2D, Q — ad,g~ 2D2h D2Q. (13.42j)

By using (5.8), we also note that 51(Jg —J) = BQ(JQ —J,)=0.

13.8. Bounds for the geometry, sound speed, and ALE velocity for downstream maximal development. We
record here the modifications to the bounds obtained earlier in Section 7, due to the downstream maximal geometry.
It turns out that the only modification is due to the change of the weight in the energy estimates, namely J > J:
all the bounds which do not involve this weight function remain identical to those in Section 7 (and for those bounds
we abuse notation and make reference to equation numbers from Section 7), while all the bounds which do involve
this weight function need to be modified by exchanging J with J. For instance, the bounds in Proposition 7.1 now
become the bounds given in Proposition 13.9 below. The corollaries and remarks which follow this proposition (in
particular, the closure of the (5.37t) and (5.37u) bootstraps in Corollary 7.2) remain the same as in Section 7, and to
avoid redundancy we do not repeat those arguments here.

Proposition 13.9 (Bounds for the geometry, sound speed, and ALE velocity). Assume that the bootstrap assumptions
(13.37) hold, and that € is taken to be sufficiently small to ensure == ((By) + (By) 4 (Be)) < 1. Then, assuming ¢ is

sufficiently small with respect to «, kg, and Cyata, the functions (J,,D1h, Dah, X2, V) satisfy the bounds (7.1b), (7.1d),
(7.1e), (7.1))—(7.1k), and (7.11)~(7.1m) respectively. Additionally

1~ 2 _1= 2
sup [|33D° T, (-,s)||} o + 21373D0T, |5, < e(Bs)?, (13.43a)
s€(0,¢e] s T z,s
sup [|giD°Dah(-,s)||2 w2 + L[|d7TDDah]|2. < K2e3(Bs)? (13.43b)
SG[O,E] s x x,s
6 ~ ~ ~ ~ ~ ~
sup > 11375 (D + 27DDoh) |2 + (1377 (D7 — 2aDPIDsR) || 2 S Ke*(Bs) (13.43¢)
s€[0,e
= y|=3
sup [[d7FDON| 2 + [|7TDOT| 2 | S Ke(Bs), (13.43d)
s€[0,e] ’ ’
16 1 X6 3
sup (HH4D Nlleerz + /82D THLsooLg) < Kez(Bg), (13.43¢)
s€[0,¢] - -

where the implicit constants in all the above inequalities depend only on o, kg, and Cyata.

Proof of Proposition 13.9. We explain the downstream modifications required for the proof of the inequality (13.43a).
Just as the equation (7.11) was obtained, letting D% act on (13.42a) in the set Pft (€), we have that

(Qds + V3,)(D®J,) = 1£2D5(J, W) + 152D5(J,Z,) +R,, , (13.44)
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where R, = —D%V Ds.J, — (D°,V,D2J,). Foreach's € (0,¢), we compute the L*(X! (s))-inner product of (13.44)
with g2 56Jg to obtain that

%/ 32 (Q0s + V8,)|D° J, |2
XL (s)

=t [ BB+ e |
Xi(s)

3%66(Jg2N)66J9+/ J2R, DOJ,.  (13.45)
X (s)

XL (s)

Next, we commute the operator (Qds + V) past J2 separately in the regions X” (s) and Xi(s); here, recall the

definition of J in (13.6). In analogy to (7.13), in both X* (s) and Xi(s) we have that for any function f = f(z,s) >0
and any r € R we have the following identity and subsequent estimate (by appealing to (13.42b))

3"(Q0s + Vo) f = 0s("Qf) + 02(3"V ) —rf8" 1 (Q0s + V)3 — f3"(Q + 02V)
=0s(I"Qf) + 02(TVF) +r2fa 1 — I (Q+ 0.V, (13.46)

Integrating the above expression over Xi (s), appealing to (13.34) for the s term, to (13.32) for the O term, appealing

to the Q and Q bounds in (13.38), to the V,» = O(¢) bootstrap in (13.37), and upon taking ¢ to be sufficiently small,
we arrive at the bound

/ J(Q0s+ Vo) f > & / IrQf + it / gl - 220 / IQf . (13.47)
X% (s) xL(s) : i

Xi (s) + (s)

With r = % and f = %\E)GJQ |2, we use (13.47) to lower bound the left side of (13.45), resulting in

ﬁ/ J2Q|DCJ, |2 + ggg/ 3*%|66Jg|2—%/ J2Q|DCJ, |2
xiGs) xt(s) X5 (s)

< Yo / g2 D%(J,W,)D%J, 4 152 92D%(J,Z,)DCJ, + / J2R,, D°J, .

XE(s) XL(s)
The integrals on the right side of the above inequality are analyzed in the identical manner as in the proof of Lemma 7.4
(see (7.14)—(7.16)). By using Gronwall’s inequality on the interval [0, £] to handle with the third term on the right side

of the above inequality, and using the lower bound in (13.38b), we arrive at

sup [[AD°, (- s)lI72 + HI3TFD° 72, < D%, (- 0 + £(Be)®
s€[0,¢] -
Using (4.11), we arrive at (13.43a).

The downstream modifications (when compared to the proof of Proposition 7.1) required for proof of the inequal-
ities (13.43b)—(13.43e) are identical (going through (13.47) instead of (7.13)) and these details will be omitted. To
avoid redundancy, we also omit the proofs of the unweighted bounds for (.J,, 51 h, th, 3, V), as these are established
exactly as in the proof of Proposition 7.1. (]

Xi(s)

13.9. Estimates in the downstream geometry which are improved due to vorticity bounds. In the downstream ge-
ometry given by the transformation (13.8) we still obtain an improved estimates for the vorticity, and as a consequence
we have that:

(J,W,, Z,, A,) satisfy the improved bounds (8.21), (8.22), (8.44) and (8.50) , with J replaced by J.  (13.48)

As shown in Section 8, these improved bounds are a consequence of the bootstrap assumptions (these are causing the
need to exchange any power of J for the same power of J, which in light of (5.29) and (13.18) are both equal to
the same power of (1 — £)) and an energetic bound for the vorticity, with optimal weights (independent of J). This
vorticity bound was obtained previously in Proposition 8.1; it remains unchanged in the downstream geometry, though
the proof needs to be slightly altered due to the presence of a 0y derivative (see (5.35)) in the specific vorticity transport
(see Section C.1). We record these vorticity estimates next:

Proposition 13.10 (H° estimates for the vorticity). Assume that the bootstrap assumptions (13.37) hold and that € is
taken to be sufficiently small with respect to o, ko and Cqaa. The ALE vorticity Q satisfies the H® energy bound (8.2),
the L>® bound (8.3a) and the W > bound (8.3b).
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Proof of Proposition 13.10. The claimed vorticity estimates are established identically to the proof of Proposition 8.1,
and are a consequence of the following bound for the specific vorticity

sup HJ2 D¢Q
s€(0,¢]

/HD6 5)|[72ds < =(Be)?. (13.49)

To avoid redundancy we only sketch here the modifications (when compared to the proof of (8.1)) needed to establish
(13.49), which arise to the D1 derivative. Applying DS to (13.42j), as in (8.4) we arrive at

%(Qs + V,)D®Q — 2D, D°Q + ad,g~ 2D2hD2D°Q = R (13.50)

where the remainder term R, is defined exactly as in (8.5). We test (13.50) with £=28+1D6Q, with 8 > 0 to be
chosen appropriately (in terms of «, xq, Cqata), and integrate over Pﬁi (s). Note that here we do not multiply by powers
of J (as opposed to (13.45) earlier), and so appealing to (13.47) is not necessary. Additionally, note that the term
containing a d; derivative, namely —§% 727 +1D; |DSQ|? does not contain a J, or J term. Instead, we appeal directly
to the adjoint formulas for (Q0s + V 92)*, [~)*1‘, and [~)§ from (13.25), and to the bounds (13.38) to deduce in analogy
with (8.6)—(8.8) that

I <J§>% Bsa.,

S

1 S[r . ~ __
o). — 42205003, + [ [IB°0f chGo +a [ 4B,

>0 due to (13.38¢)
- a/EJ;B\56Q122Q2g—552h\5+/05/2251%669. (13.51)
where
Ga =~ (2 Wy + 152,2) + 208, (Zy + Ar) ) = a8 = ) (I Wy = J,Z + J,D2h(W - 2,))
— J,(Qe — VQa + DaV) — axQ; + (28 — 1)ad,g~ $DyhD2% + aQuSJ,g~ ¥ Dah. (13.52)

The remainder term R, present on the right side of (13.52) satisfies the same X~ ”-weighted Lf2£,s bound as in (8.14).
When compared to (8.6)—(8.8), the new contributions are those due to Q; for the temporal boundary term in (13.51),
and Co,)l in the definition of G (13.52). According to (13.38c) we have that Q; > 0, and thus the additional temporal
term in (13.51) has a favorable sign, allowing us to ignore it. Also, according to (13.38d) we have that 0 < Co)l < 5e7 1,
so that similarly to (8.9) we may deduce

Go > (af+ 1) (2 — £J,) - 2B0QJ, - C(p) — dame

€ €

Due to the last term appearing in the above lower bound on Gq, the size of 5 (cf. (8.16)) needs to be increased by
an additive factor of 6kg. Thus, for 8 = S(a, ko, Cdata) chosen suitably, and for ¢ sufficiently small (in terms of
@, Ko, Cdata), in analogy to (8.17), we may deduce from (13.51) that

1 s -
%W%ﬁWQm%;+§AH$WQmﬁM§#
. S 1
< || U= DGQ<»0>||?;,+%/O |27 D0, &)|[,d8" + Ce(4ng ) (Bq)”

Using Gronwall for s € [0, ], multiplying the resulting estimate by ngﬁ , and appealing to (5.37p) and (13.38Db),
concludes the proof of (13.49). O

13.10. Closing the pointwise bootstraps in the downstream geometry. The pointwise bounds which were previ-
ously established in Section 9, only relied on the evolution equations in (x,s) coordinates (cf. (5.30)—(5.34)), the
bootstrap assumptions, the functional analytic setup in Appendix B, and of the L estimates from Appendix C. These
arguments apply as is in the geometry of the downstream maximal development, except that we refer to the evolution
identities (13.42), the bootstraps (13.37), to the functional analytic bounds from Section B.4, and to the L°° estimates
from Section C.1. We omit these redundant details concerning the closure of the pointwise bootstraps.
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13.11. Downstream energy estimates. At this stage in the proof, it only remains to close the bootstrap (13.37b)
(see (5.37r)) for the sixth order energy gﬁ and damping 756 norms, defined earlier in (13.35a) and (13.36a).

Prev1ously, this was achieved by separately establishing a bound for the tangentlal parts of the energy €~6 + and
damping DG + in Section 10, and the normal parts of the energy 56 ~ and damping D6 « in Section 12. In turn, these
estimates required that we established improved energy bounds for six “pure time derivatives” in Section 11.

For the downstream maximal development, we follow the same exact strategy. As before, the tangential bounds
from Section 10 and normal energy estimates from Section 12 run in parallel, the only difference being that the
fundamental variables are un-weighted for the tangential part (i.e. (VQVT, Z—, AT)) and are J,-weighted for the normal
part (i.e. (Jg\/oV Ny Z,, J, A ~)). The special estimates for six pure time derivatives from Section 11 are used in the
same way, to treat the remainders R; and RJZ\[ ,in the Z, and respectively J, Z, equations.

Since the tangential and normal energy estimates run in parallel (similarities and differences may be seen by com-
paring Sections 10 and 12), we do not repeat both of these two sets of energy estimates for the downstream geometry.
Indeed, the downstream modifications to the tangential component energy estimates are identical to the modifica-
tions made to the normal component energy estimates. For the sake of brevity, we chose to only give details for the
downstream modifications to the normal energy estimates (see Section 13.12 below).

13.11.1. Sixth order tangential energy estimates. For the tangential energy estimates, at this point we simply record
that by repeating the arguments from Section 10, with the modifications outlined in Section 13.12 below (see the
argument leading to (13.78)—(13.82)), similarly to (10.70)—(10.71), we obtain that there exists a constant

CO(,KL() > 07

which depends only on « and also on kg, and may be computed explicitly, such that

S%p]Hg%Jg%BG(VQVT7iT7AT)('?S) /HH Jy? DG(WT’ZT’AT ||L2
s€|0,e

+ 2 o ot D7, + % [ o Bt
¢ 0 x

s€[0,e]
< Eama(Cdata 4+ B2 4 (et K2<Bﬁ>2) . (13.53)
Then, as in (10.72)—(10.75), upon ensuring that
Bs > max{1, Cqata}, (13.54)
and upon defining
K := 8 max{1,% .}, (13.55)
by letting € be sufficiently small in terms of «, k¢, and Cyata, We deduce from (13.53) that
£ sEp]EgT(s) + D2 (e) < +(eK)?B3. (13.56)
s€[0,e

This bound is the same as (10.75). It closes the “tangential part” of the remaining bootstrap (13.37b) for é~'6 and 756.

13.11.2. Sixth order pure-time energy estimates. For the energy estimates concerning pure time derivatives, we record
that by repeating the arguments from Section 11, with the modifications outlined in Section 13.12 below, the same
bound as given in (11.2b) holds, namely

e3|gt g2 DSZy ) ps + |2 DSZy|,. < e3|gt gz DSZ . ps + 9% 72 DSZy . SeK(Bs).  (13.57)
13.12. Downstream energy estimates for normal components. It thus remains to outline the modifications to the
normal energy estimates in Section 12, required for the downstream geometry. We continue to use the equation
set (12.1) for (J,W,, J,Z,, J,A,) in (z,s) coordinates, with the operator D¢ used only in the set Pzﬁt (€), so that
differentiation does not take place across the surface I'(¢). According to definitions (13.35) and (13.36), the energy
identity (12.5) is replaced with the downstream energy identity

//Jﬁgz (12.1a) J,D8(J, W) + (12.1b) D%(J,Z,/) + 2 (12.1c) D°(J,A ) )dxds =0, (13.58)

TWn IZn TAn
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where once again j, = X2+l and f = 3 (a, ko) > 01is a sufficiently large constant chosen in the proof (see (13.79)).
Here and throughout the remainder of the section we use the integral notation

S S
/ to denote / dez, and / / to denote / / dzds’ = / dzds’ . (13.59)
xh(s) 0 0Jxi(s') P(s)

+

With this notation, we frequently appeal to (13.32), (13.34), and to the adjoint formulae (13.25).

13.12.1. The additive decompositions of integrals I W", I 2", and I, Tn analogy to (12.6), we additively decompose
the integral 7"V as

Iv"vn, _ IYVn + IZ\’)Nn + Ié\LNn + ]E\_)/Vn + I(\S/Vn’

e — /0 S/Tgﬂg%Jg(Qas VDO (W) DO (W) (13.60a)
13‘,7“” = a/oyjﬁHnggé5266(JqZ\N) BG(JgWN)» (13.60b)
S /0 5/353%Jgg—%£\N5266Jy BO (W) (13.60¢)
AT /07]/132 Jyg" 3 (L, Wy + J,2, — 2J,A,)D2DO 7~ DS (J, W) , (13.60d)
= [[fadt GO R+ ) Do) 3600
where we have used the notation in (13.59). Next, in analogy to (12.7), we additively decompose the integral I Zn as
R o A R A
it = [ et 0,Q0 + VOB* (1,2, B (2., (13612
i =~ [ [ shratVe - 52,000,200 (13.61b)
I = —q ijﬁg_é33J95256(JgAN) DS(J,Z,), (13.61c)
2 —q /0 7Jﬁgéjgg%AN6266Jg BT, Z), (13.61d)
=2 /OS/JBJ% J,g" 3 (LW, + J, 2, — 2J,A,)DsDO7-8 DS (J,2,) , (13.61¢)
b= | [285:8°(,2,0 51,2, (13610
JrA. /05/]533 J(A +27)(DiDO7n — 4,97 Dah D207 ) D*(J,2,), (13.61g)
=2 /0 S/JﬁgézN(Blf)ﬁJg —J,g7 302 D,0°,) B(J,2.0). (13.61h)
i =20 [ [ 100,04 BanDaD" (2. B 20 (13.61i)
= [[a O+ 7y ) B2, 1361

where we have used the notation in (13.59). Lastly, in analogy to (12.8), we additively decompose the integral 1 An as
IAn — Ili&n + I§’!L + ISA’!L _|_ Ifn + Isi&n + Ién _|_ I7A" _|_ I'S&n + Ié&n + IlAOn ,

I = 2//%3%%@3& Vd,)D8(J,A,) DO(J,A,), (13.62a)
0
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I = - /()S/g%aa(Jg\ivN 2.0 B0, A (13.62b)
Ié” =2 /07]&6]533 J,D2D%(J,3,) DS(J,A), (13.62c)
i =2 [ [2074 8 (1£.08:6%, B°(1A.). (13.624)
c .
" =2a /0 / 53,945,000 5 DO(J,A), (13.62¢)
i =2 [ [L55°0A0 DA, (13620
[;f\n = /05/][,33(%\7\@ +J,2Z —2J,A;) <[~)1 DS7-n —eJ,g” 2 Dah 5256T'N) DY(J,A), (13.62g)
J / S/Jﬁg%z\N(ﬁlsﬁjg 47302 D,0°,) B(JAL) (13.62)
I =20 /0 S/Jﬁg%Jgg—%thE)QBﬁ(JgZ\N) B°(/,Av) (13.620)
e = _ /O 73ﬁ33 (DR +RY +¢)) DA, (13.62)

where we have used the notation in (13.59).

The majority of the 26 integrals listed in (13.60), (13.61), and (13.62), are estimated identically as in Section 12.
We will explain the modifications that are required for those integrals in which we must integrate-by-parts with respect
to 61, both because BT is contains two extra terms (see (13.25b)) which require the new bounds (13.38c)—(13.38d),
and because 518 = (, which requires appealing to (13.18).

13.12.2. Downstream modifications to the exact derivative terms. The identity (12.9) for I }/\/ "+ 12 "+ T f\ ™ remains
the same, except that the damping term G carries the natural modification J +— 7, i.e., (12.10) becomes

Go > —4(Q0s + V) (3% J,) —BXQJ,I% — C(B)I= J, . (13.63)

=:Ggood

The first real modifications are to the term (12.11) concerning I, 62 + 1 é". Here 0; needs to be replaced by éﬁl, and
using (13.25b), we have that

IGZn +Ign = _%//.753%51‘56(J92Na‘]gAN)’2

/ / :G1|D(J, 25, A" + 0 / QDO 2y, J,AL)[

, (13.64)

>0 due to (13.38¢)

where
G = —a(28 - 1)FLDiZ — aZ Q3 + 22592 D, 4.
and appealing to (13.18), (13.37), (13.38¢), (13.38d), and (13.42d), we then have that
G2 (B~ 1) (&~ (8 A,Q — C)gt — 2esgh. (13.65)

The last two terms appearing on the right side of (13.65) are the new terms caused by the downstream geometry.
The first term will be absorbed by choosing 3 sufficiently large, while the second term is obviously a Gronwall term.
Combining (13.64) and (13.65), we obtain that

Taking 8 > 2,

& )2’

Ign +]é—’\n > a(B—3) 40%0/ ||34 D6 JZMJAN)

16a(8—3) 34(JQ)2 6
- (1+a)a /H D (JZijAN) HLz (13.66)
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The identity (12.13) for IS" + Ié\" remains the same. The lower bound (12.14) for G5 and (12.15) for the temporal
boundary term, remain unchanged (except for J' 3 H%). The identity (12.16) for I 22“' + I 2A” remains the same, and
the damping coefficient Gg satisfies the same lower bound as in (12.17), except for the usual modification J LTI Jd 3.

At last, the identity (12.18) for I. ;N "+ g +1 § remains the same, except that the weight function is J2 instead of 7 2.
With the definition of Ggeeq in (13.63), and with the updated lower bound (13.66), the estimate (12.19) summarizing
the contribution of all exact derivative terms becomes

> (1 - Ce) ngﬁQDG(J W, J, 25, J,A)( ||L2 - H%DG(J Wy, J, 2, J,A)( ||L2
+ /S/ﬁ(cgood — CBI% ) DO (I Wy, J, 2, J,A L) [
o (e ) LGB L2 LA
- (Lati) | sapaet) /||34 QL5 (1,2, A ) (52 8
2502/ qu Jo)zDﬁ(JWN) Hm (13.67)

where C' = C' (@, Ko, Cdata) 1s a positive constant independent of 3.

13.12.3. Downstream update to geometric lemmas. In order to deal with terms that contain over-differentiated geom-
etry, we next generalize Lemmas 12.1 and 12.2 to the geometry of Pi (s).

Lemma 13.11. For a function f(x,s), we have that

s ~ ~ ~
/fN~D6T D,D%J,| +
0

//f/\/ D,D%7 D%, ’ S K2 Bo)* (|0 ||, + 1073, ) - (13.68)

We note that when compared to (12.20), the bound (13.68) is missing a factor of ¢ next to ||J -3 il Lz, This helpful
factor of € was however never used in any application of (12.1), so that we may use (13.68) as is in all energy estimates.

Proof of Lemma 13.11. We explain the modification of the proof of Lemma 12.1 that will lead to the inequality
(13.68). In particular, we explain the modifications to (12.22) which occur when replacing the formula (5.28b) with
the new identity (13.25b). The identity (12.22) is replaced with

//fNDGTDQDG __7// (F g%) (w-DO7) // (@~ Bo)(f J,Doh) — Qi f gt ) (a-D°7)?

+§/(ngJgDzh—Qlfg?)(N-DGT)2 —é//fN-DﬁTg%T-f)lN 7-D°r
S 0

S S
+§//fN.DGTN-DG(g%N) N~D1T+%//fN~D6T((D6,g%N¢,D1Ti))
0 0

S - ~ ~ e S — e - -
+//fN-D6TJgD2hT~D2N T-D6T—//fN-DGTN-DG(JgDQhN) N-DoT
0 0

—//fN-ﬁGT((66,Jg[N)ghNi,SgTi)). (13.69)
0

Using the bounds established in Proposition 13.9, the new terms in the above expression (when compared to (12.22)),
due to Q; and Q;, are estimated from above by 5||3_%f||L;c (e71)|92 1720 113~ TN-DOTY2, +(1 35N -DOT2 0 p2) S

~

HH_%fHLgosES K2(Bg)?2. This estimate is clearly consistent with (13.68). Usmg Lemma 13.7 and the identical proce-
dure that we used in the proof of Lemma 12.1 (except that any reference to the bounds in Proposition 7.1 need to be
changed to the bounds in Proposition 13.9), all other terms present on the right side of (13.69) may be shown to be
bounded from above by the right side of (13.68). The bound for the second term on the left side of (13.68) is obtained
by using D* to convert DoDS7 D6J into —DGTD2D6J as in (12.23). Since the formula for D in (13.25c¢) is the
same as the one used in (12.23), the bounds are identical to each other. O
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Lemma 13.12. For a function f(x,s), we have that

S ~ ~ ~
/fN~D1D6T DGJQ’ +
0

/fN~66T BIBGJQ’ < 53K<BG>2(||3% Dfllre, + ||3‘%f||L§S> : (13.70)
. ;

Proof of Lemma 13.12. The bound for the integral fos [~ -51 DS 7 56Jg is unchanged from the proof of Lemma 12.2
and uses (12.26). To bound the integral fosf f~ - D% D;DCJ,, we use the identity (13.25b), and obtain

//fND6TDD6 = //fNDDﬁTDGJ—// 1(fN) —eQuf ni) DO7; DO,

—6/61fN~D6TD6 B
S

We have established that the first integral on the right side has the bound (13.70). The remaining integrals are bounded
using (13.37), (13.43), and Lemma 13.7, and the desired inequality follows. (I

13.12.4. Downstream modifications to bounds for the forcing, remainder, and commutator functions. The bounds
obtained earlier in Section 12.7.2 hold without change. Note that in these terms there is no integration by parts being
used. One only uses the bootstraps (13.37), the updated bounds for the geometry from Proposition 13.9, the improved
bounds for normal components (13.48), especially for y4 ~» the estimate (13.57) for pure time derivatives of y4 > and
the commutator and product estimates from Appendix B. The bounds (12.29), (12.31), and (12.38) hold as is, except
that the weight 7 needs to be updated with the new weight J.

13.12.5. Downstream modifications to the terms with over-differentiated geometry. We discuss the modifications to
the followmg sets of terms, all of which contaln over-differentiated geometry: I W + I Z, + I An (see Section 12.7.3),
I4 "+ I4 "4 I8 ™ (see Section 12.7.4), I4 ™ (see Section 12.7.5), I7" (see Section 12.7.6), I ™ (see Section 12.7.7),
and I ™ (see Section 12.7.8). Several of these terms are bounded in precisely the same way as in Section 12.7, either

because they do not contain the operator éﬁl, or because they are dealt with by directly appealing to Lemmas 13.11
or 13.12, which have already been updated to the downstream geometry. For the convenience of the reader, we go
through these terms one by one.

We offer more details for the analysis of the combination I gN "+ 52" + I?", which was previously analyzed in
Section 12.7.3. We view these modifications as a template for the necessary changes to all other terms discussed in

the above paragraph. First, consider the term I f‘", as defined in (13.62g). Taking into account (13.25), the decompo-
sition (12.40) becomes

18 = B+ I + I + 10,

15\72 =-2 /OS/JﬁHg(JgWN +J, 2 — 2J,A)D5T- N (6156(JQAN) —eJ,g"iDah 5266(JQAN)) ;
Iy = -2 /0 5/(51 — edg DoDy ) (8 (I WLy + 7,2y — 27,7 N ) BOT: DO A

= a/os/(él ~ 0,97 1D2h Q)38 (I Wiy + J, 2, — 20,A,)D° 7 D°(J,Av)

It = —a/(61 - Jgg_%ﬁghag)jBH%(Jg\iVN +J,Zy — 2J,A,)DO7- N DO(J,A,)

S

The only change to I?"Z; is that the differential operator 61 may act on the Weight g% . This term is handled using

(13.18), which gives D,J = Q1, and the upper bound in (13.38c). The changes to bia 7. and Iz A” = are the emergence of the
Q1 and respectively Q; terms. Note however that these terms are only nonzero in P +( s) (see (13.38c¢) and (13.38d)),
and we have that

J<J,<J,,
due to Remark 13.4, and to (5.10)—(5.14). Using the bootstraps (13.37), the bounds in Lemma 13.7 for the remapping
coefficients, and the bounds for the geometry from Proposition 13.9, we deduce

A, A, A,
el + el + 175 < (%)mK<B6>2,
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which precisely matches (12.41). The analysis of 17 requires the decomposition in (12.42) (with J replaced by J).
Among the eight terms appearing in the decomposmon (12.42), the last five terms require no modifications beyond
those already given by Lemmas 13.11 and 13.12, so that the bounds (12 43)—(12.45) remain the same. To see this,

consider for instance a term which involves the D; operator, such as I7 'w,vi- FOr this term we form an exact derivative

and integrate-by-parts with respect to D, using (13.25b) to obtain that

S
- 20675//‘7’*3%(‘]-‘7Wf‘/ +J,Zy — 2J,A;)*DO7-N J,D1DOT - N
0
S ~ o o o o . n ~ ~
==z /()/(D1 — Q) (jﬁH%(JgWN 2~ 2JgA7—)2NlNJ)D6TiD6Tj

e / Qud (LW + 2, — 2J,A,)%|D°

From (12.45), (13.37), (13.43), and Lemma 13.7, we see that the above term is bounded by (- )2/3 K2(Bg)?, consistent

with (12.45). For the second term in the decomposition (12.42), namely I? the only downstream modification

a, 112

stems from the term 12 7o iis» 0 Which (Q0s + V3) acts on g3 instead of 7 2; this term satisfies however the same

bound (up to a universal constant) so that (12.47) also remains the same. This leads to
|I7Aa Z’L‘ + |I7All ZZ’L| + |I7A(l Z’U| + |I7A(L U| + |I7A(l 7Jl| + |I7Aa ’U’LZ| + ‘I7Aa ’L)ZZ’L‘ < ( )2ﬁK<BG> °

The last term to be considered in the decomposition (12.42) is Iégj. We use D; to decompose this term into four

pieces, as in (12.48). The first of these terms precisely cancels the sum Igv” + 1. 52" which together with the bound
(12.50) for the remaining three terms implies

W, 7, An,
g™ + 15" + 177 | <

e(75)?K(Bo)?.
Adding the estimates in the above three displayed inequalities leads to a bound for 7, g\/" + 1. 3” + I 7A" which precisely

matches (12.51).

Next, we consider the combination IXDV” + 1 Z" + 1 é\". A close inspection of the analysis in Section 12.7.4, shows
that the all-important cancellation (12.60) remains the same, and that upon appealing to the updated Lemmas 13.11

and 13.12 all other bounds remain }lnchanged, leading to a bound for |1 Xv” +1 f" +1 SA“ | which exactly matches (12.61).

Next, we consider the term I f", which was clearly the most challenging one to handle in Section 12.7. The
estimates (12.62) and (12.64) remain unchanged, so that we only need to estimate the term I f,Z, , Which was defined
in (12.63a). Exactly as in (12.65), we decompose I ig,i into nine parts. Among these nine parts, six of them are
bqunded in precisely the same way, via (12.66) and (12.67). It thus remains to carefully analyze the Ji&”, Jé\", and

Jg‘ ™ terms appearing in the decomposition (12.65), which we recall here for convenience

i = / / =3 (L, Wy — J,2,)(Qd, + V,)D%J, DO(J,W.,.) , (13.71a)
0
JSA” = _%//%3% (Jy\iv/\/')66‘]g 6G(JQ\IQ\//\/')? (1371b)
0
T == [ et I BE, B )| (1371c)

For Jf‘ ", we first commute Q05 + V 0 past D6 acting on J, using (13.17). The commutator is lower order, while the
principal term gives via (13.42a) a contribution of the type (1£2D°(.J, W,) + + 152D6(J, Z,)). The next trick is to

rewrite J,3, = L(J,Wy) = $(J,Zy) = 11 (Q0s + Va)J, —
as in (12.68), and appeal to (12.692a)—(12.69b) to estimate

° s ~ A
gz [ [ e Q0.+ V02,5 (W)
0 Y
=:Gpad

— C(:£)*(Bg)?

H—Q(J Z,.). This allows us to rewrite Jin exactly

~74D6J2N

7 Vil DS (J, W) (-,

izl 55

HL2 (13.72)
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The last two terms on the right side of the above display are standard, while the first one, containing the “anti-damping
term” Gp,q, needs to be combined with the “damping term” containing Ggooq, Which is already present in (13.67).
Recalling the definition of Ggooq from (13.63), and using the definition of Gpaq given above, we next claim that

Ggood + Gbad = _%(Qas + Vag)(H%J ) + 3% (Qa + V(f?g)J
= 5(#(Q0, + V2)J, - J,(Q0, + V)it ) = Seat s, (13.73)

which serves as the replacement of the lower bound (12.69d) in our downstream analysis. To see that (13.73) holds,
we consider separately the regions P? (¢) and Pi(s). For (z,s) € P* (¢), by construction (see (13.6)) we have that

Jd = J, and so we can apply (6.65), to obtain the lower bound 1123 J 3 J, = lng? 3% J,, which is identical to (12.69d),

and is consistent with (13.73). For (z,s) € P’i (€), we cannot directly appeal to (6.65), and instead need to revisit
the proof of this bound, which we detail as follows. Using the bounds 0 < g < J,, the identities (13.12), (13.18),
(13.42a), the bootstrap assumptions (13.37a), and the estimates (6.17a) and (13.38a), we deduce

504 (8(Q0s +Vn)J, — $7,(Qds + V2)3)
= 30 (BRI W + 1520, 20) + 3,9)
1 (<02 +0) +44,(8-0))
> %3%( T (42 4 ) 4 2, (M) C’*)) =1p (ng”;ot‘*) - éJg) > gh g Lt (13.74)

v

9 16e

The above bound is identical to (6.65), and concludes the proof of (13.73). Indeed, combining (13.72)—(13.74), we
arrive at

° S ~ o
I 2 [ [ st (G200, ~ Gunod) B UM = 222 B — 22 [ LB, 2,0 [ 08
(13.75)

The above bound is identical to the one obtained earlier in Section 12.7. 5 We return now to the terms J; An and
Jé" give~n in (13.71). For J5" the trick is to again rewrite BG(JQVVN) = 1+a (QOs + V@g)DﬁJ + 1+a (DGVDQJ +
(DS, V,DyJ, ))) I +g DS (J,Z), leading to a decomposition identical (except for changing 7 to J) to (12.70), because

the operators 0 or D1 are not involved here. Since in the downstream development we still have (Qds+V 92)d = 78,
and since Q satisfies the bound (13.§8b) which is identical to (6.38g), the bounds (12.71) for the nine terms appearing
in the decomposition (12.70) of J3 remain as is. This means that we may use precisely the same Cauchy Young

inequality for the J6 ™ term as in (12.72). Together with (13.75), we may summarize the lower bound for n L"as

I4An > ,C’v(i)zﬁ@ )2 l+a (1 4 182 )(%)zﬁcgata

(14a)t
~ o Q ~
//% 12423 J, Ggood)’DG(JgWN)‘z (12+25)1+a)/| g1 JZN HL2
20(1+a)?2Hngﬁ;L 56J (- S)Hig B 202+5002+(11T&2)d0 e / HQEQ/;1 D6 HLi 3

+ ke [ I BOL Sy + (8- Cp //wwm%r

2| LR B0 ), )2, — 2o / |2 BO W)

S

|]L2 (13.76)

a bound which is identical to the 9ne obtained earlier in (12.73).
Next, we consider the term IZ" - defined in (13 61g). Previously, this term was handled in Section 12.7.6. In this
term we need to appeal to the new formula for D* (see (13.25b)). Accordmgly, the decomposmon (12.74) is such that

Iz 7o Temains identical, I ; remains the same except that D; may act on 2, while IZ” 7 and I 7.q become

127 = the old IZ7 from (12.74) — 2a //élgﬁg]% J(Ay +2,) DTN DS(J,2,),
0
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127 = the old T2 from (12.74) + 20 / Qupde J,(Ay +2,) D7 N D8(J,Z,)

S

By appealing to (13.18), (13.37), (13.38c¢), (13.38d), and (13.43), we see that the bound (12.75) for |I%Z”g + 1722 + I%Z)’Tgl|

remains the same. It thus remains to consider the term /. 723, which is decomposed in eight parts according to (12.76a).
By once again employing the updated inequalities (13.68) and (13.70), using exact-derivative structure, the updated
adjoint identities (13.25), the updated coefficient (13.38) and geometry (13.43) bounds, we find that following step by

step the procedure outlined in (12.77)~(12.80), we arrive at the bound |I%" el S Ke(X )Qﬁ (Bg)?. Putting this together

with the bound for |1 72 + I% 7’; +1 72 | discussed earlier, we arrive at the same conclusion as (12.81), namely that

|I7” S Ke(2)(Be)? . (13.77)

The only terms with over-differentiated geometry which remains to be discussed are [, 82" (see (13.61h)), and I, g\
(see (13.62¢)). A close inspection of the analysis of these terms Sections 12.7.8 and 12.7.7, respectively, reveals that
the bounds (12.83) and (12.82) remain unchanged.

13.12.6. Downstream modifications to the forcing and commutator terms. A close inspection of the analysis of the
forcing, remainder, and commutator terms from Section 12.8, leading to the bounds for the integrals Igv no I 1261’ and

I fo" ), shows that no modification is required, and that the bounds (12.84a), (12.84b), and (12.84c¢) hold as is (with the
weight J being replaced by J).

13.12.7. Conclusion of the downstream normal component estimates. We collect the bounds for the integrals that
required downstream modifications. Combining (13.58), with the downstream modified bound (13.67), with the un-
modified bounds discussed in Sections 13.12.4, 13.12.5, 13.12.6, exactly as in (12.86) we conclude that

0> (& — Ce) | 222 D6<JWN,JZN,JAN Lo (94 220 (2)20CE,,, — O(4) K2 (Bg)?

Sze

e (s o)t 1A B b 20 L)

(e ga (164 25%)(1 + /\ 5,2y, T A (8|70
7(%%5)+33+2 2507 + 39° + 500° ) L /||3“ U 561, 1, 2,0, T, A (- )¢
ey SO, ) - 2 / 18885,
l,-v
+ ora) 53/ 1900, (8|7 a8 + (8 — C(B //Z 3:|D%J, ", (13.78)

where C' = C' (0, Ko, Cdata) is independent of 3 and . The bound is nearly identical to (12.86). Besides a factor of
12(1 + «) which has now become 17(1 + «), the only other modification comes in the coefficient for the damping
term on 56(Jg Zy, JQAN) (see the third line on the right side of (13.78)): instead of (8 — %), the modified bound
contains « (8 — %) — 40akg. These modifications have as a consequence the following choice for the parameter :

Bamo = 40 + 202 (16 4 252) — 6T (13.79)

When compared to (12.87), we notice the linear factor 40x¢ in the definition of 5 = S, ,. With the choice (13.79),
we may now return to (13.78), choose ¢ to be sufficiently small in terms of «, kg, Cqata, SO that in analogy with (12.88)
we deduce

L2 20(1+0¢) &2 [l 5, io DG »S HL2
H || QT

14_;'8_:/ | gz(;]'j D6 JWN,JZN,JAN HLQdS + 40 1+O¢ 63/ ||§f§a :0 D6J S/)HiidS/

(2 + (1132) )(HO )2/3a rQ Cdata + é(%)26a,mo KQ(B@-)

+ C(cmo>/ | 34(JQ D6(JWN,JZN,JAN) ||L2 / | Q34 DG S/)Hi?ds/’ (13.80)
0 x

€ sBa,rg s Ba, kg

53||%D6(J W, J,Z,, J,AL)(
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where C is a universal constant (in particular, independent of «, K¢, Cgata), and C = Co'(oz7 K0, Cdata) 18 as usual.
Comparing to (12.88), the main modification (besides 8, — Bq.x,) arising in (13.80) is the dependence on (akg) of
the Gronwall constant appearing in the third term on the right side of (13.80) (in (12.88) this constant was universal).
Nonetheless, we may apply Gronwall’s inequality for s € [0, ] to (13.80) and deduce that there exists an explicitly
computable constant

Caro > 0 (13.81)

which only depends on « and kg, such that after multiplying by Hffa*“o and using that 2 < ¥ < ko, and using that
K = K(a, ko) was already fixed by the tangential energy estimates (see (13.55)), as in (12.90) we obtain

sup Ha JEDS (I Wy, J,Z, J,A (-
s€[0,e]

+ s LT, + & [ 700 s
s€ e 0 ®

9|75 ds

HLZ /Hg JEDS(JWoy, J, 2., JAL) (-

< le, ( 2+ Ce(Bg) ) . (13.82)

Dropping the energy and damping terms for DS J, (since these were bounded already in Proposition 13.9), and recalling
the definitions of 562 (s)and D% (s) (in (13.35)—(13.36)), as in (12.91)-(12.93) we deduce that

€ SFP]&S N( )+ ﬁgw(*g) < Cako (Cgata + éE<BG>2) < 284,k Caata < %Bg ) (13.83)
s€[0,e
once ¢ is taken sufficiently small in terms of «, kg, and Cya.ta, and Bg is chosen sufficiently large in terms of «, kg, and
Cyata to ensure that Bg > max{1, Cyata } (see (13.54)) and
1
Be > 4€4, 1 Cdata - (13.84)
The choice (13.84) is the downstream-modified version of (12.92), and this closes the proof of “normal part” of the

remaining bootstrap (13.37b) for & and Dg.

13.13. Closing the bootstrap for the sixth order energy. Combining (13.83) with (13.56) we arrive at the same
inequality as obtained in (12.94)

e sup E(s) + De(e) < LBg

s€[0,¢]

which closes the bootstrap (13.37b) (cf. (5.37r)) in the downstream coordinate system (13.8).

) (13.85)

N[—=

14. UPSTREAM MAXIMAL DEVELOPMENT

14.1. The slow acoustic characteristic surface. Upstream of the pre-shock, the maximal development of the Cauchy
data is limited by the unique slow acoustic characteristic surface passing through the co-dimension 2 surface of pre-
shocks Z*. With respect to our fast-characteristic-geometry, the slow acoustic characteristic flow map ¥ = (Y1, Y3)
evolves according to

Y1z, t) = —2a(ST (N2, 1),8)), 9 Ya(a,t) = (V + 2059 2hs )(V(z,t), ). (14.1)

As can be seen from equations (3.25¢) and (3.28b), the vector (—2042Jg_1 V4 2a§]g_%h,2 ) is the slow acoustic
transport velocity associated to the wave speed A1 in (1.3), but written in the frame of the fast acoustic geometry.
Recalling Definition 6.6, the set of pre-shocks is given by

= = {(:E’l(xg),xg,t*(xg)): T9 € T}.

We shall at first be concerned with the specific slow characteristic surface that passes though the pre-shock Z*. This
surface consists of the union of trajectories of Y with starting position along =Z*. The variable ¢ in (14.1) denotes the
flow time of the dynamical system, with initial time ¢ = t*(z3) corresponding to the time of intersection with Z*. As
such, the image of the pre-shock =* by the flow of the slow acoustic characteristic is given by the green surface in
Figure 15, namely Y'(Z*,¢) for t*(x2) < t < tg,. Here, as in the previous sections, we use the notation

tin 1= 71_%&5, (14.2a)
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FIGURE 15. The bounding box represents the zoomed-in region —% < a < 7e, |ze] < %, and
t € [~tfin, tsin]. In orange we have plotted the level set {7 (z2,t) = min,, J,(z1,22,t) = 0}, in
magenta the surface {1 = #1(x2)}, in black the set of pre-shocks Z*, and in green we have rep-
resented the “upstream part” of the slow acoustic characteristic surface passing through =*, namely
the set {(Y(z,t),t): Yi(x,t) < &1(Va(z,t)),t < thn}. We emphasize that the distinguished slow
characteristic surface passing through =* lies “above” the orange surface in the upstream side, so
that the spacetime of maximal development is indeed an extension of the spacetime {7 > 0}.

for the initial time, and
thn 1= 1_'_%5 . % , (14.2b)
for the final time.

14.2. Parameterizing the slow acoustic characteristic through the pre-shock as a graph. It is important in our
analysis to parameterize this distinguished slow-acoustic characteristic surface passing through =* as the graph z; =
O(x2,t) over the (x4, t)-plane. The dynamics of §(z2, t) are determined from the dynamics of the flow map Y as

80 =(2YoY 100) N,
where the normal vector N to the surface (6(z2,t), z2) is given by N = (1, —6,5 ). As such, we compute that
810 = —2a(SJ; ol — (V 424359 2hys )0l 0,5 . (14.3)

The surface 21 = 0(x2,t) is a graph-type reparamaterization of the distinguished slow acoustic characteristic surface
passing through the pre-shock, and hence must verify the constraint

0($2, t* (.’EQ)) = .’%1(1’2) . (144)

The graph x1 = (x4, t) will play the role of the “right spatial boundary” for our spacetime.
The characteristic surface given by the graph 1 = 6(z2,t) can be alternatively reparameterized as the graph
t = O(x1,x2), where for each x5 fixed, © is the inverse of 6, i.e.

O(0(xa,t),x2) =t. (14.5)
By differentiating the identity (14.5) with J;, applying the chain-rule, and using that 1 = (2, t), we have that
019(x1,22)010(x2,t) = 1.
Substituting the dynamics (14.3) into this relation, we obtain that
(20(297) (O@2, 1), 22,8) + (V + 20T~ 50a1) (0(w2,1), 22, 1)0:0(w2,1) )1 O (w1, 22) = =1 (14.6)
Next, we differentiating the identity (14.5) with 05 and again use that z1 = 6(x9, t); this yields the identity
010(x1,x2)020(x2,s) = —020(x1,x2) . (14.7)
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Substitution of (14.7) into (14.6) together with the fact that t = ©(x1, 22) then shows that
J JV -1
10(z) = — 5% (21, 22,0(2)) + (355 + g~ 202hJ,) (2,0(2))9,0(x) . (14.8)
From (14.4), the reparameterization © verifies the boundary condition
@(51(1‘2), 332) = t*(l‘g) .

There is an important observation to make about the “evolution equation” (14.8) for the slow acoustic characteristic
surface © passing through the pre-shock. Note that with the inversion of 6, the parameterization © defines the evolution
of the slow acoustic characteristic surface via .J, rather than Jg_1 (as was the case in (14.3)). Avoiding the degeneracy
of Jg_1 at the pre-shock maintains our smooth analysis. This distinguished slow characteristic surface denotes the
future temporal boundary of the spacetime for the upstream maximal development of the Cauchy data. For technical
reasons, it is convenient to use an arbitrarily small perturbation of this characteristic surface, and we shall explain this
approximation in what follows.

14.3. A foliation of spacetime by a family of approximate 1-characteristic surfaces. Fix an arbitrary
§€(0,3). (14.9)

We define a family of approximate 1-characteristic surfaces ©° (1, 22, t) (they would not be “approximate” if & = 0)
as follows. For tj, <t < t*(x2), we define ©9% as the solution of the Cauchy problem

010% (2, 1) = — 0% (1 @8 (2, 1))

2a%
X (1 — (V4 22559 4o ) (2,08 (2,1)) (020° (1) — %(mg,t)ateé(x,t))) ., (14.10a)
0% (&1 (29), T, t) =, foreach t € [tin, t"(x2)], (14.10b)
where B
B(xa,t) = J,(21(x2), z2,1) . (14.10¢)
The solution ©% of (14.10) is defined (see Section 14.5 below) on the domain
Qus,t = {(2,t): 22 € T tin <t < t"(w2), X7 (w2,1) < a1 < X (22,8)} (14.11a)
where the “stopping-times” X and X are defined by
X7 = X7 (22,t) = max {z; € T: ©%(z1,22,1) > tin} , (14.11b)
X7 = X7 (22,t) = min {21 € T: ©%(21,22,t) < thin} - (14.11¢c)

These stopping times are well defined by continuity of the function ©% and the compactness of the constraints. Note
that X7 (w2,t) < #1(w2) < X[ (22,1) in light of (14.10b).

Remark 14.1 (Spatial support). We note that due to the bootstrap (5.37a) present in (14.132a), throughout this
section are only interested in points x € Xg, = {z € T?: dist(z, Xin) < Couppe }, Which in view of (4.7) and (6.5),
amounts to

|I1 —i‘1($2)| < 2(137T+650é(1+(1)l€0)€. (1412)
This is because for x & Xgy, by (4.7) we have J, = 1, ¥ = %no, and (\iV, ZA, DJ,, h,2) = 0, and so there is no
analysis required here (all functions are in fact constants there). Throughout this section we shall implicitly assume
that (14.12) holds.

The distinguished surface passing through the pre-shock (which corresponds to t = t*(x3)) is parametrized as
{(l‘l, 1‘2,@(.’131, .132))}, where
@(Il,l‘g) = @E(xl,xg,t*(xg)). (14.13)
That is, for this distinguished surface, the explicit dependence on time is dropped. Here 25 € T and X (w2, t*(22)) <
I S ff(l’g, t* (1’2))
Throughout this section we work on the §-adjusted upstream spacetime

HO = {(x,1) € Xiin X [tin, tin): tin <t < O3 (2)}. (14.14)

The surface {t = min{@(x), tfin } } defines the “top” temporal boundary of H?®. For times tj, < t < t*(xz2), we have
a well-defined foliation (see Section 14.5 for details) of the spacetime subset of #° given by

7:13_ = {(x,t) € H®: ©%(z,tin) <t < OF(x)} = {(x,0°%(x,1)): (,t) € Qus.4}, (14.15a)
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where Qus,+ is defined in (14.11a). We define the complimentary set by
He = {(z,t) € HE: 4, <t < @E(x,tin)}. (14.15b)

so that ) ) )
H® =HE UO® (z,ti) UHS . (14.15¢)
The decomposition (14.15c¢) is represented in Figure 16 below.

FIGURE 16. We revisit Figure 15, with the aim of describing the spacetimes 7—016, HE , and 7—[6_
To retain a point of comparison with Figure 15, we have kept in magenta we the surface {z; =
Z1(x2),t < t*(x2)}, and have represented in black the set of pre-shocks =Z*. In green we have
represented the portion of the surface {t = ©°%(z) = ©%(x, t*(22))} which lies below the final times
slice {t = tfin }. In light-blue we have represented the portion of the final time slice which lies to the
left of the green surface, i.e. the set {(x, tfin): @(33) > tfin }. In olive-green we have represented the
portion of the surface {t = ©®(z, ti,)} which lies below the final times slice {t = tgp}. The “top”
temporal boundary of the spacetime H3, as defined in (14.14), is thus the union of the green surface
{t = ©%(x)} and of the light-blue lid. The spacetime 2, as defined in (14.15a), is the region to

the left of the green surface {t = ©%(x)}, to the right of the olive-green surface {t = ©%(z,t;,)},
and below the lid at {t = tg,}. Finally, the spacetime H°, as defined by (14.15b) is the region to

the left of the olive-green surface {t = ©%(x,t;,)}, and below the lid at {t = tg, }.

14.4. Bounds for derivatives of ¢*(z,), #1(72), and B. Before analyzing the properties of the solution ©% of
(14.10), we need to estimate various derivatives of the functions ¢*(z3) and 21 (z2) appearing in the boundary condi-
tion (14.10b), and of the function BB defined in (14.10c¢).

We recall from Definition 6.6 that J,(i1(x2), 72,t*(z2)) = 0. By employing the chain-rule, the fact that also

Jyo1 (T1(x2), z2, t*(z2)) = 0, and the identity (5.8), we deduce that
* _ Jg1(Z1(®2),x2,t" (22)) 0281 (22) +Jg 2 (21 (22),22,t" (22)) _ Jg,2(E1(22),22,t" (22))
Oat"(z2) = 80Ty (21 (w2), 2,1 (22)) = 0y (z2).an 5 (22)) (14.16)
While |J,,2 | = |D2J,| < 4(1 + «) follows from the bootstrap assumptions (see (5.371)), the denominator appearing

in the above identity was previously estimated (6.43) (specialized at ¢ = ¢*(x3) so that 1(xz2) = z7 (22, t*(22))),

resulting in w < =0, (d1(2), w2, 1" (22)) < (1+a)(1+4001 4 (45)€ (tneats] )- From these bounds and (14.16)

we deduce that

|9at™ (w2)| < 10e. (14.17)
Similarly, from (6.49) evaluated at t = t*(z3), we have that
Do (22) = —(gigsz)(é’;l(xg),xg,t*(xg))7 (14.18)
and using (6.24), (6.54), and the fact that —Ce< t*(z2) < tfin, we find that
’625)‘1(1‘2)‘ < %E(|D%D2W0(§?1(£2),$2)| + EéK<BG>)S 25\|D3w0||Loo < 25Cdata . (1419)

Next, we turn to the second order derivatives of ¢* (x5 ) and 4 (z2). Differentiating (14.16) once more, we find that

O2%101+02+02t" ;) J, Jyy2(02d101+02+02t*04)04 J, o
622t*(.’172) _ (( 221014024027 01)Jg,2 _ Jg,2(0281 1+£+22 )0t 9)(x1(:v2),a:2,t*(a:2)).
at-]g (at‘]y)
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Using the assumptions on wy given in Section 4.2 together with the bounds (6.24), (7.17), (14.17), and (14.19), in a
similar manner to the proof of Lemma 6.3 we deduce

|95t (z2)| S e. (14.20)
Analogously, differentiating (14.18), we obtain that

853‘31(552) - _ ( (82i181+3§:i2t*5t)Jg712 - Jg»12(624%15€L}:i21-;'2¢92t*3t)tfg711 ) (.’2‘1(1‘2), Lo, t*(xz)) )
With the assumptions on wq given in Section 4.2, the bounds (6.24), (7.17), (14.17), and (14.19), we find that
|0321 (22)] < e(Be)- (14.21)

Lastly, we turn to the third order derivatives of ¢*(x2) and Z; (x2). Differentiating (14.16) two times with respect
to x9, we have that

(9325*(1‘2) _ ((8210181+82+62t*8t)2lq,2 _ 2(02%101+02+02t" 0¢) Jg,2(D28101+02+02t" Bt)afJ
5 =

0, (CAE
Jg,2 (92101 +02+92t"3;)20: J, Jg,2((928101 +02+02t8)0: T\ /. "
20t 1(6t2] )22 & + 2((Ba 1(81:7257)32 ) ) )($1($2) Zo,t (CUQ))
With the assumptions on wq given in Section 4.2, the bounds (6.24), (7.17), and (14.19)—(14.21) yield
|05t* (x2)| < e(B) - (14.22)
Finally, differentiating (14.18) two times with respect to x5, we arrive at
s D101 +02+021%0:)2 Jy, 2(028101 402402t 04) Jg,12 (92191 +82+92t* 8y) Jy,
ag’xl(xQ) — _(( 24101 %]g’li ) 12 ( 24101 2 2 )(ngl:zl(l)’.; 101 2 2 ) grll

(Jg11)? (Jg11)3
The noticeable difference we encounter in the above identity is the appearance of third order derivatives of J,,; along
the pre-shock. Pointwise bounds for D*.J, are not covered by the L bound in (7.17). Instead, we note that the
bootstrap (14.132b) postulates J, € HS (7—[5) and thus the Sobolev embedding in 2 + 1 (space+time) dimensions
gives that J, € LOO(HB). The Sobolev embedding is however not necessarily sharp in terms of the scaling with
respect to €. Indeed, the classical Gagliardo-Nirenberg ineqtiality for a fgnction f which is H? smooth on a space-
time domain Q C Xgn X [tin, thin] C R?: s || f| oo () S ||f\|§2(m||V2f||Eg(Q) +1Q 2 | 1l 22 (c2)» where the implicit
constant is universal. In terms of the differential operators D, this implies via the Poincaré inequality (B.2a) that
Ifllre, S <e s ID? L2 ,- App]ying this bound with f = D*.J,, and appealing to the D®.J, bootstrap (14.132b), we

deduce ||D*J, ||z~ < Bye~z. Since this term is O (e~ 2) instead of O(1), the bound for A1 (z2) loses a factor of

x,t N

_ Jg,12(022101+02+02t" 9¢)2Jy,11 + 20,12 (828101 482402t 8¢) Jy,11)*2 )(lo,l(xQ) $2,t*($2)).

e2, resulting in
|0321 (22)| < 22 (Bs) . (14.23)

14.5. Solvability of (14.10) and properties of ©° and its derivatives. Solving for ©% amounts to a standard appli-
cation of the method of characteristics. Letting

M(x,t) = — %(xu 293075 hy ) (x,t) (14.24a)
N(x, 1) 1= L2 ED (V4 205673y ) (3,1) 25 (32, 1), (14.24b)
3(x,t) = —% , (14.24¢)

we may write (14.10a) as

010°%(x,t) + M(z, 0% (x,1))020° (x, ) + N(z, ©%(x,1))0,0% (x,t) = F(x,0%(x,1)). (14.25)
This is a semilinear first order PDE with smooth coefficients. The regularity of 91, 01, and § may be seen as follows.
First, in analogy to the bound (14.17) we deduce from (6.24), (6.43), (6.53), and (14.19) that the term B defined
in (14.10c) satisfies

8.8 [Jg:1 (%1 (22),22,t)[|0221 (x2) | +]Jg,2(£1 (w2),%2,t)|
Gl =00y (o1 (22),w2,1) < (C + 401+ o) gty 2

kS <lle, (14260

for all ¢ € [tin, t*(22)). Using the above estimate and the pointwise bootstrap assumptions (5.37k)—(5.37q) present in
(14.132a), we deduce that

3z, 0)] < 2=, (2,1), [ Mz, 0)] < (16 4+ 22 )e ), (z,8),  |N(x,1)] < (176 + Z)J, (,),  (14.26b)



148 STEVE SHKOLLER AND VLAD VICOL

which become uniform bounds since J,(x,t) < g. In order to bound derivatives of 2,91, and §, we use that
from (6.24), (6.43), (6.53), (14.19), and (14.21) we have
(D¢, D2) %5 (w2, 1)| < (Bg) (14.26¢)

where we recall that (D, D2) = (€9;, 32). Combining this estimate with the pointwise bootstrap assumptions (5.37k)—
(5.37q) present in (14.132a), we deduce

(z,t)| S1, |DM(z,t)| Se, |DN(z,t)| < e*(Bg), (14.26d)
where we recall that D = (0,20, 02). Lastly, by appealing to (6.24), (14.19), (14.21), (14.23), and the estimate,
|51 (21 (22), 22, 8)| < |af(22,t) — &1 (22)] - | ;511 ||L;§°t < eK(Bg), similarly to (14.26a) and (14.26¢) we deduce

| (D}, DD, D3) 35 (22, 1)] < e(Bs) - (14.26¢)

Combined with the bootstraps (14.132a)—(14.132b), and the anisotropic Sobolev estimate in (B.2d), similarly to
(14.26d) we obtain
ID*F(z,t)| S (Bs), |D*M(x,t)| Se(Bg), [D*N(x,t)| < *(Bg). (14.26f)

With the bounds in (14.26), we turn to solving (14.25). Treating x; as time and (z2, t) as parameters, we introduce
the flows ((o(w1,22,t), (21, 22, 1)) and the function ©° o ((z1, 2, 1) := O%(x1, Ca(w1, T2, 1), G (21, 22,1)). The
flows ((2, (;) are the solutions of the characteristic ODEs

N Ca(z1, 2, 1) = M(21, G201, 22, 1), 0% 0 (71, 22, 1)), Co(21(22), 22, 1) = 29, (14.27a)
O1Gi (21, 2, t) = N(z1, Co(71, 32, 8), O% 0((21, 22, 1)), Ct(1(z2), 22,1) =1, (14.277b)
while (14.25) and (14.10b) may be rewritten as
N (0%l (21,22, 1)) = F (21, G221, 72, 1), 0% 0 (71, 72, 1)) , (14.27¢)
O%0( (&1 (x2), 2, t) = O°(iy (22), T2, t) = t. (14.27d)

Note that the boundary condition at {Z; (x2), 2, t} is non-characteristic. Moreover, the fields (§, 901, 1) defined in
(14.24) are uniformly C' in both space and time in our spacetime (see (14.26)). This ensures unique and smooth
solvability of the system (14.27): first by solving the two-dimensional system of coupled ODEs for (2(x1, z2,t) and
©%(x1, Co(T1, T2, 1), ¢ (71, T2, )) Obtained from (14.27a) and (14.27¢)—~(14.27d), with (2, ) as parameters, and then
afterwards integrating the ODE for ¢ in (14.27b). The global solvability of the characteristic ODEs in the interval
x1 € [X] (w2,t), X (w2,1)] is a consequence of the Cj ., regularity of (901, 9) and the fact that the boundary data
at x;1 = &1 (x2) is smooth and non-characteristic. Moreover, using (14.26b) and (14.26d), we have that the map
(z2,t) — (Ca(+, @2, t), (4 (+, 22, t)) is invertible and the bounds

Go(x1, @2, t) — 22| < Ce®,  |Gelwr, w2, t) — t] < CEP, (14.28)
hold for each z; € [X] (x2,1), X (x2,t)]. Next, we turn to bounding the derivatives of ©°. We establish the following

Lemma 14.2 (Bounds for the derivatives of ©°). Let kg be sufficiently large with respect to o to ensure that (14.38)
holds. Assume that the bootstrap assumptions (14.132) hold in H® and that € is taken sufficiently small with respect
10 o, ko, and Cyara. Then, for all (z,t) € Qus 4, the spacetime defined in (14.11a), we have

~ @O < 9,0 (a,1) < —EO D) g (14.292)
0,0°%(x,1)| <5-10°(1 + a)’e, (14.29b)
10,0°%(z,t) — 1| <3-1077, (14.29¢)
|0220° (2, 1)| < b2ze<86>, (14.29d)
|02:0° (2,t)| < bas, (14.29)
|010° (z,t)| < bss. (14.29f)

The constants bas, bog, bss appearing in (14.29d)—(14.29f) only depend on «, k¢, and Cyata, and are defined in (14.57),
(14.53), and (14.48).
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Before giving the proof of Lemma 14.2, we record a few immediate consequences. First, we note that from (14.29a),
(14.38), and (5.37k) we may deduce

for all (z,t) € SDEUS7+. Second, we note that by differentiating (14.25) with respect to z5 or ¢, and appealing to the
bootstrap inequalities in (14.132a) bounds in (14.26b), (14.26d), and also to identity (14.33) and bound (14.38) below,
we deduce

(92%)00° ()| + 0:0° - (0,5)0O° (w,t)| + C=(Bg)
82(1t) | 510 (Fa)” | BBy < Ut (14.30b)

|010° (., 1)] < [0,0° - (0:)0©° (x, )| + C=(By)
<(143-107%)0F2 4 Ce(Bg) < 1= (14.30c)

agr

‘812@5(1‘, t)‘

IN

IN

By using these estimates, we may also differentiate (14.25) with respect to =, and similarly deduce
0110%(2,1)| < |(15)00% (2, t)| + [0:0° - (8,F)0O° (,t)| + Ce(Bg)
< 20 4 S 4 Ce(Bg) <

aeRy e(akg)?

T (14.30d)

for all (z,t) € Qus 4.

Proof of Lemma 14.2. First, we prove (14.29a). Recall that 9;0° is computed from (14.25). By appealing to the
bounds in (14.26b), along with the bounds (14.29b)—(14.29c), we obtain

|010° (2, ) + U8 (2, 0% (2, 1)) | < CeJ, (2, 0% (w,1)).

Combining this bound with the X bootstrap in (5.37p) and taking ¢ to be sufficiently small, proves (14.29a).

Next, we prove (14.29b)—(14.29c). We establish these bounds via a bootstrap/continuity argument with respect to
X1, starting at 551(1‘2). At T = il(Ig) we have we have |82@6(i1(1‘2), o, t)| = |Jg,1 (:%1(932)7 Zo, t)‘ . |82i’1(f£2)‘ S
Ce2K(Bg) in light of (14.19), and also 8,0 (i1 (x3), 22, t) = 1. Thus, at #; = & (), the bounds (14.29b)—(14.29¢)
hold with a strict inequality. We then continue to propagate these bounds for x; away from Z;(z3), and prove that
they still hold with a strict inequality, yielding the global bound in Qus,+~

We differentiate (14.25) with respect to the ¢ and x2, and deduce that

5 5
(01 + MoO®0; + NoO°0,) (8t@ ) — (01%)00° (at@ )

20° 0,0°
o —(8759)?)0@582@5@@5 - (Otm)o®5(3t@5)2
o —(8t9ﬁ)o@5(82@5)2 - (829ﬁ)o@58265 - (8,591)0@582@58,5@5 - (82m)o@88t@8 + (623)098 '
(14.31)

Time differentiating (14.24¢), and by appealing to (3.15a), (3.19b), we obtain (3.20a),
05 = 7m81(10g )

2c

~ 01— a) 2y —adAr — 2 by (Wy —2,) =V, -V, 5 718,), (14.32)

so that the bootstrap assumptions imply
10,3 + =80 g (1og 3)| < €. (14.33)
Using the characteristic flow ({2, ¢;) introduced in (14.27), we additionally note the identity
(81(10g E)) (z1,Co(w1, x0,1),0%0( (21, 20, 1)) = O (log (21, (o1, T2, 1), O% 0 (21, 22, t)))
— (02(log 2) - M) (w1, (o (a1, 2, 1), O 0( (w1, T2, 1))
— (9(log %) - §) (w1, Ca(1, w2,1), O 0( (w1, 22, 1)) . (14.34)

Thus, composing (14.31) with (3, (;), using the bound (14.33), identity (14.34), the bounds (14.26b), (14.26d), the
bootstrap assumptions relating to X in (5.37p)—(5.37q), and the bounds (14.29b)—(14.29¢) in a bootstrap fashion, we
deduce that

101 ((0,0°)0((21, 22, 1))
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+ U=5029, (log (a1, Col1, 02, 1), 00 0( (w1, 73, 1))) - (9:0°)o( (1, 22,1)| < €, (14.352)
01((020%)0C(21, w2, t))
+ (1_52)%81 (10g E(.’L‘l,gg(a?l,xz,ﬁ),@504-(3317.%‘2,75))) . (82@5)0C(l‘1,$2,t)’ S éE + ||823||L;<’>t . (]435b)

The estimates in (14.35) are set up so that we introduce the integrating factor

z1
I(x1,x2,t) = eXp(—%&Hﬂ)/q ( )81 (logZ(xll,(2(33'1,372,t),@sog(x/l,xg,t)))dx/l)
r1(xT2

(1-8)(14w)

« T T1,T Soc(w1,ma, i1 (x2),x2,t 2a
= 5)(1+ Lo g(z( 1’@(21(}12(7;)2’)(12,% : t)))> - (E(rl742(fl(,ma(,t)z)(a‘”’zogfvl-mvt))) - (1436)

= exp(

We note that since the pointwise bootstraps in (5.37) and 1dent1ty 3. l9b) imply |9;X| < 1, and thus via assump-
tion ((ii)) we arrive at |X(z,t) — §w0( x)| < |¥(z,t) — oo(x)| + 5&0 < Ce. Applying assumption ((ii)) once more,
together with the assumption that ko > 20, we deduce

(1 (22),22,8) B 2|jwo—ro| Lo +Ce 4 o5
’Z(IlaCQ(1‘1’12st)7@50<(ml,12,t)) 1| = ko—llwo—rollee—Ce — Ro—2 = Ko ° (14.37)

Using the fact that |(1 +7)? — 1| < 2|r|3 for 3 > 0 and |r| <
with respect to « to ensure

15 such that B|r| < {5, if we take £ sufficiently large

g > 21000%a) (14.38)
then we deduce from (14.36) and (14.37) that
|Z (w1, w2,1) — 1] < 20=D0E) <903 (14.39)

uniformly for 6 € (0,1).
With the bound (14.39), we return to (14.35a) and estimate for 9,0°. Integrating (14.35a) with respect to 21, and
using the boundary condition (9;0°)(%; (z2), z2,t) = 1, we deduce that
|(at®5)04(56171‘2,t) -1 I($17I2,t)’ /S |'T1 - 1%1(562” 5 g,
which gives via (14.39) and upon composing with (! that
|0:0° —1| <107° +Ce<2-107°,
upon taking € to be sufficiently small. This proves (14.29c).

Integrating (14.35b) with respect to x;, using that the boundary condition satisfies |(020%)(i1(22), 72,t)| <
Ce?K(Bg), appealing to the bound (14.39) for the integrating factor, and also using the estimate ||02F|| Le, <

22 Iz, 2 11,82 || Lee, < 30511:0“) (which is a consequence of (5.37k), (5.371), (5.37p), (5.37q)), we
deduce

|(920%)0C (w1, w2, 1)| < T(w1, 22, 1)](020°) (&1 (w2), 2, )] + (2L 1 Ce) - LHIO2 ) — iy (a)|
< C=2K(Bg) + 8te) |z1 — 21 (22)] .

aKQ

Appealing to the support assumption (14.12), to the fact that ¢ is taken sufficiently large with respect to « cf. (14.38),
taking ¢ to be sufficiently small, and composing with (~! we obtain

8,0°%| < 4050(1 + )%
| (1+a)

This proves (14.29b).

It thus remains to establish (14.29d)—(14.29f). As with (14.29b)—(14.29c), we prove these estimates via a bootstrap/-
continuity argument originating at 1 = & (x2). First, we need to obtain good bounds for the boundary conditions at
x1 = Z1(x2), upon differentiating (14.10b) twice, we deduce

D110% (&1 (22), w2,1) =0, (14.40a)
D20°% (i1 (29), 2, t) = —01,0° (1 (x2), o, t) - Doty (), (14.40b)
D220°% (21 (x2), 22, t) = —0110° (21 (w2), 2, 1) (od1 (x2))? — 20120° (21 (22), T2, 1) Doy (z2)

— 010%(21(x2), T2, 1) - ooy (2) . (14.40c)
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In order to compute 0;20°% and 9,1 0° at (i (x2), 2, 1), we differentiate (14.25) with respect to x5, t, and 21, appeal
to the bootstraps, the bounds (14.19), (14.21), (14.26b), (14.26d), (14.33), and the fact that 9;0° (i1 (z3), 72,t) = 1
and |020°% (1 (72), 72, t)| < Ce2K(Bg), to deduce

01108 (i1 (w2), 3, 1)| < Ce?|0120° (i1 (w2), w2, 1)| + 22;?) ; (14.40d)
|0110° (&1 (w2), w2, )| < Cel120° (1 (w2), @2, 8)| + "Hos + Sarsh (14.40¢)
10120° (i1 (w2), 2, 1)| < Ce[0220° (i1 (w2), o, 1)| + 2LLEL (14.40f)
Combining the bounds in (14.40) with (14.19), and (14.21), we obtain that
D1 0% (&1 (20), 2,1) =0, (14.41a)
102108 (i1 (2), 22, 1)] < 20Uy, (14.41b)
|0220° (31 (22), 22, 1)| < %}j“)c gata’€ + =2 Clisaroe (Bs) - (14.41c)

Here the constant 6(14,4“) only depends on the implicit constant from (14.21), and thus only depends on «, kg, and
Cdata- In particular, recalling that Cy,a < Bg, if we let the constant bos appearing in (14.29d) satisfy

720005,1{(?&) Cdata + 57— C(14 s10) < 1boo, (14.42)
and we let the constant byg appearing in (14.29) sat1sfy
M C o < Sbos, (14.43)

akKQ

we are ensured that (14.29d)—(14.29f) hold at z; = Z;(x2), with strict inequalities. Note that no constraint on bg
is imposed at this stage. We next show via a bootstrap / continuity argument that these bounds still hold, with strict
inequalities, globally in QU5,+.

We first establish (14.29f). Differentiating the first component of (14.31) with respect to the ¢ variable, we obtain

(01 + MoO°0s + MoO°9;) (04 O°) — (9,F)00°0,,0°
—(9,9M)00°9,0°0,,0° — (9,M)00°9,0%9,,0° + (9,,F)00°(9,0°)?
— (0,9M)00°(02:0°9,0° + 920°0;,0°) — (9:IM)00°0,0°(0,0°)?

— 2(0:M)00°9,0°0,,0° — (0;;M)00°(9,0°)3. (14.44)
By appealing to (14.26d), (14.26f), and (14.29) we deduce that the right side of (14.44) may be bounded as
IRHS (1448 | < (1+3-107°)2((8,4F)0©°| + C(Bs) (14.45)

where we have used that the constants bas, bog, bss only depend on «, x(, and Cqata, and thus may be absorbed into C.
In analogy to (14.33), we may use the bootstraps, (14.32) and (3.19b) to show that

EX (1— 5)(1+a o, zN 4O 5;((11 oc)athéN‘ <é

and therefore
05| < S0, (14.46)

ERQ
From the above estimate and (14.45), upon taking ¢ to be sufﬁmently small, we obtain

[RHS (1340 | < S0y (14.47)

ERQ

With the above estimate available, we compose (14.44) with the flow (Cg, (:), integrate in x; starting at 1 (z2), use
the boundary condition (14.41a), the integrating factor Z from (14.36) which satisfies (14.39), and the bound (14.12),
to deduce

[(04©°)oC(21, 22, 1)| < (w1, m2,t) - |(01O°) (&1 (22), 22, )| + |RHS(14.44y0 (21, 22, 1)] - % Sy — a1 (22)]

65(61,;:“) Csy %ﬂg:z -2(137 + 65a(1 + a)ko)e

66(140a) C - (267 + 130c(1 + a)ko) -

Ko

IN

I /\

Since the right side in the above bound depends only on «, kg, and Cyata, upon composing with the inverse flow of (,
and upon defining

UL €, (267 + 1300 (1 + a)rg) =t Lbss . (14.48)
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we have completed the proof of (14.29f).
Next, we establish (14.29¢). The proof is similar to (14.29f), except that the boundary condition at 1 = #(x2) is
now satisfying (14.41b) instead of (14.41a), and the evolution equation (14.44) is now replaced by

(01 + MoO°0y + No©°9,)(02:0°) — (94F)0O0° 0, O°
—((929)00° + (9;9M)00°9,0°) 02,0° — ((929M00° + (9;M)0O0°9,0°)0;,0°
+ ((0245)00° + (94F)00°0,0°)9,0°
— (0:M)00° (9220°0,0° + 920°05,0°) — ((92:M)0O° + (0;:M)0O0°0,0°)0,0°(9,0°)?
— 2(0;M)00°0,0°95,0° — ((02¢MN)0O° + (9uN)0O0°9,0°)(0,0°)?, (14.49)

which is obtained by differentiating the first component of (14.31) with respect to x2. By appealing to (14.26d),
(14.26f), (14.29) and (14.46) we deduce that the right side of (14.49) may be bounded as

[RHS(1.40)| < (1 +3-107%)(|(02¢5)00°| + 220 C; - 5.10%(1 + o)%¢) + Ce(Bg) . (14.50)

eko

On the other hand, by differentiating (14.32) with respect to x5 and appealing to the bootstrap assumptions, we may
show that

|0, F + (1=Dta) g, JJWN x| (= 51-a) g, JJZN| < e,

and therefore

0203 < L) 4 & < L) (14.51)
From the above estimate and (14.50), upon taking ¢ to be sufficiently small, we obtain
IRHS (13,40 < 120520 (14.52)

With the above estimate available, we compose (14.49) with the flow ({2, (;), integrate in z; starting at & (z2), use
the boundary condition (14.41b), the integrating factor Z from (14.36) which satisfies (14.39), and the bound (14.12),
to deduce

}(82t®5)04.($179327t)| < Z(z1,x2,t) - |(32t@5)(5%1(x2)>$2,t)‘ + |RHS(14~49)OC(x1’x2’t)| ' it}g:z o = 2 (22)]
< 04107°0504a) ¢ | 1804a) | 141070 - 2(137 4+ 65a(1 + a)kg)e

= kg QaEKQ 1-10—°>

S0 Cara + 120E - (267 + 130a(1 + o) o) -

aKQ

\ /\

Since the right side in the above bound depends only on «, kg, and Cyata, upon composing with the inverse flow of ¢,
and upon defining

U0 Cyoy + D (267 + 13001 + @) o) =: b, (14.53)

aKQ
which automatically implies (14.43), we have thus completed the proof of (14.29¢).
At last, we establish (14.29d). The proof is nearly identical to that of (14.29¢) and (14.29f). In analogy to (14.49),
by differentiating with respect to x5 the second component of (14.31), we deduce

(01 + MoO®dy + NMoO®8;) (0220°) — (0:F) 0O°0220°
—((3:90)00° + (9,9M)00°3,0°) 0p20° — ((229100° + (9,9)00°9,0°)d,,0°
+ ((02:5)00° + (0145)00°920%) 020° + ((022F)00° + (92:5)00°9,0°)
— 2(0s9M)00°0020°00° — ((92:IM)0O° + (0, M)0O°9,0°)(9-0°)?
— (02901)00°9220° — ((0229M)0O® + (92, 9M)0O0°0,0°),0°
— (0:M)00°(9220°9,0° + 920°05,0°) — ((02:M)0O° + (0;:M)00°9,0°)0,0°9,0°

— (0291)00°05,0° — ((9229)00° + (92:9M)00°0,60°)9,0° . (14.54)
As before, by appealing to (14.26d), (14.26f), (14.29), (14.46), and (14.51) we may show that
IRHS(14.5)| < (1(0228)00°] + 2 20 5. 10%(1 + a)%¢) + Ce(Be) - (14.55)

Using the bootstraps, the definition (14.24c), and the bounds (6.24¢) and (3.20b) we may show that
0025 | < 22 (2Cqara + 28(1 + @) .

— QKo
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The above estimate and (14.55) imply that

’RHS(14'54)| < 3720(2Cdata + 28(1 + Oé)) + aliffo . 104(1 + a)3 . (1456)

— QK

With the above estimate available, we compose (14.54) with the flow ((,(;), integrate in x; starting at 1 (z2), use
the boundary condition (14.41c), the integrating factor Z from (14.36) which satisfies (14.39), and the bound (14.12),
to deduce

|(52295)0C($1,$2,t)‘ < I(x1,22,t) - |(0220°) (&1 (22), 2, )| + ‘RHS(14.49)0C(9€17$2>15)| : % oy — 2y (22)]

E(Mcdata2 +o Clsane (Bo)

aKQ

IN

(22 (2Caaa + 28(1 + @) + 22 - 10%(1 + @)®) (267 + 130a(1 + a)/ﬁo))

KO

< &(Bg) (wcdata + a%o - Cuaato

akg
+ (22 (24281 + @) + 22 - 10%(1 + a)®) (267 + 130a(1 + a)no)>
= E<BG> . %bgg . (1457)

The above defined bso depends only on «;, kg, and Cyata, and that this choice automatically implies (14.42). Upon
composing with the inverse flow of ¢, (14.57) completes the proof of (14.29d), and thus of the Lemma. (|

14.6. The upstream weight function J in ”Hi In analogy with Sections 5-13, we introduce a weight function
(denoted by J) that will be used in the upstream energy estimates, and which is a suitable extension of .J, away from
the pre-shock. According to the decomposition (14.15¢) of the upstream spacetime H5, we separately define the
weight J in ’Hi (see (14.58) below) and HE (see (14.62) below), ensuring the continuity of certain derivatives across
the surface ©°(z, ti,).

In this subsection we define the weight function J on A3 , which we recall is foliated by the surfaces (z, ©%(z,1)),
according to (14.15a). In light of this foliation, we may define the upstream weight function J as

3(1‘1, o, @6($1,$2,t)) = B(ajg,t) = jg(ij(xg),xg,t) 5 (1458)

forall (z,t) € QU57+, where we have used the notation in (14.10c) for 5. In order to simplify our exposition, we shall
sometimes use the notation J(z, ©°) to mean J(z1, 2, % (1, Ta,1)).

The weight J was defined in (14.58) in order to ensure that is satisfies a PDE, which is a d-modification of the
1-characteristic transport PDE. To see this, we differentiate (14.58) and obtain that in ’Hi we have

91 (3(z,0%)) = 019(x, ©°) + 0:3(x,0°)0,0° = 0, (14.59a)
92 (d(x,0%)) = 0ad(x,0%) + 0,3(x,©°)0,0° = o B(x2, 1), (14.59b)
0 (3(z,0°)) = 0,3(2,0°)9,0° = 0;B(w,1) . (14.59¢)

The identities in (14.59) are substituted into the definition of ©° in (14.10a) to yield
(1-8)(8; + V32)d — (20571013 + (2059 71,5 ) 928 = 0. (14.60a)
The boundary condition associated to the J evolution (14.60a) is deduced from (14.58) and (14.10b), leading to

I(x1(x2), 22, t) = B(wa, t) = J, (&1 (x2), x2,1) (14.60b)

fort € [tin, t*(z2)).
In the energy estimates, the form of the J evolution (14.60a) which is most frequently used is

205019 — 205,97 2 hyy 0o — J, (04 + V32)d = —8.J, (0, + V)J . (14.61)

We will show (cf. (14.93a) below) that (9; + V92)J < 0, and so the condition & > 0 makes the term on the right
side of (14.61) strictly positive. In turn, this induces a strictly positive damping term in certain energy norms; see
Remark 14.14 below.
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14.7. The upstream weight function J in 3. Let us now define the upstream weight function { in the spacetime
region H® . We set

(0 + V32)d(z,t) = ((0y + V2)J)(z, ©%(x, tin)) for all (z,t) € H® | (14.62a)
with the boundary condition set at the “top” boundary of the spacetime He
I(z,t) =1 for all t=0°%(z,tp). (14.62b)

We note from the start that the definition of J in (14.62) ensures that J is continuous across ©°(z,t;,) (because

B(xa,tin) = J,(#1(x2), T2, tin) = 1), and moreover (9;+V d2)J is continuous across ©°(z, t;,) (because of (14.62a)).
It is convenient to solve the boundary value problem (14.62). First, we compute using (14.59b), (14.59c¢), the fact

that J,(z, tin) = 1, and the fact that (0,J,)(, tin) = £ (wo),1 (z) + 152 (20).1 (2), that for ¢ € [tin, t* (22)], we

(81 + V2)3) (2,00 (2, tin)) = Oy B(wa, tin) V2O 00200 @ tn) 4 V(3 @3 (5, ) 0o B(2, i)

8t®5(w,tin)
— x 8 Z,tin ° Z,tin
= (42 (10),1 +15% (20),1 ) (81 (2), 2) =12 (1011020 (it
= f(xl,xg) . (1463)

Note importantly that the ; dependence of f enters only through the argument of ©° and its derivatives.

Returning to the evolution equation for J in (14.62), we introduce a slight modification of the flow £ defined in (6.6)
(the modification is that the new flow is the identity at a given time ¢ instead of t;,), as follows: for t;; < ¢ < ¢/, and
for # € T2 such that (z,t) € H%, we let

at’ft($17m27t/) :V($17§t(x17m27t/)7t,)7 5t($17x27t) =T2. (1464)
It is clear that &; satisfies the bounds (6.8) and (6.9). This flow is defined for times ¢’ less than the stopping time
Te(w,t) = sup{t’ € [t,trn): (z1,& (21, 22,8),8") € HE Y. (14.65a)

Since the “top” temporal boundary of H3 is the surface ©°(z, ti,), we may alternatively characterize the stopping
time T¢(z,t) as the implicit solution of

Tg(il,xg,t) = 98 (xl,ft (:El,l'g, Tg(xhig,t)),tin) R Tg(xl,xz,t) € [t7tﬁn) . (14.65b)

Note in particular that T¢(z, ©°(z, tin)) = ©%(x, tin).
Using this notation, we solve for J in (14.62). For (z1,z2,t) € H? fixed, we compose (14.62a) with the flow &,
and using the notation in (14.63) deduce that

at’ <H(xl7 ft(l'h x2, t/)v tl)) = f(xh St(xh X2, t/)) .
Integrating the above equation from ¢ = ¢ and until ¢ = T¢(x, t), and using the boundary condition (14.62b), we get

Tg(ml,xz,t)
(. aant) =1 — / Har, (1, w0, )1 (14.66)
t

Identity (14.66) gives the definition of the upstream weight function J in the spacetime 75, where & is defined as
in (14.64), f is given by (14.63), and T is given by (14.65).

14.8. Properties of the weight function J. The upstream weight function d is now fully defined, according to (14.58)
in Hi, and (14.66) in 1% . We collect a number of useful properties of this weight, which will be used throughout the
remainder of this section.

14.8.1. Lower bounds for J. We claim that for all (z,t) € 7315, we have
(©3(x) —t) ke . 39 (2 1) e 1Y,

1, (amt)é?qé,.

I(z,t) > { (14.67)
We prove (14.67) separately in the spacetime 7—[3_ and H% . In 7—[3_ it is sometimes convenient to use (14.68).
According to (14.15a), for any (x,t) € ’Hi there exists t' = t/(z,t) € [tin, t*(22)) such that t = ©°(x,¢'). The
definition (14.58) then gives
3(1‘7 t) = 3(17, @6('7:7 t/)) = B(I2v t/) .



THE GEOMETRY OF MAXIMAL DEVELOPMENT FOR THE EULER EQUATIONS 155

On the other hand, from assumptions ((iv)) and ((vi)), and bounds (5.8), (6.24d), (6.53), and Definition 6.6, we have

o o t* (x2) N
J(x,0°%(x,t)) = Blxz, t') = J,(#1(x2), 22,1") = T, (&1(22), 22, " (22)) —/t/ O, (&1 (w2), w2, ") dt”

Y

t*(z2)
—/ Oy, (£1(22), w0, t")At" > —(t*(w2) — ') 5% ((wo) 1 (£1(22), 22) + Cy,)
¢

> (t"(wg) — t") 2 (752 — 2Cy,) = (t*(wo) — 1) 112 - 28 (14.68)
whenever ti, < t' < t*(x2). It thus remains to appeal to the intermediate value theorem in time, along with the
bound (14.29¢), and obtain that

G (0) — £ = 0w, #°(22)) ~ 0w, 1) = (" (a2) — 1) %O, ¢")
——
€[1-3-10-5,14+3-10-5]

V

From the two estimates above, we obtain the bound (14.67), in the spacetime "Hi
For (z,t) € HE, we appeal to the formula (14.66). We note that by the definition (14.63), the bounds (14.29b)-

(14.29c), the fact that V' = O(e), the assumptions on wy and z in Section 4.2, and the bound (6.53) the function §
satisfies the bound

1+ . 101 1+a 14Ce? 14+a . 9 s 1—Ce? 1+a . 89
;_e “T00 2 ( Mg JFC) 1——::18*5 > —f(z1,22) > (% “T0e C) CTHai0s 2 ;;‘ " 100 (14.69)
Inserting the lower bound (14.69) into (14.66), results in
T4 (Te(,t) — )42 - 10 > G(a,t) > 14 (Te(, t) — t) 12 55 (14.70)

Since by definition (recall (14.65a)) we always have T¢(x,t) > ¢, the above estimate proves (14.67) in S
14.8.2. Comparison of J and J,. Next, we compare the weight function J defined by (14.58) and (14.66) to J, itself.

Lemma 14.3 (J and J,). Assume that K is taken sufficiently large with respect to o > 0 to ensure that (14.38) holds.
Assume that the pointwise bootstraps (14.132a) hold in H?®, and that ¢ is taken to be sufficiently small, with respect to
a, ko, and Cyara. Then, for (z,t) € H® we have

I(z,t) < 155, (x,1), whenever |z1| < 13me, (14.71a)
I(z,t) < 35J,(x,t) and |J, W, (z,1)| < Ce, whenever |z1| > 137e. (14.71b)

Moreover, we have
0<d(2,t) =1 < Lo <13me + 2L 130 and | J,(2,1) — 1| < 51, (14.71¢c)
for (z,t) € H3 . Since § > 0 in H?, the bounds in (14.71) also show J, > Q in 3.

Proof of Lemma 14.3. Let us first note that the condition |x1| > 137e implies, via (4.7), that (wg),1 (z) = 0. As such,
the bound (6.17a) immediately implies that for such values of z we have |Jq\/°V N < Ce. This proves the second bound
in (14.71b). It thus only remains to prove the estimates that involve J and .J,.

The proof of (14.71c). We recall that by its definition in (14.15b), we have H® = {(z,t) € HO: t;, < t <
©3(x,tin)}. We first prove the .J, estimate in (14.71c). Using (6.24a), (14.30a), and the fact that t;, = ©° (i1 (2), 72, tin),
we have that for all (,t) € 12,

|, (2, 1) = 1] < (t — tin) 352 (|D1wo ()| + £Cy,)
< (©%(z1,m2, tin) — @5(xl(x2) T3, tin) 2 (ID1wo ()| + €Cy,)
< |z — d1(z2)] - m LR (1), <30 +CY)
< gy <13me 108 + Co'esl|x1|>13m <5-107%,

upon taking ¢ sufficiently small. This establishes the bounds for .J, claimed in (14.71c).

In order to estimate J(x,t) in the spacetime H® we appeal to (14.70), which thus necessitates an upper bound
for the non-negative quantity T¢(z,t) — ¢, where T¢ is as defined by (14.65a). For this purpose, we note that by
construction (see the line below (14.65b)), we have that

(Te(@,t) = )|, _gs (pey = O- (14.72)
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Moreover, implicitly differentiating (14.65b) with respect to ¢ shows that

_ 920° (21,€: (%, Te (2,1)tin) (8: &) (2, Te (2,1))
atTg(l’ t) - 17V(I1?§t($,-|—15(1,t)),§r5(;vﬂf))azeé(:L’l,ft(w,Tg(I,t)),tin)

while differentiation of (14.64) with respect to ¢ shows that

t/
@€)(w.t) =~V tyexp( [ 0V (@&t

Combining the two identities above with (14.29b) and the fact that V, DV = O(e) by the bootstraps, we deduce that

|14+ 0y (Te(x,t) — t)| = |0 Te(z, )| S €. (14.73)
From (14.72) and (14.73) we deduce in turn that
(1— (552)(@5(95 tin) — 1) < Te(a,t) —t < (14 Ce2)(O° (2, tin) — 1), (14.74)

for all (z,t) € H°.
|z1| < 13me, we use that (14.30a) implies

1|m1|<13ﬂ's(T§(‘T t) - t) < 1\11|<137r6|® ( m) - tin|(1 + 652)
< Liay <1376 ©% (@1, T2, tin) — O°(&1(2), 2, tin) (1 + Ce?)

< Lgy <isrelzr — 21(22)] - 105(i+a)(1 +Cé? ) < 1002(711804) < 103(1+ y - (14.75)

< 137e, and |x1| > 13we. In the first case, when

In the second case, when |z1| > 13me, we recal the definition of the domain Qus,+ on which 0% is defined,
cf. (14.11a), to note that @5(95, tin) < tfin, and therefore

Loy <isne(Te(@,t) — ) < (1+ Ce?) (0% (x, tin) — tin) < (14 Ce?)(thin — tin) < 125 - 2. (14.76)
Combining the estimates (14.75)—(14.76) with the upper bound in (14.70), we deduce
3($at) < 14 (Tf(ﬁU,t) - t) 12+5a : %8(1) < 1+ 1+a( \11\<137r52.1103 + 1\w1\>137r€%)1;r75a . %

1 53
<1+ 12 <137 755 T Loy |>137e 55 -

This proves the upper bound for J in (14.71c).

The proof of (14.71a)—(14.71b). We note that due to (14.71c), for (z,t) € HE (by continuity, on the closure of
this spacetime), the bounds (14.71a)—(14.71b) are already known to hold. This is because for |z1| < 137 we have
(14107%) - (145-10~*) < 1.01 while for |z1| > 137 we have (1 + 23)- (1 4+ 5-10~*) < 2.1. Moreover, since
we have already established the JgW ~ bound stated in (14.71b), it only remains to prove the pointwise upper bound
for J Jg_1 stated in (14.71a)—(14.71b), on the spacetime ”Hi

The proof consists of two parts. The first one is to obtain rough lower bounds of .J,(x, t) away from ¢ = t*(z3) and
21 = Z1(x2). The second consists in comparing J with J, using various decompositions of the spacetime ’Hi

The arguments in the first part of the proof, are reminiscent of the argument in the proof of Proposition 13.1, except
that instead of the downstream geometry, we consider the upstream one. In analogy to (13.1) we define

xﬁ(;@) = {xlz x1 < 2y (22), Dywo (21, 22) = —% ) (14.77)

The fact that the function T > z, — ) (x3) given by (14.77) is well-defined and differentiable requires a proof.
This proof is nearly identical to the one given in the proof of Proposition 13.1 with signs changed; the changes are
as follows. The existence of at least one value 2} (z3) € (—137rs xY (z2)) satisfying Dywo () (z2), 12) = -5
follows from the intermediate value theorem, because —1T € (—-%5,0). Then, any such possible value 25 (o) must

satisfy o4 (z2) < xy(z2) — 4—105. This is because by the intermediate value theorem, (4.10), and ((vi)), we have

35 < [Drwg(af(22), 22) — Drwo(ay (2), 22)| = [af(w2) — x} (22)][|0:1D1wollree < 22}(22) — 2 (22)]. In
particular, with (6.53) we also have z} (z2) < z}(z2,t) — 5. We may then define =} (x2) as the largest value of z1
for which Dywg(z1,z2) = —% and prove that for all z; < x?(xg) we must have Dywg(z1, z2) > 20, yleldmg

also the uniqueness of 2} (x2). To see this, note that when x; < 2 (x3), then 1 — Y (z2) < — e < —e%,

Hence, by assumption ((viii)) on the initial data we know that for all z; € [~137¢, 25 (z2)) with Dywg(z) < f%,

we must have D2wg(z) < —e¥ < 0, showing that as z; decreases, Dlwo( ) strictly increases from the value —3°

when x; = 2 (z3), until it reaches the value — 3 at some point z; = x1 (x2). Additionally, ((viii)) 1mp11es that for
z1 < a1 (22) we have that Dywg(z) > —3: thls is because if Dywo(x) wanted to dip below the value —%, then it
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would need to increase as a function of 21, but ((viii)) implies that D;wq () can only increase in 2 if Dyjwg(z) > %
Thus, we have shown that (14.77) gives a well-defined object, and that
b (x9) < zY () — =E 25 (x9) < & (29) — =e, (14.78a)
Dywo(z) > —3T forall 2y < a:l(xg) —1 < Dywo(z) < —1 forall 2 (xg) < a1 <y (w2).  (14.78b)
In particular, (14.78b), the inequality —55 < — 3, and assumption ((viii)) imply that
Dlwo(:zz) > é for all 2} () < 21 <z} (2). (14.78¢)

Using (14.78c) we may also obtain a lower bound for the value of 2} (x5). Since D3wo(zY (z2),22) = 0, we may

Ib Ze —I\/ xr
write Dywo (2] (22), 22) — Dywo (Y (z2), 22) = %(w)zﬁgwo(xl,xg) for some x} € (2 (x2), xl (.172))

Therefore, we deduce |2 () — zY (22)] < V6e|Dywo (2 (2), 22) — Dywo (2 (22), 22)|2 < v6e1/3/20 < e, 50

x?(mg) > 2y (12) — %6, Z‘?(l‘g) > Zi(xg) — €. (14.78d)

We also recall from Section 13.1 that there exists a unique @ (x3) > #Y (2) such that Dywg(zf (z), z2) = -1
cf. (13.1). Moreover, in analogy to (14.78) it is shown in Section 13.1 (just like in the above argument), that

b (z2) > 2 (22) + B¢, ot (22) > &1 (22) + 2e, (14.79a)

Diwg(z) > —% for all z; > J,‘ji(xg) —1 < Dywp(z) < —%—g for all #7 (z2) < 21 < x%(xg), (14.79b)

Diwg(z) > 1 forall 2y (z2) < 21 < 2t (z2), (14.79¢)

el (2) < aY(z2) + Ve, al(wn) <dl(ao) +e. (14.79d)

The bounds obtained in (14.78) for wy have two immediate consequences regarding the behavior of J,, when
combined with Corollary 6.2. The first bound in (14.78b) together with the support assumption (4.7) for (wg),1, and

the bound (6.24a), show that whenever (x,t) € H® is such that 21 & (28 (), 2 (z2)),
Jg(l', t) >1+4+ (t — tin) Lta (Dl’wo( ) — ECJL)
2l-75 % 135(%1@151%6 +¢Cy)

§ (1 tsme<or<at(oa)  Lat (ray <oy <13me) + (1= C) Liameconj<n - (14.802)

v

Similarly, assumption (4.10), and the fact that t*(22) < tg, (which holds by the construction of J,, see the proof of
Lemma 6.5), gives that whenever (z,t) € H° is such that t;, <t < (tfm + tin), we have

Jy (@, 1) > 1+ (t — tin) 52 (Drwo(2) —eCy,) > 1— £25 - 5 - H2(14Cy,) > 5. (14.80b)

It thus remains to consider points (z,¢) € H® such that 21 € (25 (22), z} (22)) and 3 (thn + tin) < t < t*(22). In this
region, the bounds (14.78c), (6.24e) with ¢ = j = 1, (6.53), (6.63), and (4.9), give

DI, (z,1) = (t — tin) 52 (D}wo(x) — CK(By))

> 2 2L Lt (1 oCK(Bg) — e>CK(Bg)) >

With (14.80) in hand, we turn to the second part of the proof and establish (14.71a)-(14.71b) for (z,t) € Hi

We note that by definition, this is the set {(x,1) € H®: ©%(x,t,) < t < ©%(x,t*(22))}, which may also be
written as {(z,t) € H%: 3t' € [tin, t*(22)), Witht = ©%(x,#')}. We split this spacetime into three different regions,
as follows:

(i) The case tj, <t < (t.n + tfin). According to (14.58) and (5.10), for all ¢’ € [ti,,t*(x2)) and all z € T? such
that (z, ©°(z,t)) € H®,

i (14.80c)

I, t) = 3(x,0°(x,1")) = T, (&1(x2), w2, ).
On the other hand, using (5.8), (5.12), (6.53), (5.10), the bootstrap (5.371) present in (14.132a), and the mean value
theorem, we have

(#1(22), 0, t") < J, (27 (22, 1), 22,1") 4 |#1(22) — 27 (w2, )| - | p1 [l Lee,
< T, (1,29, t") + CK(Bg)e® - 4(1 + a)e .
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Combining the two bounds above results in
J(z,t) < J,(z,t') + CK(Bg)e®,  where  t=0°%(x,t'), (14.81)

for all #/ € [tin, t* (22)) and all zz € T2 such that (z, 0% (z, 1)) € H®.
Next, we bound J,(z,#) from above in terms of J,(z,t) = J,(z,0%(x,t')), via the fundamental theorem of
calculus in time and (6.24d) as
t

Tz, t) = Jy(x,t) — [ 0, (@, t")dt" < J,(z,t) + 52 (|(wo),1 ()] + Cy) [t —t] .

t/
It is thus clear that we need a bound for t — t' = ©%(xy,z2,t') — t'. Recall cf. (14.10b) that ©° (% (z2), z2,t') =t
The mean value theorem in x1, the bound (14.30a), and the bootstrap (5.37k) present in (14.132a) give

‘t — t/| = |@6(.’L‘1,I2,t/) — t/| = |@6(l‘1,$2,t/) — @5(10,‘1(332) $2,t/)|

= |v1 — d1(22)] [010° (2], @2, )| < |wy — &1 (22)| 22

akg
Combining the above two estimates we thus arrive at the bound
(2, t) < (@, 1) + By — & (22)] (| (wo) 1 ()] +Cy,) (14.82)

valid for all ' € [tin, t*(2)) and all 2 € T2 such that (z,¢) = (z, 0% (z,t')) € H?.
At this stage, combining (4.7), (4.10), (14.81), (14.82), and (14.12), we obtain
d(,1) < J, (@, 1) + By — i (22)] (| (wo) 1 (2)] + C,) + CK(Bg)e’
< () + Ly <13me o) - 26me - (671 4 Cy,)
+ 1‘m1\>137r€5éi720) - 2(137 + 65a(1 + a)rg)e - (0+ Cy,) + CK(Bg)e?

< Ty () + Ly <13me 2t 4 Cely o3 (14.83)

(67,7

upon taking ¢ sufficiently small, and for all ¢’ € [t;n, t* (7)) and all z € Xg, such that (z, O (x, ') € HO.
Note that up to this point, the condition t.n <t< (t.n -+ tfin) was not used. We use this condition now, in order to
bound J, (z, t) from below via (14.80b) by 5- Comblned with (14.83), this results in the bound
H(.’I?,t) < Jg(xat)(l + 1\:61\§137r5% : M + C€1|x1|>157r5) . (14.84)

Thus, if we ensure that Ko 1s taken sufficiently large with respect to « (only), in order to ensure that (14.38) holds,
then 9 . 210(1(2@?:0‘) < 500 and upon taking ¢ sufficiently small with respect to «, kg, and Cyata, we deduce J(x,t) <
}85 J, ( t), which is consistent with both (14.71a) and (14.71b).

(ii) The case % (tin + thn) < t < min{O°(z,t*(z2)), thn}, 21 & (2 (22), 2% (2)). We still refer to the previously
obtained bound (14 83), except that in this region we use a different lower bound for J,. This lower bound is coming
from (14.80a), which gives J,(z,t) > & whenever 21 ¢ (25 (w2), "Eti(l'g)) Similarly to (14.84), we thus obtain

3(x,t) < J,(2, 1) (1 + Ljoy <13me9 - Z8FD 4 Cel iy oaane) - (14.85)

210(1+a) 1
oo < 500 and upon

taking ¢ sufficiently small with respect to «, kg, and Cyata, we deduce J(z,t) < }8(1) J,(z,t), which is consistent with
both (14.71a) and (14 71b).

(iii) The case % (tin+thn) < t < min{O°(z,t*(x2)), tfin}, 71 € (2 (22), #* (x2)). This region requires a different
analysis, which is not based on (14.83); this is because we cannot obtain a uniform strictly positive lower bound for
J, in this spacetime. Instead, both J and J, may degenerate towards 0, and we need to carefully track this degeneracy.
To track this degeneracy, we employ a Taylor series expansion in x;, which in light of (14.58) and the fact that by
construction we have ©° (i1 (z2), 2o, t') = t/, gives

1099 (z1, w2, 1) = %H(Jfl,%g,@ (z1,22,t)) = 1007 (i1 (2), 22, 1")
< 100, (E1(w2), wa, ') = J, (&1 (22), 2, 1) — % o (21(22), 22,1")
= J,(#1(23), 22,00 (#1(x2), 2, ) — o7 J, (1 (w2), w2, 1)

= J,(z1,2,0%(21,20,1))

Thus, if k¢ is taken sufficiently large with respect to « to ensure that (14.38) holds, then 9 -
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— so1dy (#1(22), 22, ') — (21 — £1(22)) (I, 31 +0¢J,010°) (#1(2), 22, 1)
= Yo = a1(22))? (oo (@, 22, 0% (24, 02, 8)) + 200 Jy1 (a2, % (2], w2, 1))010% (2}, 2, V)
+ 02T, (2, 2o, O3 (), 2, 1'))(010°)? (a, 2, 1)
+ 0, (2, 2, @5(x'1,x2,t'))812@5(x’1,xg,t’))
=:J,(x1,2z2,t) — Err (14.86)

—

for some xz}j which lies in between x; and & (z2), and where the error term Err is defined by the last three terms
(containing the minus signs) in the earlier equality. Our claim is that for the range of z1 and t = ©°(x, ') considered
here, we have that Err > 0, which then would result in the estimate J(x,t) < 135J,(, ), thereby completing the
proof of (14.71a) and (14.71b) in the spacetime Hi
It thus remains to show that Err > 0. To see this, we first analyze the coefficient of the term which is linear in
x1 — %1 (x2), namely (J,,3 +0;J,0,0°%)(i1(x2), 72, t'). Due to Proposition 6.7 we have that J,,; (&1 (x2),x2,t") =
t* (x2

— )8th,1 (Z1(x2), 22,t"”)dt”. By also appealing to (6.24f) and (6.51) (at time t*(x2)) we deduce that for

t/
t' < t*(z2), we have

|Jg,1 (#1(w2), wa, t')| < (t*(x2) — t’)wo . (14.87a)

On the other hand, J, (21 (x2), x2, t’ f:, @2) 5,7, (21 (22), 22, t"")dt”, and by also appealing to (6.24d) and (6.53)
(at time ¢*(x2)) we deduce that for t’ § t*(z2), we have

Jy (&1 (22), w2, ') > (" (22) — ') 5% (—(wo) 1 (£1(22), 22) — Cy,)

> (1 (w2) — ') 2 (—(wo) 1 (2 (w2), 22) — 2Cy) > (¢*(x2) — t') 2L, (14.87b)
The inequalities (14.87a) and (14.87b) combined give
|‘].<771 (i‘l($2), €2, t/)| < 23C2N‘]g(‘%1(x2)7 Z2, t/) ’ (14.87¢)

for t’ < t*(x3). In order to estimate the 0;.J,0; ©°% term, we use the bootstrap (5.371) contained in (14.132a), together
with (14.29a), to deduce

104, (1 (22), w2, )01 O% (#1 (2), ma, /)] < 2ED AT (3 (10) o, t) = 00T g (5 (29), 20, ') . (14.88)

5 akg 9 QaKQE

Combining (14.87¢) and (14.88) with z; € (z} (z3), :E§ (x2)), (14.78d), and (14.79d), we obtain

)| 17(1+a) J (

1 — &1 (22) [ (Jy1 +01J,000°) (&1 (22), wa, )| < |21 — oy (w2)| “oeed J, (1 (2), w2, )

< B J () (w9), w2, t') < 1074, (61 (22), w2, '), (14.89)

- aKQ

where in the last inequality we have used that « satisfies (14.38). Since 10~ 4 < ﬁ, the above estimate turns out to
be sufficiently strong.

Second, we analyze the coefficient of the term in (14.100) which is quadratic in 21 — &1 (25). For this purpose, we
note that since x1, 41 (x2) € (2 (z2), 1‘%(332)), we also have # € (2 (22), z (x2)). Moreover, since we care about

2 (tin + thin) < t < min{O°(x, t*(22)), tfin }, we may apply (14.80c) to deduce
Jy1 (2], 22, % (2], 22, 1)) > 25 . (14.90a)
Next, we appeal to (6.24f), (4.10), (14.30a), and (14.38), to deduce

20011 (2, w2, ©° (2}, 72,1)010° (2, w2, )] < 2 52 (|DFwo (!, 2)| + Ce) - o < LS < 10
(14 90b)

In a similar fashion, by appealing to (6.24g), we deduce

4(14a)|1—a|Cs

|02, (2, 2, 0% (2}, 22,1')) (B1©°)2 (), o, )| < —— B (B)F < 102 (14.90¢)

upon taking ¢ to be sufficiently small. Lastly, upon applying (14.30d), and taking into account the bootstrap assump-
tions, (14.134), we deduce

’at‘]g(x/hx% 95(56/1’1'27t/))afeé(m/hx?’t/)’ < He_a ’ 5(1{);;) = 12;4 : (14.90d)
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Thus, putting together the bounds established in (14.90), we obtain that the coefficient of %(ml — i1 (w2))? appearing
in the definition of Err in (14.86), satisfies
']gall (x/la T2, @8(1‘/1; T2, /)) + Zathal (xlh T, @6(33/1’ T2, t/))aleé('rlla T2, t,)
+ 82 (zl’ Z2, @b(xh Zo,t ))(8166)2(1'/13 T2, t/) + 675‘]9(‘:6/17 Z2, ®é(z/1a Z2, t,))a%@é(ajlla Z2, tl)

1 3-10~* 1
D o =~ (14.91)
To summarize, we deduce from (14.89) and (14.91) that the term Err appearing in (14.86) satisfies
Err > 101J (x1(332),l‘2,t/) - ﬁjg(i‘l(l‘g),l‘z,tl) + %(l‘l — lc‘l(l‘g))Q . # s (1492)
and hence this term is non-negative. In light of (14.86), this completes the proof of (14.71a) and (14.71b) in the
spacetime H5 U ©°(z, siy). O

14.8.3. Damping and anti-damping properties of J. One of the crucial properties of the weight J is that its time
derivative is strictly negative. This fact is recorded next.

Lemma 14.4. Assume that k¢ satisfies (14.38), that the bootstraps (14.132) hold, and that ¢ is then taken sufficiently

small with respect to «, ko, and Cyaa. Then for all (x,t) € H®, we have

— (O + V)(x,t) > Lo 298 (14.93a)

We also have the first derivative upper bounds

_A02140) < (1) < — 2040 (14.93b)
|028(,t)| < 1+ @) + 9Cdata + 3bas, (14.93c)
|813 z,t)| < 152, (14.93d)

|0+ VD5)?3(a, 1) < 220t (14.93¢)

Sorall (z,t) € Hi UH3. Here by = bgs(a, k0, Cdata) > 0 is the constant from (14.29).

Proof of Lemma 14.4. In order to prove (14.93a), we recall that (0; + V' 95)d is continuous across ©°(z, t;, ), and that
from the definitions (14.62a), (14.63) and the lower bound in (14.69), we have

for all (z,t) € 3 . This bound is consistent with (14.93a) upon taking ¢ to be sufficiently small, since W >

B899 For the (x,t) € H3, we write t = ©%(x, ') for some t' € (tin, t*(22)), and use identities (14.59) to write

(O + VR)d(,t) = (04 + VDo), 0% (2,1') = OB (o, ) ARG L NRONEL) 4 v/ (3 O3 (2, 1)) 0o B2, 1)

Appealing to the bounds established earlier in (6.43), (14.26a), and (14.29), for each (z,t) € ”Hi we obtain

(8 + VD)3, 1) >~ (1 (w2), w2, 1) (1555 — Ce?

> L (9 o0) (Sl — Ce?) > B2 (L - 11+3-107° — Ce).

This bound is consistent with (14.93a) upon taking ¢ to be sufficiently small, since mﬂ% > 1000 This completes
the proof of (14.93a).

We next turn to the bounds (14.93b)—(14.93d). In the spacetime Hi upon writing (z,t) = (z,0%(z,t')) and
appealing to (14.59), (14.29), (14.30a), and (6.43), we have

0d(w,t) = Dud(w, 0% (x, 1)) = Saipegh e [-120Ha) _2tal] (14.942)
’alg(xvt” = |813(5E,65($,t ‘ = ’6195 l’,t )at3(1'765($,t/))| S 105(}+Q) : 402(;.+a) S 101735; (1494b)
|023(x,t)| = |028(x, ©° (2, 1'))| < |02B (w2, t')| +]020° (2, )0,d(x, 0 (2, 1))

<B(1+a) +5-10°(1 + a)2e - 22042 < 3.105(1 + a)?. (14.94¢)

On the other hand, for (z,t) € 7f[5_ , we may directly differentiate (14.66), which in turn requires derivative estimates
for the stopping time T¢, the flow &, and the function f. Estimates for the flow &; and its first order derivatives were
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previously obtained in (6.8). Concerning the space derivatives of T, implicitly differentiating (14.65b) and appealing
to (14.29)—(14.30a), we deduce

1 1 2 2 2
01 Te(2,1)| < =6z (tovaray T CF%) < 1o07ay » (14.95a)
|05 Te(,t)| < (1+a)e-(1+Ce?) <6-103(1 + )%, (14.95b)

for all (z,t) € #3 . For the function f, the pointwise estimate (14.69) is supplemented with the uniform derivative
bounds on T?

()| < (32 +0) - ‘31(9 @i(}fl)tcs < (14.96a)

2 o S 2 a
|025(2)] < (42 (4Cana +2) + C) - L1555 + (L2 4+ 0) - 2t CBle, < W (4Cy, + 2+ bs), (14.96D)
which in turn follow from the pointwise bootstrap assumptions (14.132a), the assumptions on the initial data in
Section 4.2, and the bounds (14.19), (14.29)—(14.30). Finally, upon differentiating (14.66), and appealing to the

bounds (14.69), (14.75)—(14.76), (14.95)~(14.96), and (6.8), we obtain
010 (z,t)] < |1 Te(m, 1) (21, & (2, Te(, 1)) | + ‘Ti 2,t) = t| (|00l Lo + 101€¢]| L, [|02f || e )

< W + 1+a : % : ((11()ta2) + C) = 1035 ) (14.97a)

1028(x,1)| < |02Te(x, t)f(21, & (2, Te(x,1)))| + [Te(x,t) — t]02&c ] Lev, 102F] Lo
<6-10%(1+ @)% Lo 404 2 52 (7 4 Ce) - (0 (4Cup0 + 2 + bas)
<4-10°(1 4 @) + 21 (4Cqata + 2+ bas) (14.97b)

forall (z,t) € 7—[5 The 0»J estimate above, together with (14.62a) and (14.69) shows that

— e o e ML Ge < 9g(x,t) < — 12 304 O < - 20Ha) (14.97¢)

for all (z,t) € 7—0[5_ Together, the estimates (14.94) and (14.97) complete the proof of the bounds (14.93b)—(14.93d),
for all (z,t) € ’Hi UHS.

In order to complete the proof of the Lemma, we need to establish (14.93¢). For (z,¢) € H®, we apply (8; + V5)
to (14.62a), appeal to the fact that f is independent of ¢, that |V| < Cee, and that 0,f satisfies (14.96), to deduce that

(00 + VOo)?d(a,t)| < €,

for all (,) € H3. This estimate is better than what is required by (14.93e). Lastly, for (z,t) = (z,0%(x,t')) € H3
we simply decompose

(0 + V2)*d = 01d + 2V 0203 + V002 + 9,V 027 .
Then, upon differentiating (14.59b) and (14.59¢), we derive

5tt3(96, @5(1,7 t/)) Oy B(wa,t')— ?g,%f’((fctﬂ))?gg(x 08 (z,t! ))

82t3(.r7 @5(.1:’ t/)) 82f5($2 t’ ) 8zf® ($ t )Bfﬂ(nnaf%b((a;tﬂ))) 82@ (m,t’)attﬂ(m,ef’(z,t’)) ,

8223(.13, @5(.13, t/)) = (9226(332, t/) — 822@8(1‘,t )atﬁ(x, @6(33, t/))
—20,0°%(, )02, 3 (, ©% (2, 1)) — (020° (,1"))?0d (, ©% (, 1)) .
Using the estimates (5.8), (5.9), (6.43), (6.24g), (14.26a), (14.26¢), and (14.29), we deduce

a8z, &%, ) |<<*>>>#
|52t3x@6:ct )| <
|5223$@5xt )| <

Combining the above estimates, we obtain that
‘(at + V82)23<957t)| < mziﬂ +C,
for all (z,t) = (z,0%(x,')) € H3. This completes the proof of(14.93), and thus of the lemma. O

We conclude this subsection by providing an upstream analogue of Lemma 6.9.
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Lemma 14.5 (Upstream damping and anti-damping). Assume that kg satisfies (14.38), that the bootstraps (14.132)
hold, and that € is then taken sufficiently small with respect to «, kg, and Cqata. Then, we have that

— 35T, (0 + V)T + 82 (0 + Vo) J, > Lrags g (14.98)

pointwise for all (z,t) € H°.
Proof of Lemma 14.5. Using (14.93a), (14.71), and (6.24c), we have that
—305J,0, + V3R)I + 32 (0 + Vo) J, = 380 J, - L - B — 3 (3211, j<azme + C)

2e
>3, 52 (3 <5 — 1o — C2)
1
232(]9. 1;;0‘.%7
where ¢ was taken sufficiently small to obtain the last inequality. This proves the claimed lower-bound (14.98). (]

14.9. Pre-shock flattening and the upstream spacetime set. It is convenient to flatten the “set of times” ¢*(xz2) at
which the pre-shock occur. We define the transformation

it = o (i)~ () 1459
for all (z,t) € 3. Sometimes it is more convenient to express (14.99) as
t=q '(xa,5) = t*(22) — (t*(22) — tin) & - (14.100)
From (14.99), we see that the initial s-time is given by
Sin 1= (T2, tin) = tin = — 155 - (14.101)

By design, the set of pre-shock times {¢ = t*(z2)} gets mapped to the time slice {s = 0}, which is to say that in (z, s)
coordinates, the pre-shock set is given by

A {(:El(xQ),xQ,o): 2o € ’JT}. (14.102)

Next, we note that for all (z,t) € H° we have

(22) 50 Tra tO< °
2¢ | tin—t" (22 2e | 50 14a 2 14Ce
q(ze,t) < T+a = t*(z2)—tn < T+a 1?: _Ce? < I+a "~ 50
@
As such, the s-time variable can never exceed
o 2 . tin—t" (z2) 2 | 14Ce
Sfin *= 114 g%ﬁ%(t*(wz)—tin) S 1ie 50 - (14.103)

Taking into account (14.14), for upstream maximal development in (z,s) variables, we use the spacetime set H°
defined by

H® = {(2,5) € Xoin X [Sin,Stin): 5 = q@2, 1), (2,8) € H®}. (14.104)
Moreover, we similarly define

HS = {(2,5) € Xan X [Sin,Sin): S = q(2, 1), (z,1) € H3}, (14.105a)

H® = {(x,5) € Xn X [Sin,Stin): S = q(w2, 1), (2,8) € H }. (14.105b)

Given any function f: H® — R, we define the corresponding function f: H® — Rby

f(m,s) = f(z,t), where s = q(xa,t). (14.106)
From (14.106), and the chain-rule, (14.99), and (5.13) we obtain
B f (x,t) = Q(x2)s f(z,5) =: 1Dsf(,5), (14.107a)
Bof(x,t) = (32 — Qa(w2,5)0s) f(,5) =: Daf(z,s), (14.107b)
o1 f(x,t) = 01 f(x,5) = 1Dy f(x,s), (14.107¢)

where for compactness of notation we have introduced the functions

Qo) =02 t) = s = o (141082
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Qa(wa,5) = —0q(wa, 1) = 25 22l (1 - L) — 0,4 (25) Qo) (1 - 2) - (14.108b)
For later use, it is also convenient to define
Qz,s) = Q(z2) — V(,5)Qa(z2,5) = e (1 — V(z,5)st" (22) (1 — ;ﬂ)) , (14.108c¢)
and
Q=0.Q=-0VQ+VQELE) Q. =0Q=0, Q=0Q,=-Q%=). (14.108d)

With the above notation, it follows from (14.107) that the spacetime gradient operator in (x,t) variables, namely
D = (04,01, 02), becomes the gradient operator D associated with the (z,s) coordinates, which is defined by

D = (Ds,D1,D2) := (¢Qds, £, 0o — Quds) - (14.109a)
Additionally, the ALE transport operator (0; + V' 0) is written in (z,s) coordinates as
Qds + V2 = Qds + VD3 = 1D, + VD, . (14.109b)

14.10. The approximate 1-characteristic surfaces and the upstream weight function in (z, s) coordinates. Using
the transformation (14.99), since J: H° — R we may define upstream weight function in (x, s) coordinates as

Iz,s) =d(x,1), (14.110)

forall (x,s) € H®. Moreover, according to (14.61), (14.62a), and (14.107), we have that 5 satisfies the equations
205017 — 205,52 Dah Dod — J,(Qds + V2)d = —5J,(Qds + VR)F, in HS, (14.111a)
QO+ Vd)d =, in H, (14.111b)

where | is as defined in (14.63) is the right side of (14.62a).

It is also convenient to obtain a pointwise expression for § in (x,s) € ’Hi_ coordinates that mimics (14.58). For
this purpose, we need to introduce an (z, s) variant of the approximate 1-characteristic surfaces ©°(z,t) which were
defined earlier in (14.10). It is important to note however that the domain of ©° is not #2 , and instead the space-
time QU57+ defined in (14.11a). This is because @5(:1:, t) acts like a “time” variable itself, and so it should not be
transformed according to (14.106). Instead, the correct way to define an (z, s)-variable analogue of ©°(x, ) is similar
to (14.99), and so is given by

0%(z,s) = q(a2,0% (2, ) = tip - (22)-0%(z.t) , where s = q(xe,t). (14.112)

t* (x2) —tin
In particular, the boundary condition (14.10b) and definition (14.99) shows that

t*(mg)f@é(il(mg),xg,t) =t t*(:EQ)ft — S, (14.113)

eé(i‘l(xQ)’xQ’s) = tin - t* (w2)—tin in " 3= (@) —tin

for all s;, <'s < 0. According to (14.11a) and (14.112), the natural domain of ©° is the spacetime
Qus,+ = {(x,s): (x,q  (x2,5)) € (olusﬂL}
={(z,9): 22 €T,sin <5< 0,X] (2,9 "(z2,5)) < 21 < X (22,97 ' (22,9))}, (14.114)

Note importantly that © (z,s) is only defined for s € [si, 0), and that the derivatives of ©3 do not transform according
to (14.107), and instead according to

8:0° (x,s) = 9,0°(z,t), (14.115a)
0,0°(x,5) = a(m)(az@é(l‘, t) + Ot (o) =i (0,0% (1) — 1) — 8275*(3:2)%) ., (14.115b)
010°(z,5) = Q(22)010° (1) , (14.115¢)

Above, identity (14.115a) is a consequence of the fact that (5 = 6(1‘2) is independent of time (cf. (14.108a)), while
in (14.115b)—(14.115¢c) we have appealed also to the computation in (14.108b).

One of the consequences of definition (14.112), when combined with (14.58) and (14.110), is that for all (x,s) €
Qus,+ we have

H(xl,acg,éf’(xl,xg,s)) = B(za,s), (14.116a)

B(xz,s) = B(ws, t)] = T, (@1(@2)s 22, )],y 1 0y - (14.116b)

t=q~"(z2,5)



164 STEVE SHKOLLER AND VLAD VICOL

In particular, for every (z,s) € H2, we may find s’ € [siy, 0) such that s = ©% (z,s'), and thus (14.116a) yields
g(ﬂ?, S) = 5('7:’ éé(xa S/)) = 5(3}27 S/) :

With the above notation, the distinguished surface passing through the pre-shock is parametrized as the graph

{(xl,fﬁg,g(iﬂl,l’g)): To € ']I‘,xl S [x;(.’bg,t*({bQ)),%T(l’g,t*(ﬁz))]},

where

08 (21, 9) := O%(21,29,0) = q(22,0% (21, 22)), a1 € [X] (w2, t*(22)), X (w2, " (22))] , (14.117a)

and %f were defined in (14.11b)—(14.11c). Abusing notation, we extend g to be continuous and constant for x; &
[X] (w2, (22)), X (22, t*(22))]; that is, we define

O8(z1,29) := q(22, thn) < Sfin» o1 < X7 (22,*(22)), (14.117b)
@(331,562) =sin, o1 > X (20, t"(22)). (14.117¢)

As before, we shall need to represent the surface {(x,g(x))} defined via (14.117) as a graph over the (x2,s)
plane, i.e. as

{(6°(x2,5),22,5): m3 € T,s € [sin,Sfin) } »

where for each z; fixed, 1 = 0°(z5,s) denotes the inverse of s = @(-, x9) = q(x2,©3(-, x3)). In particular,

O (0% (22,5),22) =s  and 0% (22, 0% (z1,20)) = 11 . (14.118)
It follows from (14.116a) and the fact that B(z,0) = B(xy, t*(22)) = J, (&1 (22), 22, t* (22)) = 0, that
5(55(952,5),95275) = g(ml,x%g(:ﬁl,mg)) =0. (14.119)

Remark 14.6 (Dropping the tildes). Just as before, see Remarks 5.2 and 13.6, we shall henceforth drop the use of the
tilde-notation for all variables defined as functions of the flattened coordinates (x,s). Notably, besides dropping tildes
on the fundamental Euler variables and the geometric variables, we shall denote jg, 5, and ©3 simply as J,, J, and
O3, keeping the arguments as (x,s). We shall keep referring to the D operator defined in (14.109a) as the rescaled

spacetime differential operator in (x,s) coordinates. This identification is made throughout the rest of this section.

14.11. The decomposition of the upstream spacetime in (x,s) coordinates. Recall that in (z,¢) coordinates, the
upstream spacetime H® was decomposed according to (14.15¢). In (z,s) coordinates, this decomposition carries
over as follows. Using the notation introduced in (14.117), the upstream spacetime H® defined in (14.104) can be
equivalently described as

O — {(J:,s) € Xan X [SinsShin): S < @(a:l,xg)} . (14.120a)

In analogy to (14.15a), we have a well-defined foliation of the spacetime subset ’Hi C H?®, as defined in (14.1052),
which is given by

HS = {(z,5) € H®: ©%(z,5in) <5< O%(2,0)} = {(2,0°%(z,s)): (x,5) € Qs 1} - (14.120b)
The complimentary spacetime H® defined in (14.105b) may be characterized similarly to (14.15b) as
H® = {(z,5) € H®: sin <5 < O%(z,51) } - (14.120c)
Moreover, in analogy to (14.15c) we have that
H® = HE UO®(2,50) UHS . (14.120d)

While the characterization (14.120a) of H? is most useful for pointwise estimates in (x,s) coordinates, for energy
estimates it is convenient to foliate H° by s-time-slices. This s-slice foliation was precisely the purpose for introducing
the function 6° (242, s) (recall, we have dropped the tilde notation) in (14.118). By construction, we have

Hé = U {(1'171‘2,5)2 o €T, —m < 21 <95($2,S)} . (14.121)
SE[Sin,Sfin)
In fact, the constraint that z € Xg,, presentin (14.104) gives a more precise lower bound for x1. In particular, according
to (14.12) we have x1 > %1 (z2) — 2(137 + 65(1 + «)kg)e. Since in all our energy estimates the integrands vanish
identically for x ¢ Xj,, there is no harm done by considering the s-time-slices from (14.121).
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14.12. Notation for integrals and norms. Recalling the definition of ® given in (14.118), For s € [sin, Sfin| fixed, we
use the following double-integral notation for integrals over the s-time-slices of spacetime H?, defined in (14.121):

96 95 ™ eb(mzﬁ)
// F::/ F(x1,22,s)dx1dzs ::/ / F(z1,x2,s)dz1dzs ,
To=—T r1=—T

and the triple integral notation to denote

s prt® s pr6® s T & (z2,5")
/ F .= /// F .= /// F(z1, 72,5 )dz dwods’ :=/ / / F(x1,2,s")dz1dzods’ .
HO Sin Sin s'=sjy Jro=—7w Jx1=—7

We then have the associated space and spacetime L2-norms, respectively, defined as

®
IF G = P9 = [ P2, (14.1220)
Sfin
1913, = 1F s oy = [ 2. (14.122b)
Sin

Let us note that for integrable functions F'(x1, z,s) over 12, the order of integration can be exchanged using the
notation in (14.117), so that

Sin s (x2,s) T T o5 (z1,22)
/ / / F(z1,x9,s)dz1daads :/ / / F(zq1,x9,s)dsdzodzy . (14.123)
S=Sjn To=—T J L1=—T0 T1=—T J Lg=—T J S=Sj,

Let us also consider the surface ©%(x,s;,) (cf. definition (14.112)) passing through (Z1(22), z2,si,). While s =
©3%(x,s;,) is a graph over (z1,3), it is convenient to view this same surface as a graph over the (x2,s)-plane. In
analogy to (14.118), we let z; = & (w2, s) denote this surface, where 62 is defined as the inverse map

O%(& (22,5),T2,5n) =S5, and 6 (29,0°%(z1,72,51n)) = 21 . (14.124)

in in

Then, similarly to (14.123), we have that

Sfin ™ Sin 1275) 0% (21,22,51)
/ / / Il,l‘g, )dxldwgds = / / / wl,xg,s)dsdmgdxl s (14125)
s=sijp Jxo=—7 Jr1=—T1 r1=—7 J xo=—7 J s=sj,

where in analogy to (14.117) we have abused notation and by continuity defined

@5(9617962,%) = q(22, thn) < Skin 1 < X7 (z2,tin) ,

©%(x1,%2,Sin) = Sin , z1 > X (22, tin)

where the stopping times %f are defined in (14.11b)—(14.11c).
For s € [sin, sfin] fixed, we will also make use of the following integral and norm notation:

& (z2,s'
/ F = / / / $1,$2,S/)d$1d$2d5/ y (14126&)
'HS s'=si, Jxo=—m (132 s’
05, (w2.5")
/ / / / F(x1, 29,5 )dz1drods’ (14.126b)
s’ =Sin To=—T JT1=—T

and in analogy to (14.122]3),
F 2 = ||F 2 = F2 14.127a
H ”[is H ”[3)5(7-[5) / ) ( )

1FIZ: = IFIe ey = [ F?. (14.127b)
o
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14.13. L? adjoint of D in the upstream spacetime 7°. In computing adjoints (with respect to the L? inner product
on H?%), we make use of the following calculus identities:

6° (2,5) o & (22,9
/ Osf(x1,x2,5)dxy = %/ f(z1,29,s)dxy — 8596(x2,s) f(96($275),$275). (14.128a)
Similarly, we have that
P (x2,5) o 0° (z2,5)
/ 82f<$1,$2,5)d$1 = 371'2/ f(xhxg,s)dxl 6296(33‘2, )f(96(11275),$2,5), (]4128b)

where (‘)6(:1027 s) is as defined in (14.118). With (14.128), the adjoint of D with respect to the L? inner product on
H® N (Xan X [Sin, 8]), With s;, < s < sgin, is given by

5: = *65 + 56(55’:5 - 65’:s;n) - 65956x1=05(a:2,s’) s (14.129a)
D} = —Di + €04, —g3(an.0) (14.129b)
Dj = D2+ Qo — Qudy—s — DolPdy, st sr) » (14.129¢)

(Q0s + V)" = —(Q0s + V) — (Q+ Vi2 ) + Q(0y—s — 65=s,) — (QDs0° + V020°)5,, —gs(an.sry - (14.129d)

Here we have used that H® C Xq, X [Sin, Sfin)» SO that only one boundary term emerges when integrating by parts with
respect to ', at 1 = @ (z2,s). We have also used the fact that (14.108b) implies Q2 (x2,sin) = 0.

14.14. The L?-based energy norms. Using the weight function J defined by (14.58), (14.66), and (14.110), and with
the notation introduced in (14.122a) for the L? norm, for upstream maximal development we work with the energy
norms defined by

E3(s) = €3 (5) + (Ke) &8, (s) E3(s) = E3 . (s) + (Ke) €3 1(s) (14.130a)
€2 (s) = [T T2 DO (I, Wy, ], e, JLAN) (5)|[ 2 E20(s) = | JEDP (I Wonr, J, 2, LA (9)|| 2 (14.130b)
E2.(s) = ||g% JZDO (W, Z,, AL )( sy|L2, £2.(s) = ||JzD°(W,,Z,,A,) s]|L2, (14.130c)
and the damping norms by
Di(s) = Dg u(s) + (Ke) D5 . (s), Di(s) = D3 1 (s) + (Ke) *D3 (), (14.131a)

D () /H34J2D6(JWN,JZN,JAN Hi?ds’ D2 () /HD5 J W, J 2y, J,AL) H';ds’

+/ 135D° (L, W, J,Z, J,AL |70, (14.131b)
DGT / ||34J2D6(WT,ZT,AT |}L2ds D5T / ||D5 W, 2, A, ||L2ds
+/ |35 DO (W, Z,, AL ,ds (14.131¢)
Sin

Once again K > 1 is a sufficiently large constant, independent of ¢, chosen at the end of the proof, solely in terms of
« and kg (see (14.203) below).

14.15. Upstream bootstrap assumptions. We continue to use the same bootstrap assumptions as in (5.37), but in-
stead of assuming that these bootstraps hold for (z,t) in the spacetime P (cf. (5.11)), we now assume that these
bootstraps hold for (z,t) € s (cf. definition (14.14)). As such, in this section all pointwise bootstraps are assumed
to hold for (z,t) € 5, or equivalently, for all (z,s) € H® via the flattening map (14.99), and for the energy and
damping norms defined earlier in (14.130) and (14.131).

To be more precise, the working bootstrap assumptions in this section are that
(W Z A J,, h, V, %) satisfy the pointwise bootstraps (5.37a)—(5.37q) in He , (14.132a)

y»Ygy

&6, Dg. &5, Ds, ||D°D1hl|,, ,[|D°Dahl|,, . ||D®,|,. satisty the energy bootstraps (5.37r)—(5.37u). (14.132b)

19See the footnote 18.
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Here (W, 2, A, J,, h,V, %) are defined according to the flattening (14.106) (dropping the tildes as discussed in Re-
mark 14.6), while the energy and damping norms are defined in (14.130) and (14.131), respectively. Since the boot-
straps (14.132) in this section are the same as the bootstraps (5.37) used in Sections 5-12, save for the different weights
in the L? norms (with J replacing 7 in (14.130) and (14.131)), we shall sometimes (more frequently for the pointwise
bootstraps) make reference to (5.37) instead of (14.132).

As in Sections 5-12, the burden of the proof in the current section is to close the bootstrap assumptions (14.132),
i.e., to show that these bounds hold with < symbols instead of < symbols. To avoid redundancy, we do not repeat the
arguments of how bootstraps are closed when the proof is either identical to that in given earlier in Sections 5—12, or
if it requires infinitesimal and straightforward adjustments. Instead, we focus on the proofs of those bootstraps which
are different due to the upstream spacetime and weights. In particular, the upstream weight function J(z1, z2,s) that
appears in our energy estimates is defined using a family of surfaces ©°(x,s) which closely approximate the slow
acoustic characteristic surfaces. A key feature of this weight function is the identity (14.111a) which is fundamental
to the upstream geometry. The remainder of this section is dedicated to closing the bootstrap assumptions (14.132).

14.16. Identities in the downstream coordinate system. With respect to the coordinates (z,s) given by (14.99),
with the transformation (14.106), and upon dropping the tildes (see Remark 14.6), we have the following fundamental
identities, which are translations of the identities in Section 3 into (z, s) coordinates (see also (5.30)—(5.35)):

(Qds + V) J, = EC T W, + 1522, (14.133a)
(Qds + V3s)Doh = g(142W, + 1527, (14.133b)
ID,% = 3J,(Wy — Zy) + 2J,Dh(W, — Z,), (14.133c¢)

DoX = 193 (W, - Z,), (14.133d)

(Q0s + V)E = —aX(Z,y + A, (14.133¢)
(Qs + V3y)2 ™2 = 208072%(Z,. + A,), (14.133f)
(Q0s + Vo )v = — (W, + 15227, (14.133g)
(Q0s + Vo) T = (W, + 1527, ), (14.133h)
%(Qds + Vo)A = 2D, Q — aJ,g” 2D2h D2 Q. (14.133i)

By using (5.8), we also note that 61(Jg —J,)= 62(Jg —J,)=0.

14.17. Bounds for Q, (3, Qa, (32, and Q. We list a few properties of the coefficients defined in (14.108) in conjunction
with the flattening map s = q(x2, t).

Lemma 14.7. Assume that the bootstrap bounds (14.132) hold on H?®. If ¢ is taken to be sufficiently small with respect
to o, ko, and Cyata, then

30 < Q(arp) < Lo0L (14.134a)

|Q(z,5) — Q(a2)| < Ce?, (14.134b)
|Qa(z2,5)| < 11, (14.134¢)
|Qa(x2)] < 6(1+a), (14.134d)
|Q(z,5)| < Ce, (14.134e)
02Q(w2)| < 7(1+ @), (14.134f)
101Q(,s)] < Ce, (14.134g)
0:Q(,5)| < C, (14.134h)

hold uniformly for all (z,s) € H3.

Proof of Lemma 14.7. Using the definition (14.108a) together with the fact that —Ce2—t, < t* (22) —tin < tfin — tin,
which follows from the analysis in Section 6.6, we have that

B sQs oS40 (14139

£2—tip
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so by choosing ¢ sufficiently small, (14.134a) holds. From the definition (14.108b) and the bounds (14.17) and
(14.135), we deduce

Qa(x2,5)| < 10e- (14 Ce?) - [1— 2] <10e- (14 Ce%) - (2 + Ce),
and so the inequality (14.134c) immediately follows. Now, since Q = 6 VQQ, from (14.134c), we obtain the
bound (14.134b). Using the definition (14.108d), we see that Q = —,V Qy + VQ2L22) The bounds (5.370),
(14.17), (14.135), and (14.134c) show that (14.134e) holds. Next, we have that Qy = QW (£2) 50 that with (14.17)

and (14.135), we see th~at (14.134d) holds. Since 826 = —Qég, we also have that (14.134f) holds. Finally, from
(14.108¢), 0:Q = —%DlVGQ. Hence, (5.370) and (14.134c¢) give (14.134g). Similarly, from (14.108¢c), 0.Q =
62(3 — 05V Qy — V32Qy. From (5.370), (14.17), (14.20), (14.134c), (14.134d), and (14.134f), (14.134h) follows. [

14.18. Bounds for ©° and J in (z,s) coordinates. In Sections 14.5 and 14.8 we have obtained very precise bounds
for ©%(z,t) (and its derivatives), and for J(z, ) (and its derivatives), in the spacetime 2. In this subsection we revisit
a few of these estimates and re-state them (using (14.112) and (14.110)), for ©%(z,s) and J(z, s) in the spacetime H?°.

14.18.1. Bounds for the derivatives of ©°. From Lemma 14.2 and the identities in (14.115), we immediately derive
the first derivative bounds

1909091 < 0:0%(z,s) < 1L, (14.136a)
T < 19°(x,5) <0, (14.136b)
|020% (x,5)] < 6-103(1 + )¢, (14.136¢)

for all (z,s) € Qus,+, the spacetime defined in (14.114). Indeed, the bound (14.136a) follows from (14.29¢) and
(14.115a), the estimate (14.136b) is a consequence of (14.30a), (14.115c), and (14.134a), while (14.136¢) follows
from (14.29b), (14.29¢), (14.115b), and (14.17).

Bounds for the second order derivatives of ©°(x,s) also follow directly from (14.29d)—(14.29f) and (14.30b)-
(14.30d) upon differentiating (14.115) one more time, and appealing to (14.17), (14.20), (14.134a), and (14.134f).
Since these bounds will not be crucially used in the subsequent analysis, we choose not to re-state these bounds.

14.18.2. The function & is strictly decreasing in's. We recall the definition of ¢° (x5, s) from (14.118). Differentiating
the first identity in (14.118) with respect to s, and recalling that ©2(z) = ©°(z,0), we deduce that

010% (6 (4,5), 2,0) - Db (22,5) = 1.
This identity, combined with the bound (14.29a), (14.38), (14.115c¢), and (14.134a), yields

dak 105(1+a)
~ gy < O (2,5) < -5 < 0. (14.137)

Similarly, for the function 62 defined in (14.124), and appealing to the bound (14.71c), we also have

4ok 1 10°(14a)
_5OLK/0 S —W < 6 0(;“ (1'2, ) 81@5(9%"(932 ). 22,5m) S - 5 <0. (14138)

In view of the definition of D* in (14.129), it is also convenient to record the estimate

24-10% (14a)?ak
|026° (22, 5)| < AR (14.139)

which follows upon differentiating the first identity in (14.118) with respect to x5, and appealing to (14.136c¢).

14.18.3. Lower bounds for J. We recall that the function J(x, t) satisfies the pointwise lower bounds (14.67) and (14.68)
in H®, and respectively 7-[3_. Via the definition of J(z, s) in (14.110), appealing to the definitions (14.100) and (14.117),
and to the lower bound for Q in (14.134a), these pointwise lower bounds in (14.67) become

5 14a | 5
I(x,5) > CHORDE BNCDE H; ’ (14.140)
1, (z,s) € HO .
By additionally appealing to (14.116a), (14.99), (14.108a), and (14.134a), the lower bound (14.68) becomes
I(z,0%(z,s)) > 1809050Q( 2)”! = 106 ° e (14.141)

for all (z,s) € Qus_+, or equivalently, for all (z, ©%(z,s)) € HS.
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14.18.4. Comparison of J and J,. We only record the fact that the results of Lemma 14.3 carry over directly to (z,s)
variables. In particular, (14.71) implies that

3(%, S) < %Jg(‘ra S)1|m1|§13ﬂ'5 + %Jg (xv 5)1\x1\>137re (14.142)
for all (z,s) € H°.

14.18.5. Damping properties of J. Using (14.110), (14.107), (14.109b), and (14.134), it is direct to transfer any
derivative information for J from (z, t) variables, into (x,s) variables. In particular, from (14.93) we directly deduce

— (QOs + Vr)d(x,5) > Lo . 899 > 1l(1ta) (14.143a)
for all (z,s) € H°, and

— 420t < g g(z,s) < —2ALked (14.143b)
ID2d(x,5)| < C, (14.143c)
ID1d(z,s)| <1073, (14.143d)
(Qds + Vy)2d(x, 5)| < 2020t (14.143¢)

forall (z,s) € 7—[3_ UH?® . Lastly, from Lemma 14.5 we obtain that
— 3857,(Q0: + V)3 + 82 (Q0s + Vo) J, > 1252 J, (14.144)

pointwise for all (,s) € H?.

14.19. Bounds for the geometry, sound speed, and ALE velocity for upstream maximal development. Just as we
did in Section 13, we again record all necessary upstream modifications to the bounds obtained earlier in Section 7.
We specifically highlight all the modification caused by the change in the weight function J — J. Bounds without
the presence of such a weight function remain identical to those in Section 7 (and we continue to make reference to
equation numbers from Section 7), and bounds with such a weight function are modified with 7 replaced with J. For
instance, the bounds in Proposition 7.1 now become the bounds given in Proposition 14.8 below. The corollaries and
remarks which follow this proposition (in particular, the closure of the (5.37t) and (5.37u) bootstraps in Corollary 7.2)
remain the same as in Section 7, and to avoid redundancy we do not repeat those arguments here.

Proposition 14.8 (Bounds for the geometry, sound speed, and ALE velocity). Assume that the bootstrap assumptions
(14.132) hold, and that € is taken to be sufficiently small to ensure £= ((By) + (Bn) + (Bg)) < 1. Then, assuming ¢ is
sufficiently small with respect to «, kg, and Cyata, we have that

(J,,D1h, Doh, 3, V) satisfy the bounds (6.64), (7.1b), (7.1d), (7.1e), (7.1j)— (7.1k),(7.1)—(7.1m),  (14.145a)
137D, (9|5 o + L]|gTDCT |2, S e(Be)?, (14.145b)

|87 DDoh(-,5) 13 2 + LT D DohF2 | S K2e*(Bg)?,  (14.1450)

6
> a7 (D + g7 7DIIDsA) |2, + (1375 (D17 — g~ ADIIDah) [ 12 | < Ke(Be) (14.145d)
Iv1=3
1375 DN 2, + 375D 7|2, < Ke*(Bg), (14.145¢)
(135 DN 12 + T D°T || Lo r2) S Ke (Bg),  (14.145f)

where the implicit constants in all the above inequalities depend only on «, kg, and Cyata.

Proof of Proposition 14.8. We explain the upstream modifications required for the proof of the inequality (14.145b).
We compute the L2-inner product of (7.11) with 3% DGJ_q to obtain that for any s € (sin, Sfin,

s ppl®
1 / / 5 (Qds + V03)| D52

s prt® 1~ R - s 1~ o~ s r? 1 ~6
— 142*01 // 35 DG(JgWN)DGJg + 1;0& // 35 D6(<]_qZN)D6<]_q + // 35 RJg D()Jq .
Sin Sin Sin
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Using (14.129), we have that

# st N s 0 o
%/ Qa#|D° _(,25, —i// 3_§(Q85+V82)3]D6J9|2—%// (Q+V,9)J2 D8, |

1 ) 1106 7|2
i 2//T ((Q859+V829)8 B, )‘9(z275)dx2ds

g < s ppl®
= HJ// H%Dﬁ(Jg\i\/N)DﬁJg + 17704//‘ 3%D6(JgiN)D6‘]g +// H%RJQ D6J9

Notice that the second line in this equality vanishes due to the fact that J = 0 along the surface z; = & (z3,s) from
(14.119). It follows that

9‘3 s s 96 1 ~ : eév a0
%// Qa5 | —i/// 3‘§(Q85+V32)3|D6Jg’2_%/// (Q+ V)2 DO, |7
sl S e o T =

:m// HEDG(JQWN)DGJQ_FFTO&// 3§D6(JQZN)D6JQ+/ﬂ HiRJg D6J9

Then, using the bootstraps (5.37), and the bounds (14.134) and (14.143a), we obtain that for ¢ > 0 sufficiently
small,

7
// 150, [+ G a0 1,

< 34D, ez, (H—auaz DLWz, + H52 108D (1,2.) 2, + 3R, 122 )
< Lo gD, |3, + 41+ @)el|FE DO Wiy, L2013 + £ 3R, 132 - (14.146)

The bound for || Jg% R, |3 is obtained identically as in (7.15), and hence, it follows that
051~6 2 1yg-ip6 712 961~6 2 2
[ #1650 + Ha B0 3 <20 [ B0, sl + 2ClBo) (14.147)

where C' depends only on cv. The bound for [[ g5 IDS.J, (-, sin)
on « and Cy,t,- This concludes the proof of (14.145b).

The upstream modifications required for proof of the inequalities (14.145¢c)—(14.145f) are identical and these details
will be omitted. To avoid redundancy, we also omit the proofs of the unweighted bounds for (.J,, Blh, th, ¥, V), as
these are established exactly as in the proof of Proposition 7.1. (|

2 given in (7.10), has an implicit constant that depends

14.20. L?-norms of functions evaluated along ©%. We first define the set of points at the intersection of each surface
©°(z,s) and the initial time-slice {s = s;,}. Recall the definitions (14.112) and (14.11b), for each s € [siy, 0] and
x5 € T, the intersection of the initial time-slice {s = s;,} with the slow characteristic surface ©°(z,s) occurs at
71 = X{ (22,97 (22,5)), by the very definition of the stopping time X (22, ) in (14.11b). Similarly, the intersection
of ©°(z,s) with the future temporal boundary of H% occurs at 1 = X (22,9 *(22,s)), which may be seen by
tracing back the definitions (14.112), (14.99), and (14.11c). That is, upon defining
XE(22,5) := X% (20,97 (22,5)) (14.148)
we have the identities
O (X (2,5),22,5) = (w2, tin) < Sfin,  O° (X (22,5),22,5) = (22, tin) = Sin - (14.149)

Next, we recall that the domain of the function ©° (x,s) is the spacetime set Qus 4, defined in (14.114). Keeping
this in mind, we define:

Definition 14.9 (The L2 norms of a composite function F(x, ©%(z,s))). For any fixed time s € [sin, 0), we define the
spatial L2 norm by

s

f{ (z2,s)
L2 / / 23‘1,332,@6(l‘1,l‘2,5))|2d$1d$2, (14150)
To=—T

Xy (22 5)
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where we recall the definitions in (14.148). The spacetime L? norm of F(x,©%(x,s)) is written as

2
PO DI oy = [ IFCO%C s
0 g x (z2,s)
:/ / / F(x, @5 (z,s) ’ dxidxads
S=Sjn J T2=—T X7 Iz,S)
:/ |F(m,65(x,s))’ dzdzads, (14.151a)
Qus, +

upon recalling the definition (14.114). By a slight abuse of notation, we shall write

|F(-,0°(, = ||F(-,0°(, (14.151b)

||L2 HL2 «(Qus,+)

as F(-,0%(-,-)) is only defined on Qus,+ and hence there is no other possible domain for this spacetime norm.

14.20.1. A spacetime change of variables formula. It will be necessary for us to make the spacetime change of vari-
ables s — ©%(x,s) in order to relate the norm | F(-, ©%(-, NIz , (as defined by (14.151)), to the norm ||FHL2

(as defined by (14.126a) and (14.127)). This is possible because according to (14.120b) the spacetime H? g is 1ndeed
foliated by the surfaces (z,0°%(z,s')), with (x,s') € Qus . That is, for every (z,s) € M3, there exists a unique
s’ € [sin, 0) such that s = ©%(z,s'), and the map (z,s') — (z,0%(z,s')) = (z,s) is a bijection Qus + — H3. The
Jacobian determinant of this map is 9y ©°%(x,s"), which according to (14.136a) is uniformly close to 1. Applying the
change-of-variables theorem to this transformation, we find that

:/ |F(z, 0% (2,5'))|*day dads’
x,s QUS,+

_ 2 1
/711|F(x’5)’ 9,00 (z,5)

the last equality coming from the definition of the L%S(Hi)-norm given by (14.126a) and (14.127).

2

HF<7 @5('7 ))

dzydaads = ||(0,0°) 2 F||L2 o (14.152)

s=0°% (,5') )’

14.20.2. Useful inequalities for fifth-derivative bounds. We next develop some inequalities that will be used for fifth-
derivative bounds. We follow the methodology of Section 6.8. The main estimates established below are (14.156),
(14.161), and (14.164).

We first seek to obtain a bound for the L2-norm of the composite function F(-,0°(-, s)), as defined in (14.150).
In order to bound from above <L||F(-, ©%(-,s)) HQLE , it is clear from (14.150) that we need to be able to differentiate

the stopping times .’%f (z2,s) with respect to s. This is achieved by differentiating the two identities in (14.149) with
respect to s, and appealing to (14.29a), (14.29¢), (14.115a), (14.115c), (14.134a), and to the fact that J,(-,sin) = 1;
this leads to

d ~+ _7(85@6)(§:+(1215)7I275) QKo
& (X1 (22:9) = =560 Fr(ms mse) © 5% 50H0] (14.1532)
(

d (— _ (8.0%)(XT (w2,8),m2,9) ak
4 (X7 (22,9)) = 06N (e ey € [#52,00). (14.153b)

The rough upper bound in (14.153b) is due to the fact that the .J, o ©° factor implicitly present in 9,02 is evaluated
at time q(z2, tsn), and so J, here could in principle be as close as possible to 0, though still strictly positive. With
(14.153), we simply differentiate (14.150) and deduce that

3 LG CD)] [

< 5a/<;0/‘F(%f(:vg,s),:rg,s;n)|2d:£2
T

Z{ (Iz S
+/ / .171,&82,@5(1‘1,1?2,S))asF(xl,l‘Q,@6(1‘1,$2,S))8s@6(561,1‘2,S)d$1d$2

X7 (22 5)

< Sako|| F(XT (-,s), Ssin)lliz, +2 e [|F(.0°(9))[| 2 [|0:F (. O°(,9))]| 2 - (14.154)
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In the last inequality above we have appealed to (14.136a) to bound 9;0°. The estimate (14.154) then implies
upon integration in time, and by appealing to (14.153a) and the change of variable formula for the map (x2,s’) —
(22, X{ (z2,5')), whose determinant Jacobian is -4 X7, that

HF @6 ||L2 ||F(',®§(',Sin))’|iz +50éﬁ',0/ /|F(%f(x2,s’),xg,s;n)|2dx2ds’
Sin T
2 B8 [P 00 [ 020
< P03, + 28] P
2 38 [P 00 [0 0.2 (14.155)

We now consider a function F(z,s) such that J"0,F € L2 ((#®), for some 0 < r < 2. Our goal is to establish the
bound

In order to prove (14.15 6), we first decompose the left side of this inequality as integrals over H i and H° . From (14.122b),
(14.127), (14. 136a), (14.151), and(14 152), we deduce that

‘ ‘ <1001HF @5 HL2 +HFHL2 ) - (14.157)

8y = 7999
For the first term on the rlght 31de of ( 14.157), we use definition (14.151) the lower bound (14.141) and the previ-
ously obtained upper bound (14.155), to deduce

IFCo s, = [ IFCef ol

S |sinH|F . @6( Sin

) < 22e]|F (i) [ + 664237 00|, 0<r< (14.156)

3
7-

HD)7

Mz + 25Isinl[|F s

1909091/ /HF e°(., ))HL%HasF('a@6(‘75/))’|Lids’ds

< Jsinl[|F (-, ©3 (-, i) |5 + 25[sinl | F (- 5i0) |

iz [

1909091/ /HF (., HL2H (970 F) (-, @6(.’5/))"%(%~%)7Tds’ds
< Il | 052 + 25l s

+ lsinl [ £, 0° (5 )| (@ OF)C O, s

In the last inequality we have used the fact that for r € [0, 3/4] we have fs_ (&) 7"ds < 4|sin|. Using an Cauchy-Young
argument, and then by appealing to (14.152) and (14.136a), we deduce from the above estimate that

|F(-,©°(, HLzs<2\sin|||F(~,@5(-,sin))”ii+50|sin|||F(~,s;n)||ii+81\sin|2H(HT85F(95 HL2
< 2\sin|||F(~,@5<-,sm>>||ii +50|sin|||F(~,sm>||2Li +82\sin|2Ha’“asFHii’S(Hi). (14.158)

We notice that the first term on the right side of (14.158) needs a further upper bound, in order to prove (14.156). For
this purpose, pointwise in  we apply the fundamental theorem of calculus in time to write

©°(x,in)
F2(z,0%(x,s1n)) = F2(x,s10) + 2/ F(z,5)0sF(x,s)ds.

Hence, recalling the definition (14.150), appealing to (14.125), and using the lower bound J > 1 on the curve
(z,0%(z,si)) (cf. (14.140)) we deduce

0% < 2 N T X (w2.50) O° (x1,2,5m)
||F( ,0°( ,Sm))HLg < ||F( ,Sm)HLg +2 F(x,5)0sF (z,s)dsdxidxs
To=—T s

x (z2,5in) ¥ 5=Sin
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i i O°%(z1,x2,50)
< FCosm)|2, +2 / ) / / |F(x,5)]|(370.F) ()| dsdaadir,

2 Sfin s II;,S)
el 2 [T [ [ Pl @ sjandss
* s=sip Jro=—m Jx1=—7
< HF("sin)Hig +2’|FHL;5(H§)ngasFHLg‘s(ng)' (14.159)

Let us now estimate the second term on the right side of (14.157), namely ||F|[ 2 (35 . For the L? norm on %2,
which was earlier defined in (14.126b), we have that

Sin (W27 sm 132;5)
// xsdx<||F , Sin HL2 / P // ,s')dxds’
sm($25)
= [[F (sl +2/ // F(x,5)0y F(x,5)dads’
+/ /85/92n<$2,51)F2(9§in(1‘2,S/),I‘Q,S/)dl’gdsl
Sin T

2 T
< P2 + 20 Fll s s 187 0F s e

the last inequality following from (14.138) and the fact that § > 1 in H° due to (14.140). Integrating the above
inequality for s € [sj,, sfin] and then using Cauchy-Young, we obtain

HF”ig,s(Hi) < 2(sfin — sin)||F(.,sin)||ig + 4(sfin — Sin)2||3T3sFH2Lg,S<H§) . (14.160)

Combining the bounds (14.157), (14.158), (14.159), (14.160), using that |sfn — Sin
Cauchy-Young inequality, we deduce

HFHi%S(Hf’) < 112|sin‘HF('vsin)Hig + 166‘Sin|2”310851?!’2315(%1) + 35|sin\2||37‘85FH§%S(H5

< 28s;,|, and applying the

8"
This bound clearly implies (14.156), as claimed.
Our next goal is to establish the bound
1 2 11 2
sup [|(J2F)(, 0% (,9)|[;2 < 406 (|F (- s0) 7 + 206™e]|d T2AF |7, (00 (14.161)

SE[sin,0]
in direct analogy to (6.75). For this purpose, we revisit the computation in (14.154)—(14.155), appeal to the fact that
via (14.145) (more precisely, (6.64)) and the bootstrap assumptions in (14.132a) we have that d,.J, < —3 - X2 4+ 14
1;750[‘]9 S 14|Sin‘71c]g, and thus

(72 F)(-, ©°(:, Hm < [[(77 F)(-,©° (- sin) ||2L2 +25]|(J2 F)(-,sin ||L2
+%/ |72 F). 0| |72 8SF)(-,®5(~,S’))HLids’
+i. / (3 ’))Hszds’. (14.162)

Using that J, (-, s;,) = 1, that |J, — 1| < 5-10"%and 1 < J < 3 in the closure of H° via (14.71c), appealing to the
upper bounds (14.159), (14.160), to the lower bound (14.141), and using the norm equivalence stated in (14.152), we
deduce from (14.162) that

12 F) 0% oDz < 2611FCosillzz + 311 o s 15 T2 OF | s

+*/ (72 ), 0° (.5 | 2 (@ TF O F) (-, 05 ()] o (£) ¥ as’

i [P e ],

+10]sia ||| 37 Jg%asFHQLg s

S29||F *5 Sin 8

Mz
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+3|Sin|%( sup H J F)( HL2)||3 J? aFHL2 J(HE)
SE[S.m
+%/ | F)(, 08 ()| ds (14.163)

Using Gronwall’s inequality for s € [sin, 0] and the Cauchy-Schwartz inequality, we deduce from (14.163) that

S[upo]H ( @5 HLz < 29615‘}F('a5in)uiz + 14615‘5'"”‘3 J aFHL2 Hf’)
SE[Sin
+ 9% sinl [ T2 0F |15 )+ 5 _sup [[FFF)C,0°C9)] 1z -

s& [S\m

Absorbing the last term on the right side into the left side of the above bound, then establishes (14.161).
The remaining bound that is established in this section is that for the norm defined in (14.122a), we have

1 2
sup ]||<J}F><~,s>||%g < L™ F (5|7, + 926”3 TFF 3, ) (14.164)
SE[Sin,Sfin
In order to prove (14.164), we split the integral defined in (14.122a) similarly to (14.126) as
) sin (22,,5) & (x2,s)
||(JQ§F)(,S)||%2 = // JF (.%‘1,{)32, )dxldl'g + // JFQ)(x17.'L'2,S)d$1de'2

* 65, (z2,5)

= I(s,—) + Z(s,+) . (14.165)

For the first integral, a fundamental theorem of calculus in time is applied between time s and time s;,. The mono-
tonicity with respect to z1 of ©°%(x1, T2, si,) ensured by (14.136b) implies that for every z; < & (x2,s), and for all
s’ € [Sin, s), we have (21, 22,5") € H®. Then, with the bounds for g and .J, provided by (14.71c) in H° , and with the
estimate 0s.J, < 14[si,|~1J,, we deduce

9‘5 L(x2,9) 95 (IQS
S — // JF (1‘1,1‘2,5”1 dxldxg —|—/ // )(xl,xg,s’)dxldxgds'
< FCsi)[zs +2 / 12 F) o) 22 (85 T2 OF) (-, 12 s’ + 4 / (T2 F)(s)[F2ds’. (14.166)

In order to bound the Z(s, +) integral appearing in (14.165), we let s’ € (sj,, 0) be arbitrary (we will eventually
pass s’ — 0). Then, for each x5 € T fixed, there exists a unique

U(zy,s,8) = a1 € [X] (w2,5), XT (22,8)] N [, (w2,5), 6 (x2,5)) suchthat s=0O%(zy,zy,5).

Note that limg s, v(x2,s,5') = & (2,s), and more importantly, limg/ o v(22,s,s’) = & (z2,s). Because of this,
by the monotone convergence theorem, we may write

zg,ss)
= lim // F?)(21,12,s)dzdxs . (14.167)

s’—0 22 ,S)

Our goal is to obtain uniform in s’ bounds for the integral expression in (14.167). For this purpose, we use the
fundamental theorem of calculus in time between the time s, going down to time max{©°®(z, si,), sin }. We deduce

$2 S,S ) xg s, s’
// (J,F?) (21, z2,s)dr1dry = // F?)(z1, z2, max{O®(z, sin), sin} )dz1dao
6, &,

L(x2,9) L (x2,9)

v(z2,s,s’) s
+// / (95(J9F2)(I1,JIQ,SN)dS”dl‘ldJ?Q.
T 0§i" (za,s) max{O°®(x,sin),Sin}
(14.168)

Appealing to the triangle inequality, to the bound (14.159) and the information on .J, in H® available from (14.71c),
and to the bound (14.160), we deduce that the first term on the right side of (14.168) is bounded from above by

1FCosimll7s + [1FC. 0% Cosm))7, < 6l|FC.sull;

152 +10[sul |5 72 0.F 7. (14.169)

EADN
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The above estimate is clearly independent of s’. The second term on the right side of (14.168) is bounded simi-

larly, using that 0sJ, < 14\sin\_1Jg, Fubini, the change of variables formula, and the fact that J satisfies the lower
bound (14.141). An upper bound is provided by

112,5 S
‘ | // / (Jng)(xlamQ;S/I)dS//dxlde
o s (z2a,s) max{O°%(z,sin),Sin}

v(z2,s,s’) ) L )
oy / (JEF) - (3 IEOF) - 3% (01, 22, 5")ds"dydrs
T 9§in (x2,s) max{O0?®(x,sin),Sin }

12’55) 11 1
< |s.n|/ |12 F(- ||L2d”+/ //65 JEF) - (31 JZ0F) - 377 (w1, 2,5")da1dasds” . (14.170)

o (T2 ,5")

The second term in (14.170) requires a further careful analysis, in order to suitably bound J~ i i(x,s"). Flrst by appeal-
ing to (14.111a), (14.143a), and (14.143c) we see that 2aX01J = (1 — §)J,(Q0s + VI2)d + 2aXJ,9~ 3DyhDyJ <
qulg—e“ < 0, and therefore J is strictly decreasing with respect to x;. As such, with (14.143b), the fundamental
theorem of calculus in time, the definition of v(z9,s,s’) above, and the fact that J > 0 in H?  we deduce

min  J(z1,22,8") = J(v(z2,s,5), 72,5")
z1<v(22,5,5)

= J(v(z2,s,s), w2,8) — (s —s")0d(v(x2,s,5), 22,8") > (s — s/)g(;;-:) . (14171
Using, (14.171) the right side of (14.170) may be further bounded from above by

\s.n\/llJzF HdeS"*/H (FEF)C S | @ 0] (5 = ) X)) THas”
< m/ 172 F (- ||L2d5~+2|s;n\z(s—sm>%( sup [|(EE)S )| B TR0y - (14172)
Sin s’ € [Sin,s]

Importantly, this bound is also independent of s’. By combining (14.167), (14.168), (14.169), and (14.172), we thus
obtain

ds/l

Z(s.+) < 6P, + 00l [ 20T, e+ 2 [ 2P

sl (s [EECE ) B TEF e - (14173

s''e [Sin 75]

From (14.165), (14.166), (14.173) we obtain

1Pz < TIFC sl +100slll3 T2 F 1y ey + 2 [ )5 5"
+5|Sin|§( sup H(J F)( ||L2)||3 J? FHL2 L)
s’ € Sin,s]

An application of the Gronwall inequality in s then directly gives the proof of (14.164).

14.20.3. Bounds for Es and Ds. We first show that (5.37s) follows from (5.37r), assuming that By is sufﬁcienthy large

with respect to Bg. We will employ the inequality (14.156) with r = %. Using (4.11), recalling that 05 = %DS, and

that (AQ_l is bounded according to (14.134a), we deduce from (14.156) with r = % that

D2, (Sfin) < 224Cqara” + 680D, (Sfin) .

D2 (sfin) < 224€®Caga” + 680D - (Sin) -
From the above bound and the definition (14.131), it follows that

D2(sfin) < 224Cqata” + 680DZ  (sin) + (Ke) 72(2246 Cyara® + 680DZ 1 (sfin))
< 448C2,., + 680D (sfin) , (14.174)
since K > 1. Similarly, by appealing to (14.164)